

Algorithmic
cryptAnAlysis

© 2009 by Taylor and Francis Group, LLC

CHAPMAN & HALL/CRC
CRYPTOGRAPHY AND NETWORK SECURITY

Series Editor

Douglas R. Stinson

Published Titles

Jonathan Katz and Yehuda Lindell, Introduction to Modern
Cryptography

Antoine Joux, Algorithmic Cryptanalysis

Forthcoming Titles

Burton Rosenberg, Handbook of Financial Cryptography

Maria Isabel Vasco, Spyros Magliveras, and Rainer Steinwandt,
Group Theoretic Cryptography

Shiu-Kai Chin and Susan Beth Older, Access Control, Security and
Trust: A Logical Approach

© 2009 by Taylor and Francis Group, LLC

Chapman & Hall/CRC
CRYPTOGRAPHY AND NETWORK SECURITY

Antoine Joux

Algorithmic
cryptAnAlysis

© 2009 by Taylor and Francis Group, LLC

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor and Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4200-7002-6 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Joux, Antoine.
Algorithmic cryptanalysis / Antoine Joux.

p. cm. -- (Chapman & Hall/CRC cryptography and network security)
Includes bibliographical references and index.
ISBN 978-1-4200-7002-6 (hardcover : alk. paper)
1. Computer algorithms. 2. Cryptography. I. Title. III. Series.

QA76.9.A43J693 2009
005.8’2--dc22 2009016989

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

© 2009 by Taylor and Francis Group, LLC

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com
http://www.taylorandfrancis.com
http://www.crcpress.com

À Katia, Anne et Louis

© 2009 by Taylor and Francis Group, LLC

Contents

Preface

I Background

1 A bird’s-eye view of modern cryptography 3

1.1 Preliminaries . 3
1.1.1 Typical cryptographic needs 6

1.2 Defining security in cryptography 10
1.2.1 Distinguishers . 11
1.2.2 Integrity and signatures 16
1.2.3 Authenticated encryption 17
1.2.4 Abstracting cryptographic primitives 21

2 Elementary number theory and algebra background 23

2.1 Integers and rational numbers 23
2.2 Greatest common divisors in Z 26

2.2.1 Binary GCD algorithm 30
2.2.2 Approximations using partial GCD computations . . . 31

2.3 Modular arithmetic . 33
2.3.1 Basic algorithms for modular arithmetic 34
2.3.2 Primality testing . 38
2.3.3 Specific aspects of the composite case 41

2.4 Univariate polynomials and rational fractions 44
2.4.1 Greatest common divisors and modular arithmetic . . 45
2.4.2 Derivative of polynomials 47

2.5 Finite fields . 47
2.5.1 The general case . 48
2.5.2 The special case of F2n 49
2.5.3 Solving univariate polynomial equations 55

2.6 Vector spaces and linear maps 61
2.7 The RSA and Diffie-Hellman cryptosystems 63

2.7.1 RSA . 63
2.7.2 Diffie-Hellman key exchange 65

© 2009 by Taylor and Francis Group, LLC

II Algorithms

3 Linear algebra 71

3.1 Introductory example: Multiplication of small matrices over F2 71

3.2 Dense matrix multiplication 77

3.2.1 Strassen’s algorithm 80

3.2.2 Asymptotically fast matrix multiplication 89

3.2.3 Relation to other linear algebra problems 93

3.3 Gaussian elimination algorithms 94

3.3.1 Matrix inversion . 98

3.3.2 Non-invertible matrices 98

3.3.3 Hermite normal forms 103

3.4 Sparse linear algebra . 105

3.4.1 Iterative algorithms 106

3.4.2 Structured Gaussian elimination 113

4 Sieve algorithms 123

4.1 Introductory example: Eratosthenes’s sieve 123

4.1.1 Overview of Eratosthenes’s sieve 123

4.1.2 Improvements to Eratosthenes’s sieve 125

4.1.3 Finding primes faster: Atkin and Bernstein’s sieve . . 133

4.2 Sieving for smooth composites 135

4.2.1 General setting . 136

4.2.2 Advanced sieving approaches 148

4.2.3 Sieving without sieving 152

5 Brute force cryptanalysis 155

5.1 Introductory example: Dictionary attacks 155

5.2 Brute force and the DES algorithm 157

5.2.1 The DES algorithm 157

5.2.2 Brute force on DES 161

5.3 Brute force as a security mechanism 163

5.4 Brute force steps in advanced cryptanalysis 164

5.4.1 Description of the SHA hash function family 165

5.4.2 A linear model of SHA-0 168

5.4.3 Adding non-linearity 171

5.4.4 Searching for collision instances 179

© 2009 by Taylor and Francis Group, LLC

5.5 Brute force and parallel computers 182

6 The birthday paradox: Sorting or not? 185

6.1 Introductory example: Birthday attacks on modes of operation 186
6.1.1 Security of CBC encryption and CBC-MAC 186

6.2 Analysis of birthday paradox bounds 189
6.2.1 Generalizations . 190

6.3 Finding collisions . 192
6.3.1 Sort algorithms . 196
6.3.2 Hash tables . 207
6.3.3 Binary trees . 210

6.4 Application to discrete logarithms in generic groups 216
6.4.1 Pohlig-Hellman algorithm 216
6.4.2 Baby-step, giant-step algorithm 218

7 Birthday-based algorithms for functions 223

7.1 Algorithmic aspects . 224
7.1.1 Floyd’s cycle finding algorithm 225
7.1.2 Brent’s cycle finding algorithm 226
7.1.3 Finding the cycle’s start 227
7.1.4 Value-dependent cycle finding 228

7.2 Analysis of random functions 231
7.2.1 Global properties . 231
7.2.2 Local properties . 232
7.2.3 Extremal properties 232

7.3 Number-theoretic applications 233
7.3.1 Pollard’s Rho factoring algorithm 233
7.3.2 Pollard’s Rho discrete logarithm algorithm 236
7.3.3 Pollard’s kangaroos . 237

7.4 A direct cryptographic application in the context of blockwise
security . 238
7.4.1 Blockwise security of CBC encryption 239
7.4.2 CBC encryption beyond the birthday bound 239
7.4.3 Delayed CBC beyond the birthday bound 240

7.5 Collisions in hash functions 242
7.5.1 Collisions between meaningful messages 243
7.5.2 Parallelizable collision search 244

© 2009 by Taylor and Francis Group, LLC

7.6 Hellman’s time memory tradeoff 246
7.6.1 Simplified case . 247
7.6.2 General case . 248

8 Birthday attacks through quadrisection 251

8.1 Introductory example: Subset sum problems 251
8.1.1 Preliminaries . 252
8.1.2 The algorithm of Shamir and Schroeppel 253

8.2 General setting for reduced memory birthday attacks 256
8.2.1 Xoring bit strings . 257
8.2.2 Generalization to different groups 258
8.2.3 Working with more lists 262

8.3 Extensions of the technique 263
8.3.1 Multiple targets . 263
8.3.2 Wagner’s extension . 264
8.3.3 Related open problems 265

8.4 Some direct applications . 267
8.4.1 Noisy Chinese remainder reconstruction 267
8.4.2 Plain RSA and plain ElGamal encryptions 269
8.4.3 Birthday attack on plain RSA 269
8.4.4 Birthday attack on plain ElGamal 270

9 Fourier and Hadamard-Walsh transforms 273

9.1 Introductory example: Studying S-boxes 273
9.1.1 Definitions, notations and basic algorithms 273
9.1.2 Fast linear characteristics using the Walsh transform . 275
9.1.3 Link between Walsh transforms and differential charac-

teristics . 279
9.1.4 Truncated differential characteristics 282

9.2 Algebraic normal forms of Boolean functions 285
9.3 Goldreich-Levin theorem . 286
9.4 Generalization of the Walsh transform to Fp 288

9.4.1 Complexity analysis 291
9.4.2 Generalization of the Moebius transform to Fp 293

9.5 Fast Fourier transforms . 294
9.5.1 Cooley-Tukey algorithm 296
9.5.2 Rader’s algorithm . 300

© 2009 by Taylor and Francis Group, LLC

9.5.3 Arbitrary finite abelian groups 303

10 Lattice reduction 309

10.1 Definitions . 309

10.2 Introductory example: Gauss reduction 311

10.2.1 Complexity analysis 315

10.3 Higher dimensions . 318

10.3.1 Gram-Schmidt orthogonalization 319

10.3.2 Lenstra-Lenstra-Lovász algorithm 320

10.4 Shortest vectors and improved lattice reduction 327

10.4.1 Enumeration algorithms for the shortest vector 327

10.4.2 Using shortest vectors to improve lattice reduction . . 330

10.5 Dual and orthogonal lattices 331

10.5.1 Dual of a lattice . 332

10.5.2 Orthogonal of a lattice 333

11 Polynomial systems and Gröbner base computations 337

11.1 General framework . 338

11.2 Bivariate systems of equations 340

11.2.1 Resultants of univariate polynomials 341

11.2.2 Application of resultants to bivariate systems 343

11.3 Definitions: Multivariate ideals, monomial orderings and Gröbner
bases . 345

11.3.1 A simple example: Monomial ideals 346

11.3.2 General case: Gröbner bases 346

11.3.3 Computing roots with Gröbner bases 349

11.3.4 Homogeneous versus affine algebraic systems 351

11.4 Buchberger algorithm . 352

11.5 Macaulay’s matrices . 354

11.6 Faugère’s algorithms . 355

11.6.1 The F4 approach . 356

11.6.2 The F5 approach . 359

11.6.3 The specific case of F2 360

11.6.4 Choosing and changing monomial ordering for Gröbner
bases . 361

11.7 Algebraic attacks on multivariate cryptography 362

11.7.1 The HFE cryptosystem 363

© 2009 by Taylor and Francis Group, LLC

11.7.2 Experimental Gröbner basis attack 364
11.7.3 Theoretical explanation 365
11.7.4 Direct sparse approach on Macaulay’s matrix 366

11.8 On the complexity of Gröbner bases computation 367

III Applications

12 Attacks on stream ciphers 373

12.1 LFSR-based keystream generators 374
12.2 Correlation attacks . 376

12.2.1 Noisy LFSR model . 376
12.2.2 Maximum likelihood decoding 377
12.2.3 Fast correlation attacks 380
12.2.4 Algorithmic aspects of fast correlation attacks 383

12.3 Algebraic attacks . 387
12.3.1 Predicting an annihilator polynomial 388

12.4 Extension to some non-linear shift registers 389
12.5 The cube attack . 390

12.5.1 Basic scenario for the cube method 392
12.6 Time memory data tradeoffs 393

13 Lattice-based cryptanalysis 397

13.1 Direct attacks using lattice reduction 397
13.1.1 Dependence relations with small coefficients 397
13.1.2 Some applications of short dependence relations . . . 402

13.2 Coppersmith’s small roots attacks 407
13.2.1 Univariate modular polynomials 407
13.2.2 Bivariate polynomials 410
13.2.3 Extension to rational roots 413
13.2.4 Security of RSA with small decryption exponent . . . 414

14 Elliptic curves and pairings 417

14.1 Introduction to elliptic curves 417
14.1.1 The group structure of elliptic curves 418
14.1.2 Double and add method on elliptic curves 423
14.1.3 Number of points on elliptic curves 423

14.2 The Weil pairing . 424
14.2.1 Weil’s reciprocity law 424

© 2009 by Taylor and Francis Group, LLC

14.2.2 The Weil pairing on `-torsion points 429
14.3 The elliptic curve factoring method 432

14.3.1 Pollard’s p− 1 factoring 432
14.3.2 Elliptic curve factoring 433

15 Index calculus algorithms 439

15.1 Introduction to index calculus 439
15.2 A simple finite field example 441

15.2.1 Overview . 441
15.2.2 A toy example . 448

15.3 Generalization to finite fields with small enough characteristic 449
15.3.1 Overview of the regular function field sieve 453

15.4 Introduction to the number field sieve 455
15.4.1 Factoring with the quadratic sieve 456
15.4.2 Discrete logarithms with the Gaussian integer method 457
15.4.3 Constructing number field sieve polynomials 461

15.5 Smoothness probabilities . 463
15.5.1 Computing smoothness probabilities for polynomials . 463
15.5.2 Asymptotic lower bound on the smoothness probability 467
15.5.3 Smoothness probabilities for integers 467

References 471

Lists 491

© 2009 by Taylor and Francis Group, LLC

Preface

The idea of this book stemmed from a master’s degree course given at the
University of Versailles. Since most students in this course come from a math-
ematical background, its goal is both to prime them on algorithmic methods
and to motivate these algorithmic methods by cryptographically relevant ex-
amples. Discussing this course with colleagues, I realized that its content
could be of interest to a much larger audience. Then, at Eurocrypt 2007 in
Barcelona, I had the opportunity to speak to Sunil Nair from Taylor & Fran-
cis. This discussion encouraged me to turn my course into a book, which you
are now holding.

This book is intended to serve several purposes. First, it can be a basis for
courses, both at the undergraduate and at the graduate levels. I also hope
that it can serve as a handbook of algorithmic methods for cryptographers.
It is structured in three parts: background, algorithms and applications. The
background part contains two chapters, a short introduction to cryptography
mostly from a cryptanalytic perspective and a background chapter on ele-
mentary number theory and algebra. The algorithms part has nine chapters,
each chapter regroups algorithms dedicated to a single topic, often illustrated
by simple cryptographic applications. Its topics cover linear algebra, sieving,
brute force, algorithms based on the birthday paradox, Hadamard-Fourier-
Walsh transforms, lattice reduction and Gröbner bases. The applications part
takes a different point-of-view and uses recipes from several chapters in the
algorithms part to address more advanced cryptographic applications. This
final part contains four chapters dealing with linear feedback shift register
based stream ciphers, lattice methods for cryptanalysis, elliptic curves and
index calculus methods.

All chapters in the algorithms and applications parts have an exercise sec-
tion. For all exercises whose number is marked with an “h” exponent, e.g.,
exercise 1h, hints and solutions are given on the book’s website whose ad-
dress is http://www.joux.biz/algcrypt. To allow the book to serve as a
textbook, about half of the exercises have neither hints nor solutions.

The content of this book should not necessarily be read or taught in linear
order. For a first reading or an introductory course, the content of Chapters 2,
3 and 6 covering basic number theory, linear algebra and birthday paradox al-
gorithms should suffice. For a longer course, the choice of chapters depends on
the background of the reader or students. With a mathematical background,
I would recommend choosing among Chapters 4, 7, 10 and 11. Indeed, these
chapters are based on mathematical premises and develop algorithms on this
basis. With a computer science background, Chapters 5, 8 and 9 are more
suited. Finally, the applications presented in the last part can be used for
dedicated graduate courses. Alternatively, they can serve as a basis for course

© 2009 by Taylor and Francis Group, LLC

end projects.
Throughout this book, we discuss many algorithms. Depending on the spe-

cific aspect that needs to be emphasized, this is done using either a textual
description, an algorithm in pseudo-code or a C code program. The idea is
to use pseudo-code to emphasize high-level description of algorithms and C
code to focus on lower-level implementation details. Despite some drawbacks,
the C programming language is well suited for programming cryptanalytic
applications. One essential advantage is that it is a relatively low-level pro-
gramming language that allows to tightly control the behavior of the code
that is executed by the target processor. Of course, assembly language would
give an even tighter control. However, it would be much harder to read and
would only be usable on a single microprocessor or family of microprocessors.

Note that for lack of space, it was not possible to present here C programs
for all algorithms that are discussed in this book. Several additional codes
are available for downloading on the book’s website. All these codes were
developed and tested using the widely available Gnu GCC compiler. Note
that these codes are not optimally tuned, indeed, fine tuning C code is usually
specific to a single compiler version and often hurt the code’s legibility. Where
timings are given, they were measured on an Intel Core 2 Duo at 2.4 Ghz.

Writing this book was a long and challenging undertaking. It would not
have been possible without the help of many people. First, I would like to
thank my Ph.D. advisor, Jacques Stern, without his guidance, I would not
have taken the path of research and cryptography. I also wish to thank all
my colleagues and co-authors, for discussing fascinating research problems. It
was a great source of inspiration while writing this book. All my students and
former students deserve special thanks, especially for forcing me to reconsider
previous knowledge again and again. Through sheer coincidence, I happened
to be the program chair of Eurocrypt 2009 while writing this book, it was a
very nice experience and I am extremely grateful to the wonderful people who
accepted to serve on my committee. During the finalization of the manuscript,
I attended a seminar on “Symmetric Cryptography” at the “Leibniz-Zentrum
für Informatik” in Schloss Dagstuhl, Germany. Attending this seminar and
discussing with all the participants was extremely helpful at that time, I
would like to give due credit to the organizers and to the wonderful staff at
Schloss Dagstuhl. A few of my colleagues helped me during proofreading,
thanks to Johannes Buchmann, Pierre-Alain Fouque, Steven Galbraith, Louis
Goubin, Reynald Lercier, Michael Quisquater, Michael Schneider and Nicolas
Sendrier, this book contains much fewer typos than it would have. Thanks
to Michel Abdalla for putting together a large bibliography of cryptography-
related articles and for letting me use it. Last but not least, I would like to
express all my gratitude to my family for supporting me all these years and
for coping with my occasional absentmindedness.

Finally, I wish to acknowledge institutional support from the Délégation
Générale pour l’Armement and the University of Versailles and Saint-Quentin-
en-Yvelines.

© 2009 by Taylor and Francis Group, LLC

Existing programs or libraries

Many of the algorithms presented here have been programmed, in very ef-
ficient ways, into existing computer packages. In many cases, reprogramming
the methods might not be needed or might even be counter-productive when
the available programs are very efficient.

We give here a short discussion of available programs and libraries which
contain algorithmic methods discussed in this book. This discussion does not
pretend to exhaustivity. We regroup the stand-alone tools on one side and
libraries that need to be used in conjunction with a user written program on
the other. Note that stand-alone tools usually incorporate a programming
language to allow the development of user’s applications. Some of the pro-
grams offer both options, a stand-alone tool and a library; we list them in the
stand-alone category. The various programs are listed in alphabetical order.
We recommend using them for benchmarking and before considering to write
user’s specific code.

Stand-alone tools

• GAP This computer algebra system is developed by the GAP group, its
home page is http://www.gap-system.org/. It includes many features
and offers very useful group theoretic algorithms. In particular, it is able
to manipulate group characters and group representation.

• MAGMA Magma is a computer algebra system that can be bought
online at http://magma.maths.usyd.edu.au/. An online calculator,
with limited computing power, is also available. The Magma language
is mathematically oriented and every object belongs to a rigourously
defined structure. Magma includes a large number of features. In par-
ticular, it offers algebraic geometry tools and knows how to compute
with elliptic curves and divisors. Magma also contains a fast implemen-
tation of F4 Gröbner basis algorithm and lattice reduction tools.

• Maple Maple computer algebra is a very well-known and versatile sys-
tem, used in a large variety of applications. The current version contains
a very efficient implementation of the F5 Gröbner basis algorithm.

• PARI/GP This computer algebra system was initiated by Henri Cohen
and is currently maintained by Karim Belabas under the GPL license.
It offers both a stand-alone tool and a C library. In addition to classical
features such as modular computation, linear algebra, polynomials, it
offers some specific functionalities to compute information about general
number fields and elliptic curves over the complex field. For more infor-
mation, look up the webpage at http://pari.math.u-bordeaux.fr/.

© 2009 by Taylor and Francis Group, LLC

http://www.gap-system.org
http://magma.maths.usyd.edu.au
http://pari.math.u-bordeaux.fr

• SAGE Sage is an open-source mathematics software system http:
//www.sagemath.org/ based on the Python language. It incorporates
many efficient implementations of algorithms for algebra. One speci-
ficity of Sage is that it offers the option of interfacing with other com-
puter algebra systems and of incorporating functionalities from existing
libraries.

Libraries

• FFTW This library developed at MIT by Matteo Frigo and Steven G.
Johnson is dedicated to high-performance computation of Fourier trans-
forms. The home page of the library is located at http://www.fftw.
org/.

• NTL This library written by Victor Shoup and available at http:
//www.shoup.net/ntl/ is based on the C++ language. It implements
finite fields, routines for univariate polynomials, linear algebra and sev-
eral lattice reduction algorithms.

© 2009 by Taylor and Francis Group, LLC

http://www.sagemath.org
http://www.sagemath.org
http://www.fftw.org
http://www.fftw.org
http://www.shoup.net
http://www.shoup.net

Part I

Background

© 2009 by Taylor and Francis Group, LLC

Chapter 1

A bird’s-eye view of modern
cryptography

Since cryptanalysis cannot exist without cryptography, this background chap-
ter aims at making a brief, necessarily incomplete survey of modern cryptog-
raphy, recalling some essential definitions and facts for the perusal of this
book and laying down the notational ground. In particular, it presents vari-
ous security notions, corresponding to several classes of adversaries. Modern
cryptanalysis is the counterpart to these security notions. The fundamental
goal of a cryptanalyst is to violate one or several of these security notions for
algorithms that claim, implicitly or explicitly, to satisfy these security notions.
This can be achieved in two main ways, either by overcoming an underlying
security hypothesis or by exhibiting a specific flaw in the considered algorithm
or protocol.

This chapter only intends to serve as an introduction to the topic and
certainly to give a complete description of modern cryptography. The reader
may wish to consult a reference book on cryptography. There are many such
books, a few examples are [Buc04, MvOV97, Sch96, Sti02].

1.1 Preliminaries

Cryptography is a ubiquitous tool in the world of information security. It
is required when trying to keep the secrecy of communications over open
channels or to prove the authenticity of an incoming message. It can be used
to create many multiparty protocols in a way that makes cheating difficult
and expensive. In fact, its range of applicability is very wide and it would
not be possible to give a complete list of functionalities that can be achieved
through the use of cryptography. Instead, we are going to focus on a small set
of fundamental goals and see how they can be formalized into precise security
notions. From an historical perspective, the oldest and foremost cryptographic
goal is confidentiality.

Confidentiality appeared quite early in human history. At that time, mes-
sengers were regularly sent between troops or traders to carry important mes-
sages. They were also regularly captured by enemies and they sometimes

3

© 2009 by Taylor and Francis Group, LLC

4 Algorithmic Cryptanalysis

turned out to be spies or traitors. In this context, the basic idea was to be
able to write messages in a way that would preserve the secrecy of the mes-
sage meaning against these events. Later, with the invention of postal services,
telegraphs, radio communications and computer networks, it became easier to
send messages and at the same time easier to intercept or copy these messages.
Thus, the basic question remains: how can we make sure that messages will
not be read by the wrong person? One option is to hide the very existence
of the message through various means, this is called steganography. We will
not consider this option any further. Another option does not try to hide
the message but simply to make sure that it cannot be understood except by
the intended recipient, using something akin to a scrambling process, called
encryption.

This notion of confidentiality is trickier than it may first appear. What
precisely can we hide about a message? Is it possible to be sure that nothing
can be learned about it? A first limit is that it is not possible to hide every-
thing about a given message, looking at the encrypted message, an attacker
can always learn or at least estimate the length of the message. The only
way to avoid this would be to output ciphertexts of the maximum accepted
input length for all messages. This would, of course, yield utterly impractical
cryptosystems. Moreover, the attacker may have some prior information and
seeing the message is not going to make him forget it. As a consequence, it is
convenient to assume that the length of the message is not hidden by the en-
cryption and to measure the amount of new knowledge that can be extracted
by the attacker from the message. Similarly, the attacker may obtain prior
information about the encryption system. As a consequence, to make cryp-
tography useful in a wide variety of contexts, it is necessary to assume that
the specifications of the cryptosystem are public, or could be leaked to the ad-
versary. The security of the system should only rely on a short secret: the key
of the system. This essential principle was proposed by Auguste Kerckhoffs
in 1883 and published in [Ker83].

This approach and its limits were further studied by Shannon in 1945 in a
confidential report titled A Mathematical Theory of Cryptography. This report
was declassified after World War II and the results published in [Sha49]. In
order to study the security of cryptographic systems, this paper introduced
a new mathematical theory: information theory. In a nutshell, information
theory contained good news and bad news about cryptography. The good
news is that perfect confidentiality is possible and can be achieved using a
simple encryption algorithm called the One Time Pad. The bad news is that
the One Time Pad is impractical for most applications and that according
to information theory nothing more practical can be secure. Indeed, the
One Time Pad views messages as sequences of symbols (bits or characters)
and encrypts them by a simple mixing of each symbol with a corresponding
symbol extracted from the key. However, it is crucial for the security of this
scheme to use a random key of the same length as the message to encrypt.
With any shorter key, the One Time Pad degenerates into a variation of the

© 2009 by Taylor and Francis Group, LLC

A bird’s-eye view of modern cryptography 5

Vigenere cipher and becomes very weak. Of course, transmitting very long
keys securely is rarely easier than directly transmitting messages securely.
Moreover, this system is error prone and any key reuse dooms the security
of the corresponding messages. In practice, a user would expect to use a
relatively short key for the transmission of long messages. Using information
theory, Shannon showed that this not possible. Indeed, a powerful enough
cryptanalyst can always try to decrypt the transmitted message using all
possible keys. The only key that yields a meaningful message is the correct
one.

In order to bypass this impossibility result, modern cryptography takes into
account the amount of work required from the cryptanalyst and assumes that,
even for relatively short key lengths, trying all keys costs too much and is not
an option. This idea is at the core of computationally based cryptography. An
asymptotically oriented approach to this idea can be obtained by using com-
plexity theory. In this approach, easy tasks such as encryption or decryption
are modeled by polynomial time computations and hard tasks are assumed
to be in harder classes of complexity1. This approach has an essential draw-
back, complexity classes are too coarse and they do not always finely reflect
the hardness of real computation. For example, a polynomial time algorithm
of complexity n100 is usually totally impractical, while an exponential time
algorithm of complexity 2n/100 is often useful. A more concrete approach was
proposed by Bellare, Kilian and Rogaway in [BKR00] and aims at giving a
more precise information about the cost of attacks for real life parameters of
cryptographic schemes. However, even this concrete approach is not complete
and comparing the practicality and the full cost [Wie04] of attacks is a difficult
art.

Pushing the idea of computationally based cryptography a bit further, in
1976, Diffie and Hellman invented public key cryptography [DH76]. The basic
idea is to use trapdoor one-way functions, i.e., functions which are easy to
compute, hard to invert and which become easy to invert once a secret value,
the trapdoor, is known.

Note that, in spite of achieving perfect confidentiality, the One Time Pad
is not perfectly secure. Indeed security is more than simply confidentiality, it
also covers the concept that an attacker should not be able to tamper with
messages without being detected. Clearly, this is not true with the One Time
Pad, since changing any bit of the ciphertext has a simple effect: changing
the same bit in the corresponding plaintext. This property allows an attacker
to perform any change of his choice on the transmitted message. To prevent
this, it is necessary to invoke another cryptographic functionality: integrity.

1At most, one can hope for NP -complete cryptanalysis, since guessing the correct key
suffices to break any cryptographic scheme.

© 2009 by Taylor and Francis Group, LLC

6 Algorithmic Cryptanalysis

1.1.1 Typical cryptographic needs

These two basic functionalities, confidentiality and integrity, give a first
criteria to classify cryptographic algorithms. Another essential criterion is
the distinction between secret key and public key algorithms. Secret key
algorithms use the same key, or sometimes distinct but equivalent keys, to
encrypt and decrypt, to authenticate or verify authentication. Public key
algorithms use different keys, the public key to encrypt or verify signatures,
the private key to decrypt or sign.

Using these two criteria, we obtain four classes of cryptographic systems.

1.1.1.1 Secret key encryption

Typical secret key algorithms encrypt messages using a short secret key
common to the sender and the recipient of the secret message. Typically,
secret keys of recent algorithm are often between 128 and 256 bits. Secret key
encryption algorithms are further divided into two main categories: stream
ciphers based and block ciphers based.

Stream ciphers combine a pseudo-random generator of cryptographic qual-
ity, also called a keystream generator, together with One Time Pad encryption.

Block ciphers are keyed permutations which act on blocks of bits; blocks of
128 bits are a frequent choice. In order to encrypt messages, they are combined
with a mode of operation which describes how to parse the messages into
blocks and decompose the encryption of a message into encryption of blocks.

Some of the basic mode of operations have been known for a long time and
were already standardized for use with the DES algorithm. More recently, the
NIST2 encouraged research for new modes of operation in order to propose
them as standards for use together with the AES block cipher. To illustrate
modes of operation and their importance in secret key encryption, let us de-
scribe three well-known modes (see Figure 1.1): Electronic Code Book (ECB),
Cipher Block Chaining (CBC) and Counter mode (CTR).

The ECB mode works as follows: first it pads the plaintext message P to
ensure that its length becomes a multiple of the block length, some care should
be taken to make sure that the padding can be reversed after decryption to
recover the original message. A standard solution is to add a single 1 after
the original message, followed by the number of zeros needed to fill the last
message block. Note that with this padding, messages whose original length
is already an entire number of blocks are enlarged by one full block. After
padding, the ECB mode parses the padded message in n-bit blocks, where n
is the length of the cipher’s blocks. Let the i-th block be denoted by P (i). To
encrypt P , each block P (i) is encrypted separately.

Another very common encryption mode is the Cipher Block Chaining (CBC)
mode. To add security, this encryption mode is randomized. The randomiza-

2National Institute of Standards and Technology

© 2009 by Taylor and Francis Group, LLC

A bird’s-eye view of modern cryptography 7

P1

C1

P2

C2

P`−1

C`−1

P`

C`

· · ·

(a) ECB encryption

P1

C1

IV

P2

C2

P`−1

C`−1

P`

C`

· · ·

(b) CBC encryption

R

C1

P1

R+ 1

C2

P2

R+ `− 2

C`−1

P`−1

R+ `

C`

· · ·

P`

(c) CTR encryption

Figure 1.1: Some classical encryption modes

© 2009 by Taylor and Francis Group, LLC

8 Algorithmic Cryptanalysis

tion is added at the very beginning of the encryption process by simply adding
one block of random initial value (IV) at the beginning of the message. There
are two options when using this initial value, it can be considered either as
an additional plaintext message block, say P (0) or as an additional ciphertext
block, then denoted by C(0). When the IV is considered as an extra plaintext
block, the first ciphertext block is set to C(0) = Π(P (0)) where Π denotes the
underlying block cipher or random permutation. From the first ciphertext
block, we then proceed iteratively, letting C(i) = Π(P (i)⊕C(i−1)). When the
IV is considered as a ciphertext block, the first encryption is simply omit-
ted. An important fact about CBC encryption is that the encryption of any
block of plaintext is a function not only of the block value, but also of all the
previous blocks and of the IV .

As modes of encryption go, we also consider the Counter (CTR) mode. In
this mode, the block cipher is used to generate a pseudo-random sequence
which is then used similarly to a one-time pad in order to encrypt the plain-
text message. Thus, CTR mode is a simple way to make a stream cipher
algorithm out of a block cipher. More precisely, the CTR mode is given as
input a starting counter value. The first block of pseudo-random material
is obtained by encrypting this input value. Then the value is incremented
in order to obtain the next block of pseudo-randomness, incremented again
for the following one and so on. . . Depending on the precise implementation
choice, the incrementation can be done in several different ways. On a general
purpose processor, the most efficient method is to increment by arithmetically
adding 1 to the counter value, modulo 2b, where b is the block size in bits.
In hardware, either on ASICs or FPGAs, it is faster to consider the counter
as the state of a linear feedback shift register (see Chapter 2) and to incre-
ment it by advancing the linear feedback shift register by one step. Thus,
the exact specifications of the CTR mode may vary depending on the target
architecture.

1.1.1.2 Secret key authentication

In [Sim82, Sim85, Sim86], Simmons developed a theory for perfect authen-
tication systems, which can be seen as an equivalent of Shannon’s perfect
encryption. The secret key authentication algorithms used in practice are
known as Message Authentication Codes (MACs). There are two main cate-
gories of MACs, MAC based on a block cipher and MAC based on a universal
hash function. To construct a MAC based on a block cipher, it suffices to
devise a specific mode of operation. MAC based on universal hash functions
work on a very different principle; they were initially proposed by Wegman
and Carter in [WC81]. The idea is to compute the universal hash of the
message to authenticate and then to encrypt this value. This method yields
very fast MAC algorithms. Indeed, there exist some very fast universal hash-
ing algorithms that only cost a few processor operations per message block,
see [NP99].

© 2009 by Taylor and Francis Group, LLC

A bird’s-eye view of modern cryptography 9

To illustrate MACs based on a block cipher, let us consider the CBC en-
cryption mode once more. Another interesting feature of this mode is that a
very simlar variation can be used as a Message Authentication Code (MAC).
In this alternative mode called CBC-MAC, we very closely follow the CBC
encryption process with a couple of simple changes. The first change is that
CBC-MAC does not need an IV . Moreover, adding an IV would make CBC-
MAC insecure if the IV is processed as a ciphertext block. The second change
is that in CBC-MAC, we do not output any intermediate block encryption
but only the value of the last block. The third and final change concerns the
output of the final block. If this block is directly given as MAC value, then the
resulting authentication mode is only secure for messages of fixed length. In
practice, it is usually required to have the ability to process messages of arbi-
trary length. In that case, the last encrypted block should be post-processed
before being used as a MAC. The most common post-processing simply reen-
crypts this value with the block cipher keyed with another independent key.

1.1.1.3 Public key encryption

Public key encryption algorithms mostly rely on number theoretic hard
problems. One approach to public key encryption, first proposed in [DH76],
is to directly rely on a trapdoor one-way permutation. In that case, the
one-way permutation is made public and used for encryption. The trapdoor
is kept private and used for decryption. The typical example is the famous
cryptosystem of Rivest, Shamir and Adleman (RSA). Another approach is
the key exchange algorithm of Diffie and Hellman, also introduced in [DH76],
which does not encrypt messages but lets two users agree on a common secret
key. Once a common secret key has been agreed upon, the users can en-
crypt messages using a secret key algorithm. As a consequence, key exchange
algorithms suffice to offer the public key encryption functionality.

Moreover, note that for performance reasons, even trapdoor one-way per-
mutations are rarely used to directly encrypt messages or message blocks. It
is more practical to build a hybrid cryptosystem that encrypts a random key
with the trapdoor one-way permutation and encrypts the message using a
secret key encryption scheme.

In addition, when using the RSA public key cryptosystem, special care
should be taken not to simply encrypt small keys. Indeed, such a direct
approach opens the way to multiplicative attacks. This is further developed
in Chapter 8.

1.1.1.4 Public key signature

The most frequently encountered public key signatures algorithms are coun-
terparts of the public key encryption algorithms stated above. The RSA sig-
nature algorithm follows the approach proposed in [DH76] and inverses the
one-way permutation, thanks to the trapdoor in order to sign. Verification
is achieved by computing the one-way permutation in the forward direction.

© 2009 by Taylor and Francis Group, LLC

10 Algorithmic Cryptanalysis

Note that in the case of RSA, this approach needs to be applied with care
in order to avoid multiplicative attacks. Before going through the inverse
one-way permutation, the information to be signed needs to be carefully pre-
pared using a padding algorithm. Typical approaches are the full domain hash
(FDH) and the probabilistic signature scheme (PSS) described in [BR96].

The Diffie-Hellman key exchange algorithm also has corresponding signa-
ture algorithms. These algorithms are based on a modified zero-knowledge
proof of knowledge of a discrete logarithm. The algorithm of Schnorr [Sch91]
and the NIST standard Digital Signature Algorithm are two examples. Zero-
knowledge proofs of knowledge are not further discussed in this book.

This idea of using modified zero-knowledge proofs to build a signature
scheme can be applied with a very large variety of hard computational prob-
lems. It was introduced by Fiat and Shamir in [FS87]. Using this approach
signature algorithms have been based on many hard computational problems.

For the same reason that public encryption is rarely used to directly en-
crypt messages, public key signature schemes are rarely3 applied directly to
messages. Instead, the message to be signed is first transformed using a cryp-
tographic hash function. Here, the goal of the hash function is to produce a
short unique identifier for the message. In order to yield such an identifier,
the hash function should be constructed in a way that prevents a cryptanalyst
to efficiently build two messages hashing to the same value. In other words,
the hash function should be collision resistant.

1.2 Defining security in cryptography

In the framework of computationally based cryptography, an important
task is to define what kinds of actions can be considered as attacks. Clearly,
recovering the key from one or several encrypted messages is an attack. How-
ever, some tasks may be easier and remain useful for an adversary. Along
the years, a complex classification of attacks appeared. This classification
describes attacks by the type of information they require: there are cipher-
text only attacks, known plaintext attacks, chosen plaintext attacks and even
chosen ciphertext attacks. Also, by the amount of effort the adversary uses to
intercept messages or temper with the cryptosystem: this yields the notions of
passive, lunchtime and active attacks. Finally, by the type of information that
the attack outputs: there are key recovery attacks, message recovery attacks
and distinguishers. A key recovery allows the adversary to compute the key
or some equivalent information which can afterwards be used to decrypt any

3One notable exception to this general rule is signature with message recovery, which embeds
a (short) message within the signature, thus avoiding separate transmission.

© 2009 by Taylor and Francis Group, LLC

A bird’s-eye view of modern cryptography 11

message. A message recovery attack aims at deciphering a single message.
The goal of a distinguisher is to learn a small amount of information about
the encryption process.

Modern cryptographers have learned that, as illustrated by many historical
examples [Kah67], where cryptography is concerned it is preferable to err on
the side of caution. Indeed, the state-of-the-art of attacks against a given cryp-
tographic scheme can only move forward yielding better and better attacks.
Often, when faced with an incomplete attack which could easily be dismissed
as practically irrelevant, cryptographers prefer to consider it as an advanced
warning signal that indicates that further attacks may be forthcoming. As
a consequence of this cautiousness, a very strong definition of confidentiality
is used in cryptography. When a cryptographic scheme fails to achieve this
definition, it calls for a reaction. In the early stages, the best reaction is to
patch or dump the system, depending on the exact nature of the attack. After
the system has been widely deployed, unless it is utterly broken and calls for
immediate replacement, the best reaction is to start preparing a replacement
and a phase-out strategy.

Another reason for choosing a strong definition of confidentiality is that it
facilitates the work of cryptanalysts. Indeed, it takes much less work to simply
point out an intrinsic weakness of a cryptographic scheme with a so-called
certification attack than to turn this weakness into a full-fledged key recovery
attack. As a consequence, when several algorithms need to be compared, it
is very useful to use certification attacks as criteria to prune out the least
plausible candidates. For example, this approach was followed by NIST for
the selection of the AES encryption standard.

1.2.1 Distinguishers

The strongest definitions of confidentiality which are currently available rely
on the notion of distinguishers. Depending on the exact characteristics of the
system being considered, the precise definition of distinguishers possibly needs
to be adapted. However, the basic style of the definitions is always preserved.
All distinguishers share some basic properties:

• A distinguisher, also called a distinguishing adversary, is a computa-
tional process, often modeled by a Turing machine.

• A distinguisher A interacts in a black box manner with an environ-
ment E that encapsulates the cryptographic scheme under attack and
in particular chooses random keys for this cryptographic scheme.

• The behavior of the environment depends on the value of a control bit
c, chosen uniformly at random upon the first call to the environment.

• The adversary outputs a single bit, 0 or 1, and the goal of the adversary
is to determine the value of c with a probability of success greater than
1/2, i.e., to achieve a better success rate than by blindly guessing c.

© 2009 by Taylor and Francis Group, LLC

12 Algorithmic Cryptanalysis

• The advantage of the adversary adv(A) is defined as:

adv(A) = |2 Pr(A outputs c)− 1|. (1.1)

These basic properties already call for some comments. A first remark
concerns the presence of an absolute value in the definition of the advantage.
This is useful because it ensures that the advantage is always non-negative.
Moreover, it makes sense because when 2Pr(A outputs c) − 1 < 0, we can
construct a new adversary A′ by reversing the output of A. This adversary
succeeds when A fails and vice versa. As a consequence:

2 Pr(A′ outputs c)− 1 = 1− 2 Pr(A outputs c) > 0. (1.2)

Another important remark is that:

adv(A) = |Pr(A outputs 0 | c = 0)− Pr(A outputs 0 | c = 1)|. (1.3)

In this equation, the notation Pr(|) denotes a conditional probability, condi-
tioned by the event written at the right of |. It is a simple consequence of the
two following facts:

Pr(A outputs c) = Pr(A outputs 0 | c = 0)/2 + Pr(A outputs 1 | c = 1)/2,
1 = Pr(A outputs 0 | c = 1) + Pr(A outputs 1 | c = 1). (1.4)

Also, when using distinguishers, we should remember that in addition to the
trivial adversary that simply guesses c, we can devise a generic adversary that
models exhaustive key search. This adversary simply guesses the key material
that has been chosen by the environment for the underlying cryptographic
scheme. Using this key, it tries to determine whether c equal 0 or 1. If the
key is correct, this is usually easy. Note, however, that the details depend on
the exact flavor of distinguisher we are considering. Moreover, it is also easy
to determine that the guessed key is incorrect. In that case, the adversary
reverses to the trivial strategy of guessing c. This key guessing adversary
obtains an advantage of the order of 2−k, where k is the bit length of the key.
This shows that in the definition of confidentiality we should not consider
adversaries with an exponentially small advantage. Two different kinds of
advantages are usually considered: advantages above a constant larger than
1/2, such as 2/3 for example, and advantages exponentially close to one, such
as 1 − 2−k. In fact, these two kinds of advantages yield the same security
notion and an adversary with a constant advantage can be converted into an
adversary with advantage exponentially close to one by repeating it enough
times using different random coins.

Distinguishing attacks against ECB encryption

To illustrate distinguishing attacks, let us consider distinguishers against
the ECB. These attacks rely on the fact that encryption with a block cipher

© 2009 by Taylor and Francis Group, LLC

A bird’s-eye view of modern cryptography 13

cannot hide equalities between blocks. As a consequence, an adversary can
often gain some information about the encrypted messages. A very classical
example of this weakness consists in encrypting a bitmap picture in ECB
mode and remarking that the general shape of the picture remains visible.
In particular, large zones of uniform color remain uniform. To formalize this
weakness into a distinguishing attack, let us consider an adversary that does
not query the encryption mode and directly proposes two messages M0 and
M1 consisting of 2 blocks each after padding. M0 is chosen to ensure that
its two blocks are equal, and M1 to ensure that they are different. When
the adversary is given back the encryption of one message, he simply checks
whether the two ciphertext blocks are equal. In case of equality, he announces
that M0 was encrypted and otherwise that M1 was. The adversary succeeds
with probability 1 and, thus, has advantage 1. Since the total number of
blocks involved in the attack is very small, this shows that ECB encryption
is generically insecure.

ECB encryption can also be shown insecure by using a different chosen
message attack. In this attack, the adversary first queries the encryption
mode for the encryption of any message of his choice M . Then, he sends two
messages M0 and M1, where M0 is equal to M and M1 is any other message
of the same length. When he receives the encryption of one among M0 and
M1, he compares this encryption to the encryption of M he already had. If
both are equal, he announces that M0 was encrypted and otherwise that it
was M1. This attack also succeeds with probability one. The main interest
of this second attack is that it can be generalized to any deterministic mode.
To thwart this attack, it is important to make sure that encrypting twice the
same message does not usually output twice the same ciphertext. This can be
achieved by adding randomness to the message during the encryption process.
A typical way of adding randomness is the use of an IV as in CBC encryption.
This simple randomization prevents the above attacks against the ECB mode
to work against CBC encryption.

1.2.1.1 Allowed queries for distinguishers

In cryptography, two different types of distinguishers are alternatively en-
countered, chosen plaintext adversaries (CPA) and chosen ciphertext adver-
saries (CCA). These distinguishers differ by the type of queries they are al-
lowed to perform. Chosen plaintext adversary can query an encryption oracle
and obtain encryptions of arbitrary messages they construct. In addition,
chosen ciphertext adversaries can also ask for decryption of arbitrary strings
they construct. After considering chosen ciphertext adversaries, designers of
cryptographic systems have introduced the idea of authenticating correctly
constructed ciphertexts, this allows their systems to answer invalid when
asked to decrypt arbitrary strings. This is a key idea to design CCA-secure
cryptographic schemes.

© 2009 by Taylor and Francis Group, LLC

14 Algorithmic Cryptanalysis

1.2.1.2 Three flavors of distinguishers

We now informally describe three frequent flavors of distinguishers.

1.2.1.2.1 Find then guess distinguishers The simplest flavor of distin-
guishers is called “find-then-guess” or FTG distinguishers. After initialisation
of the environment, the distinguishing adversary interacts with the environ-
ment in three consecutive phases.

1. The adversary sends messages of his choice to the environment and
receives the corresponding ciphertexts, encrypted by the cryptographic
scheme using the key chosen during initialization. This phase behaves
independently of the bit c chosen by the environment. It is also possible
to allow the adversary to ask for decryption of arbitrary ciphertexts of
his choice when considering chosen ciphertext attacks. Each message can
be chosen interactively after receiving the encryption for the previous
message.

2. The adversary produces two test messages M0 and M1 of the same
length. It sends the messages to the environment and receives a cipher-
text C corresponding to an encryption of Mc.

3. The adversary may once again ask for encryption and/or decryption
of messages of his choice, with a single, essential, exception: it is not
allowed to ask for the decryption of the message C itself. Note that for
chosen ciphertext attacks, requesting the decryption of messages derived
from C is acceptable, as long as they differ from C. Typically, truncated,
padded or slightly different copies of C are allowed in that case.

After the three phases, the adversary outputs his guess for c.

1.2.1.2.2 Left or right distinguishers A (polynomially) more powerful
flavor of distinguishers than FTG distinguishers are “left-or-right” or LOR
distinguishers. It consists of a single phase, where the adversary sends pairs
of messages (M0,M1) of the same length and receives the encryption of Mc.
Pairs of messages are chosen interactively after receiving previous encryption.
In the case of chosen ciphertext attacks, the adversary may also send pairs of
ciphertexts (C0, C1) and learn the decryption of Cc. To avoid trivial attacks,
redundant queries are forbidden, i.e., an adversary is not allowed to request
the decryption of a ciphertext returned by a previous query as part of a pair
of ciphertexts.

At the end of the interaction the adversary produces a guess for c, i.e.,
tries to determine whether the left-hand side or the right-hand side of queries
was processed by the environment. This explains the name of “left-or-right”
distinguishers.

To show that LOR adversaries are more powerful than FTG adversaries, it
suffices to prove that any FTG adversary can be transformed into an LOR

© 2009 by Taylor and Francis Group, LLC

A bird’s-eye view of modern cryptography 15

adversary which is as powerful. The proof is very simple, it suffices to em-
bed the FTG adversary in a LOR-wrapper which runs it in a black box way.
In the first and final phase, when the FTG adversary requests an encryp-
tion of M , the wrapper forwards the pair (M,M) to the environment and
returns the answer. In the middle phase, the FTG adversary produces a pair
of messages (M0,M1). The wrapper simply forwards this pair and the en-
vironment’s answer. At the end, the wrapper copies the output of the FTG
adversary. Clearly, the wrapper in the LOR context is as successful as the
original adversary in the FTG context. Moreover, the number and length of
queries and the running times are essentially identical.

1.2.1.2.3 Real or random distinguishers The FTG and LOR distin-
guishers both test the ability of an adversary to extract information from ci-
phertexts when a very small amount of information remains unknown. “Real-
or-Random” or ROR distinguishers are based on a different paradigm and try
to distinguish between real encrypted messages and purely random encrypted
messages. As usual, during initialization, the environment chooses a random
bit c and random keys for its embedded cryptographic scheme. During in-
teraction, the adversary sends messages of his choice to the environment. If
c = 0, the environment is in real mode and returns the encryption of each
message it receives. If c = 1, the environment is in random mode, in that
case, it returns the encryption of a uniformly distributed random string of the
same length.

In fact, it was shown in [BDJR97] that ROR security is equivalent to LOR
security. In [RBBK01], a variation of the ROR security is proposed, it is
called indistinguishability from random strings and often denoted by IND$.
In this variation, depending on the value of its inner bit, the environment
either returns the encryption of the message it received or a purely random
string of the same length as the encrypted message.

This style of distinguisher is very useful for some security proofs, because
there are more tools for showing that a string is indistinguishable from a
random string than for addressing environment with two sides, where each
side has its own specific description. However, IND$ security is stronger than
LOR security or, equivalently, than ROR security.

Indeed, assuming that LOR secure cryptosystems exist, it is possible to
construct examples of schemes which are LOR secure but not IND$ secure.
The basic idea is very simple. Starting from any LOR secure encryption
scheme S, we construct a new scheme S′, which encrypts a message M under
key k as 0‖Sk(M), i.e., it simply prepends a 0 to the encryption of M using S.
It is clear that the LOR security of S′ is the same as the LOR security of S.
However, S′ is not IND$ secure because any output of the ROR environment
that starts with 1 is necessarily coming from the random mode. This example
shows that requiring IND$ security is in some sense too much.

© 2009 by Taylor and Francis Group, LLC

16 Algorithmic Cryptanalysis

1.2.2 Integrity and signatures

In modern times, cryptography deals with more than confidentiality. It is
also used to protect messages or files against tempering. This protection can
be based either on secret key or on public key algorithms. In secret key cryp-
tography, we saw that this protection is offered by message authentication
codes. With public key cryptography, the protection is based on a stronger
mechanism called signature. The essential difference between MACs and sig-
natures is that message authentication codes protect their users against at-
tacks by third parties but offer no protection against dishonest insiders, while
signatures offer this additional protection. This difference is reflected when
defining the security notions for integrity. Integrity mechanisms of both types
rely on two algorithms. The first algorithm takes as input a message and
outputs an authentication tag. It also uses some key material, either the
common key in the secret key framework or the private key of the signer in
the public key framework. The second algorithm takes as input a message
and an authentication tag and returns either valid or invalid. It uses either
the common secret key or the public key of the signer. In both frameworks,
the goal of an attacker is to construct a forgery, i.e., a valid authentication
on a message, without knowledge of the secret or private keys. As with confi-
dentiality, the attacker is also allowed to first make queries, more precisely, he
can obtain authentication tags for any message of his choice. For the security
notion to make sense, the produced forgery should not simply be a copy of
one of these tags but should be new. This can be made precise in two different
ways. One option is to ask the attacker to output a valid authentication tag
for a new message, which has not been given during the queries. The alter-
native is to also allow additional tags for messages which have already been
authenticated, as long as the forged tag has never been produced as answer to
a query on this message. For example, in this alternative, if a tag σ has been
produced for M and a tag σ′ for M ′ (with σ 6= σ′ and M 6= M ′), assuming
that σ′ is also a valid authentication tag for M , it counts as a valid forgery,
despite the fact that M was already authenticated and that σ′ was already
produced, because the pair (M,σ′) is new.

To measure the efficiency of an attacker in the case of forgeries, we define
its advantage as the probability that its output (M,σ) is a valid forgery. Note
that, here, there is no need to subtract 1/2 because the output no longer
consists of a single bit and is thus much harder to guess. For example, guessing
a valid authentication tag on t-bits at random succeeds with low probability
1/2t. A forgery attack is considered successful when its complexity is low
enough and when its probability of success is non-negligible, for example larger
than a fixed constant ε > 0.

© 2009 by Taylor and Francis Group, LLC

A bird’s-eye view of modern cryptography 17

1.2.3 Authenticated encryption

After seeing the definitions of confidentiality and integrity/signatures, a
natural question is to consider authenticated encryption. Is it possible to
construct cryptographic systems that meet both the requirements of confiden-
tiality and integrity/signature? In particular, is there a generic approach to
compose secure cryptographic methods that individually ensure confidential-
ity and integrity/signature and construct a new cryptosystem which ensures
both?

In the context of authenticated encryption, it is interesting to consider some
natural methods to compose an encryption scheme and an authentication
scheme and see why these methods are not generically secure. We start in
the context of secret key cryptography, i.e., with secret key encryption and
MACs. We discuss the case of public key primitives afterwards.

1.2.3.1 Authenticated encryption in the secret key setting

The goal of authenticated encryption is to perform encryption and au-
thentication of messages, while guaranteeing the security of both primitives
simultaneously. This can be done by composing two preexisting crypto-
graphic primitives or by devising a new specific algorithm (for some examples,
see [Jut01, KVW04, Luc05, RBBK01]). The generic composition approach,
i.e., for arbitrary preexisting primitives, was studied in detail by Bellare and
Namprempre in [BN00] and raises some deep questions about the relations
between confidentiality and integrity.

1.2.3.1.1 Encrypt and MAC Given a secret key encryption scheme and
a MAC, the first idea that comes to mind in order to encrypt and protect the
integrity of a message M at the same time is simply to concatenate an encryp-
tion of M and a MAC of M . The reason that makes this simple idea insecure
is that a MAC algorithm does not necessarily hide the complete content of
the message. For example, if we are given a secure MAC algorithm, we can
easily construct another secure MAC based on it in a way that completely
destroys confidentiality. It suffices to form an extended MAC by concatenat-
ing the original one with the first few bits of the message. The reader may
check that this yields another secure MAC and that it cannot preserve con-
fidentiality. Moreover, MAC algorithms are usually deterministic algorithms
that compute a short tag from the input message and verify the correctness of
the received tag by recomputing it and comparing values. With determinis-
tic MAC algorithms, the simple concatenation construction always fails to be
secure. Indeed, it is clear that the following adversary is always a successful
find-the-guess distinguisher:

• The adversary asks for authenticated encryption of random messages
of the same length until two messages with a different MAC are found.
Let M0 and M1 be these two messages and (C0,m0) and (C1,m1) be

© 2009 by Taylor and Francis Group, LLC

18 Algorithmic Cryptanalysis

the corresponding authenticated encryptions. In these encryptions, Ci
is the regular ciphertext and mi the MAC tag. We have m1 6= m2 with
high probability.

• The adversary sends (M0,M1) to the environment and receives an en-
crypted message (Cc,mc). Since the encryption algorithm is secure, Cc
does not permit to distinguish which message is encrypted. However,
since the MAC algorithm is deterministic, the MAC tag mc is either m0

or m1. If mc = m0, the adversary announces that M0 is the encrypted
message. If mc = m1, it announces M1. Clearly, this guess is always
correct.

1.2.3.1.2 MAC then Encrypt The reason why the previous approach
fails is that MACs are not intended to protect the confidentiality of messages.
To avoid this issue, one possible approach is the MAC then Encrypt paradigm
where we concatenate the MAC tag m to the message M and encrypt (M‖m)
into a ciphertext C. This clearly prevents the MAC tag from leaking informa-
tion about the encrypted message. However, this composition is not secure
either. To understand why, given a secure encryption scheme Enc, we can
construct a new encryption scheme Enc′ that encrypts M into (Enc(M)‖1),
simply adding an additional bit after the message encrypted by Enc. The
corresponding decryption Dec′ strips the last bit, without checking its value,
and applies the regular decryption Dec.

When Enc′ is used together with any MAC scheme in a MAC then encrypt
construction, the resulting scheme does not ensure authenticity. Indeed, an
adversary can forge a valid encryption message in the following way:

• Send an arbitrary message M and obtain a ciphertext C = Enc′(M‖m).

• Replace the final bit of C by a zero, thus forming a message C ′.

• Give C ′ as forgery.

Clearly, Dec′ decrypts C ′ into (M‖m) since the last bit is discarded anyway.
As a consequence, the MAC tag is accepted as valid. Thus, C ′ is a legitimate
forgery.

It is important to remark that the above attack is quite artificial. However,
other reasons why this order of composition is not generically secure are dis-
cussed in [Kra01]. Another interesting property shown in this paper is that in
the context of secure channels, the MAC then Encrypt composition is secure
for some specific encryption algorithms, including CBC encryption.

1.2.3.1.3 Encrypt then MAC After MAC then Encrypt, we can try the
other direction of composition, first encrypt the message M into a ciphertext
C, then compute a MAC m of the ciphertext. Bellare and Namprempre
showed in [BN00] that the Encrypt then MAC approach allows to construct a

© 2009 by Taylor and Francis Group, LLC

A bird’s-eye view of modern cryptography 19

secure authenticated encryption given any secure encryption and any secure
MAC, under the condition that independent keys are used for the two schemes.
To sketch the proof, let us start with integrity. We claim that an adversary
cannot form a new valid ciphertext by himself, unless he forges a valid MAC
for some string (the corresponding unauthenticated ciphertext). Concerning
confidentiality, it is clear that the MAC cannot help. Otherwise, it would
be possible to attack the confidentiality of the encryption scheme simply by
adding a MAC tag to it. Since this operation could easily be performed by
an adversary, we see that the Encrypt then MAC composition is also secure
from the confidentiality point-of-view.

1.2.3.2 Authenticated encryption in the public key setting

In the public key setting, the adversary is granted more power, since he has
access to the public keys and can encrypt and verify signatures by himself.
Thus, any generic composition insecure in the secret key setting is also insecure
in the public key setting. However, additional attacks exist in the public key
setting. We now explain why neither “Encrypt then Sign” nor “Sign then
Encrypt” are secure and discuss secure methods.

1.2.3.2.1 Sign then Encrypt Of course, the Sign then Encrypt composi-
tion inherits the weakness of MAC then Encrypt. However, other weaknesses
appear in the public key setting. In particular, the Sign then Encrypt com-
position suffers from a forwarding attack. Indeed, the legitimate recipient of
a message can after decryption decide to reencrypt the same message for a
third party, whose public key is known to him. For the third party, since
the signature is valid, the message seems to come from the initial sender and
the forwarding leaves no tracks. It is easy to come with contexts where this
forwarding attack can be considered an attack. Anyway, it is clearly an un-
desirable property for a secure cryptographic scheme.

1.2.3.2.2 Encrypt then Sign The Encrypt then Sign composition fails
to be secure for another reason. Indeed, this composition is subject to a cipher-
text stealing attack. The ciphertext stealing works as follows: the attacker
intercepts a message from a sender to a receiver and prevents this message
from reaching the receiver. After interception, the attacker strips the signa-
ture from the original encrypted message and replaces it by his own signature.
After that, he resends the modified message to its intended recipient. Since
the signature is valid and since the message can be correctly decrypted, the
recipient logically assumes that this is a legitimate message from the attacker.

Depending on the application, this ciphertext stealing attack can be used
to break confidentiality or for other malicious purposes. A breach of confi-
dentiality may occur when the recipient answers the message, especially if he
quotes it. In a different context, if the recipient is a timestamping or regis-

© 2009 by Taylor and Francis Group, LLC

20 Algorithmic Cryptanalysis

tering authority, the attacker could falsely claim ownership of the encrypted
information that the original sender wanted to register.

Since Encrypt then Sign is a straightforward adaptation of Encrypt then
MAC to the public key context, it is interesting to precisely identify the reason
that prevents this attack from applying in the secret key context. Trying to
apply the attack in the secret key setting, we see that nothing prevents the
attacker from removing the original MAC tag or from adding a new one. This
new MAC tag passes the verification on the recipient tag. Moreover, the
encrypted message could be correctly decrypted with the secret key shared by
the original sender and the recipient. In truth, the attack fails because of the
natural hypothesis that, in the secret key setting, each secret key belongs to
a pair of users and is not shared by anyone else. Under this hypothesis, it is
highly unlikely that the recipient accepts to verify the MAC tag using a key
shared with a user and then to decrypt using a key shared with another user.

1.2.3.2.3 Signcryption In the public key setting, in order to avoid the
above attacks, it is essential to precisely define the expected security properties
and to carefully check that they are satisfied. The name signcryption for
such cryptographic schemes was proposed in [Zhe97]. A formal treatment of
signcryption was first given in [ADR02].

To avoid the above weaknesses of the encrypt then sign and sign then en-
crypt composition, other methods have often been proposed for applications.
A first idea is to bind the signature and encryption together by adding fields,
for example at the beginning of the message, explicitly identifying the two
participants of the exchange, sender and recipient. With this additional pre-
caution, both sign-then-encrypt and encrypt-then-sign resist the above at-
tacks. A slight variation of this idea which adds the identities of the sender
and recipient in various places is proven secure in [ADR02]. The drawback
of this solution is that it needs to mix up routing information together with
the message itself. This is often judged to be unsatisfactory by application
developers who prefer to manage the message at the application layer and the
routing information at a lower layer. It is also inconvenient if the users desire
to archive a signed copy of the message after stripping it from the routing
information.

Another option relies on triple wrapping. Two flavors are possible: sign-
encrypt-sign and encrypt-sign-encrypt. They are resistant to ciphertext steal-
ing and forwarding. Note that sign-encrypt-sign is usually preferred, since it
allows the recipient to archive a signed copy of the original message. With
the triple wrapping method, the sender performs three cryptographic opera-
tions in sequence on the message, encrypting with the recipient public key and
signing with his own private key. The recipient performs the complementary
operations on the received message. In the sign-encrypt-sign, the recipient
also needs to check that both signatures were issued by the same person.

© 2009 by Taylor and Francis Group, LLC

A bird’s-eye view of modern cryptography 21

1.2.4 Abstracting cryptographic primitives

In order to construct secure cryptosystems, cryptographers often start from
small building blocks and put them together to assemble these cryptosystems.
Of course, it is essential for these building blocks to satisfy relevant security
properties. We now briefly describe how the security of two essential building
blocks, block ciphers and hash functions is often modelled.

1.2.4.1 Blockciphers

As said in Section 1.1.1.1, a block cipher is a keyed family of permutations
that operate on blocks of n bits. To select a permutation in the family,
one uses a k-bit key. To model the security of a block cipher, two models
are often used. The first approach considers pseudo-random permutation
families. It is based on distinguishers. In this approach, the adversary knows
the algorithmic description of a family of pseudo-random permutations and
its goal is to determine whether a permutation chosen by the environment
is a truly random permutation or a permutation selected from the family by
choosing a random key. A good block cipher aims at being a pseudo-random
permutation family. Another, much stronger, approach is the ideal cipher
model. In this model, mostly used in proofs, a block cipher is idealized as a
family of purely random permutations. Note that, while very convenient for
proofs, this cannot be achieved by any concrete block cipher. Indeed, every
block cipher has a short algorithmic description, which is not the case for a
family of purely random permutations.

In addition, some other properties of block ciphers are sometimes considered
in cryptanalysis. A typical example considers related key attacks. Here, the
adversary is no longer limited to querying the blockcipher with a fixed key.
Instead, he is allowed to make queries using several related keys, obtained,
for example, by xoring or adding fixed constants to an initial key. A formal
treatment of this notion is given in [BK03]. One difficulty with this notion
of related key attacks is that, unless the allowed operations on keys are very
limited, these attacks are too strong. For example, if the attacker is allowed
both adding and xoring constants, any block cipher can easily be attacked.
Indeed, adding ‘1’ and xoring ‘1’ to the initial key yields the same new key,
if and only if the low order bit of the key is a ‘0’. Adding and xoring other
powers of two permit the adversary to learn each bit of the key. Of course,
once the key is known, the adversary wins.

1.2.4.2 Hash functions

Cryptographic hash functions have two different flavors. For theoretical
purposes, one usually encounters keyed family of hash functions. This flavor
is very close to block ciphers, except for two noticeable differences: hash func-
tions are modelled by random functions instead of permutations and their
inputs have variable length instead of fixed length. Where needed, hash func-

© 2009 by Taylor and Francis Group, LLC

22 Algorithmic Cryptanalysis

tions are idealized by random oracles. It was recently proven that the random
oracle model and the ideal cipher model are equivalent [CPS08].

The other flavor of hash functions is used for practical purposes. In that con-
text, it is very useful to have access to an unkeyed hash function. This is, for
example, the case of signature schemes, as discussed in Section 1.1.1.4. With
unkeyed hash functions, specific security properties need to be introduced.
Three very useful properties are collision resistance, preimage resistance and
second preimage resistance. Preimage and second preimage resistance can
easily be defined. For preimage resistance, we simply say that H is preim-
age resistant if there exists no efficient adversary that given a value h can
output a message M such that H(M) = h. Similarly, H is second preimage
resistant if no efficient adversary can, given a message M , find a different
message M ′ such that M 6= M ′ and H(M) = H(M ′). These two definitions
are straightforward to formalize, even with unkeyed hash functions.

However, collision resistance is a trickier property. For any unkeyed hash
function H, there exists an efficient adversary which simply prints out two
messages M and M ′ contained in its code, such that H(M) = H(M ′). For
keyed family, the problem vanishes, which explains why they are preferred for
theoretical purposes. Of course, the existence of the above efficient adversary
does not help to find collision in practice. Thus, the common answer is to
overlook the above problem and to simply keep the definition informal: a hash
function is then said to be collision resistant when no practical method can
efficiently yield collisions.

© 2009 by Taylor and Francis Group, LLC

Chapter 2

Elementary number theory and
algebra background

Number theory is at the core of many cryptographic systems, as a conse-
quence, it is routinely used in many cryptanalysis. In this chapter, we discuss
some elementary but crucial aspects of number theory for cryptographers,
including a basic description of the RSA and Diffie-Hellman public key cryp-
tosystems.

2.1 Integers and rational numbers

The construction of the ring of integers Z is out of the scope of this book
and we simply take it for granted. We recall a few elementary facts:

1. Z possesses two commutative laws called addition and multiplication,
respectively, denoted by “+” and “×” (the symbol × is often removed
from equations or replaced by “·” or even by nothing as in xy). Com-
mutativity means that for any x and y, x+ y = y + x and xy = yx. In
addition the operations are associative, i.e., (x + y) + z = x + (y + z)
and (xy)z = x(yz).

2. The neutral element of addition is 0.

3. For all x in Z : 0 · x = 0.

4. The neutral element of multiplication is 1.

5. For any element x in Z, we can construct an element denoted by −x
and called the opposite of x, such that x + (−x) = 0. The subtraction
of two elements x− y is defined as the sum x+ (−y).

6. The notation Z∗ denotes the set of non-zero elements of Z.

7. For any element x in Z∗ and any pair (y, z) of elements of Z, xy = xz if
and only if y = z.

23

© 2009 by Taylor and Francis Group, LLC

24 Algorithmic Cryptanalysis

8. The multiplication distributes with respect to addition, i.e., for all x, y
and z:

(x+ y)z = xz + yz.

9. Z is totally ordered by an order ≥ compatible with the ring operations,
i.e.:

(a) For all x : x ≥ x.

(b) For all x and y, if x ≥ y and y ≥ x then x = y.

(c) For all x, y and z, if x ≥ y and y ≥ z then x ≥ z.
(d) For all x and y, either x ≥ y or y ≥ x hold.

(e) For all x, y and z, x ≥ y if and only if x+ z ≥ y + z.

(f) The notation x > y indicates that x ≥ y and x 6= y.

(g) For all x, y and for all z > 0, x ≥ y if and only if xz ≥ yz.
(h) For all x, y and for all z < 0, x ≥ y if and only if xz ≤ yz.

10. The absolute value of x, denoted by |x| is defined as x when x ≥ 0 and
as −x otherwise.

11. For all x 6= 0 and y, there exist two integers q and r, called the quotient
and remainder of the (Euclidean) division of y by x such that 0 ≤ r < |x|
and:

y = qx+ r.

12. When the remainder of the division of y by x is 0, i.e., when y = qx, we
say that x divides y, that x is a divisor of y or that y is a multiple of x.
Note that when x divides y, −x also divides y. Thus, it is convenient to
consider positive divisors only.

13. 1 (and −1) divides all integers.

14. For all x 6= 0, x divides itself, since x = 1 · x.

15. A prime is an integer x > 1 with no non-trivial divisor, i.e., with no
positive divisor except 1 and x.

16. A positive integer x > 1 which is not a prime is said to be composite.

17. Any composite number N > 1 can be written as

N =
t∏
i=1

peii , (2.1)

where each pi is a prime and ei > 0 is called the multiplicity of pi in N
and where no two pis are equal. Moreover, up to the order of factors,
this decomposition is unique. This statement is called the fundamental
theorem of arithmetic.

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 25

Among the above notions, primes and the Euclidean division both play an
essential role in cryptography.

From the integers in Z, constructing the set Q of rational numbers (or
simply rationals) is quite easy and uses a classical construction of quotienting
a set by an equivalence relation. We describe this process in detail here since
we use it again in a more complicated case in Chapter 14. Let us consider
the set Z × Z∗ containing pairs of integers, with a non-zero second member.
We first define an equivalence relation ≡ on this set. For all pairs (x1, x2)
and (y1, y2), we say that (x1, x2) ≡ (y1, y2) if and only if x1y2 = y1x2. This
clearly is an equivalence relation, i.e., a relation which is reflexive, symmetric
and transitive:

• Reflexivity For all pairs (x1, x2), we have (x1, x2) ≡ (x1, x2) since
x1x2 = x1x2.

• Symmetry For all pairs (x1, x2) and (y1, y2), the equivalence (x1, x2) ≡
(y1, y2) implies (y1, y2) ≡ (x1, x2).

• Transitivity For all pairs (x1, x2), (y1, y2) and (z1, z2), if (x1, x2) ≡
(y1, y2) and (y1, y2) ≡ (z1, z2) then (x1, x2) ≡ (z1, z2). Indeed, x1y2 =
y1x2 implies x1z2y2 = y1x2z2 and y1z2 = z1y2 implies x2z2y1 = x2z1y2.
Thus, x1z2y2 = x2z1y2 and since y2 6= 0, we find x1z2 = x2z1.

The set Q is defined as the set of equivalence classes of Z × Z∗ under the
equivalence relation ≡. The equivalence class of (x1, x2) is denoted by x1/x2

or x1
x2

. Since (x1, x2) ≡ (−x1,−x2), it is possible to assume that x2 > 0.
Elements of Q written as x1/x2 with x2 > 0 are called fractions.

It is clear that for any integer λ > 0, (x1, x2) ≡ (λx1, λx2) or equivalently:

x1

x2
=
λx1

λx2
.

When a fraction x1/x2 cannot be written as y1/y2 with 0 < y2 < x2, we say
that the fraction is in irreducible form. In that case, there exists no integer
λ > 1 that divides both x1 and x2. Every fraction has a unique representation
in irreducible form.

The set of integers Z is naturally embedded into Q by sending the integer x
to the fraction x/1. In the sequel, we simply use the symbol x when referring
to the fraction x/1. The set Q inherits, the addition, the multiplication and
the order from Z as follows:

• Define addition by saying that the sum of the equivalence classes of
(x1, x2) and (y1, y2) is the equivalence class of (x1y2 + y1x2, x2y2). This
definition is compatible with the equivalence relation and identical to
the integer addition on the image of Z by the natural embedding.

• Define multiplication by saying that the product of the equivalence
classes of (x1, x2) and (y1, y2) is the equivalence class of (x1y1, x2y2).

© 2009 by Taylor and Francis Group, LLC

26 Algorithmic Cryptanalysis

This definition is compatible with the equivalence relation and identical
to the integer multiplication on the image of Z by the natural embed-
ding.

• Define the order for equivalence classes (x1, x2) and (y1, y2), with x2 > 0
and y2 > 0 as follows: (x1, x2) ≥ (y1, y2) if and only if x1y2 ≥ y1x2.
Once again, this is compatible with the equivalence relation and gives
the same order as in Z after the natural embedding.

We now recall the basic properties of these operations in Q:

1. Addition and multiplication in Q are commutative and associative.

2. The neutral element of addition is 0 = 0/1.

3. For all x in Q : 0 · x = 0.

4. The neutral element of multiplication is 1 = 1/1.

5. For any element x/y in Q, its opposite is (−x)/y, denoted by −x/y.

6. The notation Q∗ denotes the set of non-zero elements of Q.

7. Any element x/y of Q∗ has a multiplicative inverse y/x that satisfies
(x/y)× (y/x) = 1.

8. The multiplication distributes with respect to addition in Q.

9. Q is totally ordered by the order ≥, and ≥ is compatible with the ring
operations.

10. The absolute value of x/y, denoted by |x/y| is defined as |x|/|y|.

Since every non-zero element has an inverse, Q is not only a ring but also a
field. Note that the above construction can be applied not only to Z but to
any entire ring. In general, the resulting field is called the field of fractions of
the entire ring.

2.2 Greatest common divisors in Z

Given two integers x and y, we say that an integer z is a common divisor
of x and y if z divides both x and y. The set of common divisors of x
and y is a finite set and thus contains a largest element, called the greatest
common divisor or GCD of x and y. The computation of GCDs is one of the
most frequent algorithmic tasks encountered in cryptography. One of its most
basic application is the rewriting of fractions in irreducible form. Indeed, for

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 27

any fraction x/y, if λ is a common divisor of x and y, we can write x = λx′

and y = λy′ and remark that x/y = x′/y′. If λ is the greatest common divisor
of x and y, then x′/y′ is in irreducible form.

To compute the greatest common divisor of x and y, it would, of course, be
possible to consider each number between 1 and the minimum of |x| and |y|
and to test whether it divides x and y. The largest of these numbers is then
the required GCD. However, when x and y become large in absolute value,
this algorithm requires a very large number of division and becomes extremely
inefficient. A much more efficient method, called Euclid’s algorithm, is based
on Euclidean division. This algorithm is based on the following fact. If λ
is a common divisor of x and y; if, q and r are the quotient and remainder
in the Euclidean division of y by x, then λ is a common divisor of x and r.
Conversely, any common divisor of x and r is a common divisor of x and y.
Indeed, writing x = λx′, we have the equality:

y = (qx′)λ+ r. (2.2)

Thus, y is a multiple of λ if and only if r is a multiple of λ. Since this is true
for all divisors, it is true in particular for the greatest. Thus, the GCD of
x and y is equal to the GCD of x and r. Applying this idea repeatedly and
assuming, without loss of generality, that y ≥ x ≥ 0 we can define a sequence
of integers z, starting with z0 = y, z1 = x and letting zi+1 be the remainder of
the Euclidean division of zi−1 by zi. This sequence of integers is decreasing,
thus at some point we find zk = 0 and stop the sequence. Thanks to the above
remark, we know that the greatest common divisor of zi−1 and zi is identical
to the greatest common divisor of zi and zi+1. Thus, by induction, the GCD
of x and y is equal to the GCD of zk−1 and zk. Since zk = 0, this GCD is
zk−1. The definition of this sequence can be rewritten in algorithmic form as
Algorithm 2.1. In this algorithm, we express the quotient in the Euclidean
division of y by x as the fraction y/x rounding down to the nearest integer.

The fact that the sequence z is decreasing shows that algorithm terminates
and that it stops after at most |x| steps. However, it is much more efficient
than that. Indeed, the number of steps can be bounded byO(log |x|). A simple
way to prove this fact is to show that for all values of i we have zi+2 ≤ zi/2,
when both values of the sequence are defined. Indeed, either zi+1 ≤ zi/2 and
we are done because the sequence is decreasing, or zi+1 > zi/2 in which case
zi+2 = zi−zi+1 < zi/2. Since z is a sequence of integers, we cannot have more
than log2 |x| divisions by two. Studying the complexity of GCD algorithms is
a research topic in its own right.

In addition to the GCD of x and y, Euclid’s algorithm can also be used
to recover additional information by keeping track of the transformation used
from an element of the sequence z to the next. From a mathematical point-
of-view, let us define two additional sequences α and β in parallel to z. First,
we explicitly write:

zi+2 = zi − qizi+1, (2.3)

© 2009 by Taylor and Francis Group, LLC

28 Algorithmic Cryptanalysis

Algorithm 2.1 Euclid’s greatest common divisor algorithm
Require: Input two integers X and Y

Let x←− |X|
Let y ←− |Y |
if x > y then

Exchange x and y
end if
while x > 0 do

Let q ←− by/xc (Quotient of Euclidean division)
Let r ←− y − qx (Remainder of Euclidean division)
Let y ←− x
Let x←− r

end while
Output y (GCD of X and Y)

where qi is the quotient in the Euclidean division of zi by zi+1. Using this
quotient, we now define α by the equations:

α0 = 1
α1 = 0 (2.4)

αi+2 = αi − qiαi+1,

and β by the equations:

β0 = 0
β1 = 1 (2.5)

βi+2 = βi − qiβi+1.

These two sequences have the property that for all 0 ≤ i ≤ k :

zi = αiz0 + βiz1. (2.6)

This is true for i = 0 and i = 1 and readily follows by recurrence for greater
values of i. We can also show that for all values 0 ≤ i ≤ k − 1 :

det
(

αi βi
αi+1 βi+1

)
= αiβi+1 − αi+1βi = (−1)i.

Indeed, this is clear when i = 0 and follow by induction when remarking that:(
αi+1 βi+1

αi+2 βi+2

)
=
(

0 1
1 −qi

)
·
(

αi βi
αi+1 βi+1

)
.

Indeed, the transition from one step to the next is a multiplication by a matrix
of determinant −1.

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 29

In particular, the GCD of αi and βi is 1. Looking at Equation (2.6) for i = k
and using the fact that zk = 0 we see −βk/αk is an irreducible expression for
z0/z1. Note that it might be necessary to change the signs of both αk and βk
in order to enforce a positive denominator. The values αk−1 and βk−1 are also
very useful, they are called Bézout’s coefficients and they allow us to express
the GCD zk−1 of z0 and z1 as αk−1z0 + βk−1z1. Euclid’s extended algorithm
is a variation of Algorithm 2.1 that in addition to the GCD computes the
coefficients αk−1 and βk−1. We give a description as Algorithm 2.2.

Algorithm 2.2 Euclid’s extended algorithm
Require: Input two integers X and Y

Let αy ←− 0 and βx ←− 0.
if X ≥ 0 then

Let x←− X and αx ←− 1.
else

Let x←− −X and αx ←− −1.
end if
if Y ≥ 0 then

Let y ←− Y and βy ←− 1.
else

Let y ←− −Y and βy ←− −1.
end if
if x > y then

Exchange x and y
Exchange αx and αy
Exchange βx and βy

end if
while x > 0 do

Let q ←− by/xc (Quotient of Euclidean division)
Let r ←− y − qx (Remainder of Euclidean division)
Let αr ←− αy − qαx
Let βr ←− βy − qβx
Let y ←− x, αy ←− αx and βy ←− βx
Let x←− r, αx ←− αr and βx ←− βr

end while
Output y and (αy, βy)
Optionally output (αx, βx)

The notion of greatest common divisor can be generalized to sets of integers.
It is the largest positive integer that divides all the elements of the state. It
is easy to compute it iteratively once we remark that given a set S containing
more than 2 elements, the GCD of S can be obtained as follows: Let a be

© 2009 by Taylor and Francis Group, LLC

30 Algorithmic Cryptanalysis

any element of S, let b be the GCD of the set S − {a}, then the GCD of S is
equal to the GCD of a and b. As a consequence, we can write Algorithm 2.3
to compute the GCD of a set or list of numbers.

Algorithm 2.3 GCD of a list of numbers
Require: Input a list of integers X1, . . . , Xt

Let g ←− X1

for i from 2 to t do
Let g ←− GCD(g,Xi) (using Euclid’s GCD algorithm)

end for
Output g

2.2.1 Binary GCD algorithm

One drawback of Euclid’s algorithm to compute GCDs is the need to per-
form Euclidean divisions. When faced with large integers, this can be a worry,
especially if one wants to avoid using a preexisting library for manipulating
large integers. In that case, Stein’s binary GCD algorithm is a nice alterna-
tive solution. This algorithm computes GCDs without any Euclidean division,
using a few simple properties, that holds for all integers a ≥ 0 and b ≥ 0:

• If a = 0 and b 6= 0 then GCD(a, b) = b;

• If a 6= 0 and b = 0 then GCD(a, b) = a;

• If a and b are both even then GCD(a, b) = 2GCD(a/2, b/2);

• If a is odd and b is even then GCD(a, b) = GCD(a, b/2);

• If a is even and b is odd then GCD(a, b) = GCD(a/2, b);

• If a and b are both odd, with a ≥ b then GCD(a, b) = GCD((a−b)/2, b);

• If a and b are both odd, with a ≤ b then GCD(a, b) = GCD(a, (b−a)/2).

Using all of these properties in a proper sequence yields an algorithm whose
efficiency is similar to Euclid GCD. Depending on the exact architecture of
the computer running the algorithms, it might be somewhat faster or slightly
slower. An algorithmic description is given in Algorithm 2.4.

It is also useful to know how an extended version of Stein’s algorithm can
also compute Bézout’s coefficients. Since Stein’s algorithm uses subtractions
and divisions by two, by following the same approach as in the extended
Euclidean Algorithm 2.2, it is easy, given two integers A and B to obtain
three integers α, β and e such that:

αA− βB = 2eGCD(A,B). (2.7)

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 31

In order to obtain Bézout’s coefficients, it suffices to modify the above coeffi-
cients in order to get rid of the unwanted factor 2e. After possibly exchanging
the role of A and B, we may assume that α ≥ 0 and β ≥ 0. Without loss of
generality, we may also assume that A and B are not both even. Indeed, the
Bézout’s coefficients of 2A and 2B are the same as the Bézout’s coefficients
of A and B. Let us start with the simple case where A and B are both odd.
In that case, let us define:

α′ = α

(
B + 1

2

)e
mod B and (2.8)

β′ = β

(
A+ 1

2

)e
mod A.

It is clear that α′A − β′B = GCD(A,B) (mod AB). Moreover, since α′ is
reduced modulo B and β′ modulo A, α′A − β′B lies in] − AB,AB[. As a
consequence, α′A− β′B = GCD(A,B), not only modulo AB but also in the
ring of integers, and (α′, β′) are Bézout’s coefficients.

To treat the general case, it suffices to show how to obtain the coefficients
for the pair (A, 2B) from the coefficients (α′, β′) for (A,B), when A is odd.
Remember that in that case, GCD(A, 2B) = GCD(A,B). If β′ is even,
the coefficients are simply (α′, β′/2). If β′ is odd, they are (α′ + B, (β′ +
A)/2). Note that there exist algorithms for computing GCDs with a better
asymptotic complexity than Euclid’s or Stein’s algorithm.

2.2.2 Approximations using partial GCD computations

The extended Euclidean Algorithm 2.1 yields more information about the
relation between its inputs X and Y than simply its outputs GCD(X,Y),
(αy, βy) and (αx, βx). Going back to the mathematical representation by
sequences, we see that all intermediate values of the sequence (α, β) are inter-
esting; more precisely, at each step i ≥ 2 at the sequence, the fraction −βi/αi
is a good approximation of z0/z1, i.e. X/Y in Algorithm 2.1. More precisely,
we have: ∣∣∣∣z0

z1
+
βi
αi

∣∣∣∣ =
∣∣∣∣ ziαiz1

∣∣∣∣ ≤ 1
|αiαi+1|

. (2.9)

As a consequence, it can be very useful to use intermediate values of αi,
βi and zi to obtain a small linear combination of z0 and z1 whose coefficients
are also small. Roughly, one can expect to achieve values of all coefficients
around the square root of the initial numbers.

2.2.2.1 Application to real numbers

It is also possible to run the Euclidean algorithm on inputs which are ra-
tional of even real numbers instead of integers. When the inputs are two
rational numbers, say a and b, the output is the smallest positive rational

© 2009 by Taylor and Francis Group, LLC

32 Algorithmic Cryptanalysis

Algorithm 2.4 Stein’s binary greatest common divisor algorithm
Require: Input two integers X and Y

Let x←− |X|
Let y ←− |Y |
if x = 0 then

Output y
end if
if y = 0 then

Output x
end if
Let p←− 1
while x is even and y is even do

Let x←− x/2
Let y ←− y/2
Let p←− 2p

end while
while x is even do
x←− x/2

end while
while y is even do
y ←− y/2

end while
if x > y then

Exchange x and y
end if
while x > 0 do

Let r ←− (y − x)/2
while r is even do
r ←− r/2

end while
if r ≥ x then

Let y ←− r
else

Let y ←− x
Let x←− r

end if
end while
Output py (GCD of X and Y)

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 33

c such that aZ + bZ = cZ. If a = na/da and b = nb/db, we find that
c = GCD(nadb, nbda)/dadb. Thus, using the GCD algorithm with rationals
is essentially the same as using it with integers.

When the inputs are real numbers x and y, matters are more complicated.
Assuming temporarily that computations are performed with infinite preci-
sion, two cases arise, either x/y is a rational, in which case there exists a
smallest positive real z such that xZ + yZ = zZ, or x/y is irrational, in which
case xZ + yZ contains arbitrarily small positive numbers. In this second case,
the extended Euclidean algorithm never terminates and can be used to pro-
duce good rational approximation of x/y. Note that running the algorithm
on the pair of inputs (x/y, 1) yields the same result as on the pair (x, y).

2.2.2.2 Alternative approaches for approximations

Approximations of fractions or of irrationals can also be obtained using
different approaches. We briefly present these alternatives here.

A first possibility is the continued fraction algorithm, which can be seen as
a rewriting of the extended Euclidean algorithm for inputs of the form (x, 1).
Given an arbitrary real x, we define two sequences, one formed of reals r and
one formed of integers c. The two sequences are obtained from the following
rules:

• The sequence r is initialized by setting r0 = x.

• The two sequences are computed recursively, for all i:

ci = bric and (2.10)

ri+1 =
1

ri − ci
. (2.11)

Note that, if ri = ci for some value of i, we cannot define ri+1 and the
two sequences have a finite number of terms.

The sequence c is called the continued fraction expansion of x. This se-
quence is finite if and only if x is rational.

The second possibility to obtain an approximation of a real by a rational
fraction with small coefficients is to use lattice reduction in dimension two
(see Chapter 10, Exercise 1).

2.3 Modular arithmetic

Modular arithmetic is a very important tool in cryptography. In particular,
it is the keystone of RSA, Diffie-Hellman and elliptic curve cryptosystem.
We first look at it from a mathematical perspective, before addressing the

© 2009 by Taylor and Francis Group, LLC

34 Algorithmic Cryptanalysis

computational aspects. Choose an integer N > 1 and consider the set NZ
obtained by multiplying all integers by N . This set is an ideal of Z, i.e., it
satisfies the following properties:

• For any x and y in NZ, x+ y is in NZ.

• For any x in NZ and any α in Z, αx is in NZ.

Thanks to these properties, it is possible to construct the quotient of Z by
NZ, denoted by Z/NZ. More precisely, this quotient is obtained by consider-
ing equivalence classes for the equivalence relation ≡, defined by x ≡ y if and
only if x − y ∈ NZ. As usual, the quotient Z/NZ inherits the addition and
multiplication from Z. In order to represent Z/NZ, it is often convenient to
choose a representative element in the interval [0, N − 1]. In some cases, an
interval with positive and negative numbers such as] − N/2, N/2] might be
used instead of [0, N − 1]. Most of the time, equivalence classes of Z/NZ are
identified with their representative. For example, we speak of the element 2
in Z/7Z instead of using the precise but cumbersome expression “the class of
the integer 2 in Z/7Z.”

In Z/NZ, any element has an opposite. For example, the opposite of the
class represented by x can be represented byN−x. When considering inverses,
the situation is more complicated; of course, 0 does not have an inverse, but
neither does an element x of Z/NZ when x and N are not coprime. Because
of this, we need to make a clear distinction between Z/NZ with N composite
and Z/pZ with p prime. Indeed, when p is prime, all non-zero elements have
inverses and Z/p is a field. On the contrary, when N is composite Z/NZ is a
ring with non-trivial divisors of 0. For some basic operations, this difference is
not too significant and the same algorithms are used in both cases. However,
for some more advanced operations, efficient algorithms are only available for
the Z/pZ case. Conversely, the problem of finding alternate representations
only arises for the composite case Z/NZ.

2.3.1 Basic algorithms for modular arithmetic

Most basic algorithms for modular arithmetic are extremely simple, this is
in particular the case of modular addition, modular subtraction and modu-
lar multiplication. The only real difficulty is that these algorithms need to
perform Euclidean divisions, which are not easy to implement for large inte-
gers. However, this difficulty is usually hidden. Indeed, for small integers,
Euclidean division is directly available at the hardware level in most proces-
sors and can be accessed in C using the operators / and %. For large integers,
the usual approach is to use one of the numerous existing libraries for manip-
ulation of large integers, which include Euclidean division. The computation
of modular inverses is more complicated than the above elementary opera-
tions; however, it entirely relies on the extended Euclidean algorithm which

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 35

Algorithm 2.5 Addition modulo N
Require: Input x and y in the range [0, N − 1]

Let s←− x+ y
if s ≥ N then

Let s←− s−N
end if
Output s

Algorithm 2.6 Subtraction modulo N
Require: Input x and y in the range [0, N − 1]

if y > x then
Let x←− x+N

end if
Let s←− x− y
Output s

we already addressed. For reference, we describe the modular operations as
Algorithms 2.5, 2.6, 2.7 and 2.8.

Another computation is frequently encountered in modular arithmetic: ex-
ponentiation. Given an element x of Z/NZ and an integer n we need to
define and compute xn. The mathematical definition is easily obtained by
considering three cases:

• for n = 0, we define x0 = 1;

• for n > 0, we define xn = x · x · · ·x, with n occurrences of x;

• for n < 0, we define xn = y · y · · · y, with −n occurrences of the inverse
y of x.

To compute xn efficiently, some care needs to be taken. In particular, the
elementary approach that consists in computing xn over the integer ring Z
followed by a reduction modulo N does not work in the general case. Indeed,
when n is even moderately large, xn is a huge number which cannot even be
stored, let alone computed on any existing computer. Since xn in Z/NZ is
routinely computed in all implementations of the RSA cryptosystem, another
approach is required.

This approach needs to reduce the number of multiplications that are per-
formed (|n| in the definition) and at the same time to prevent the growth of
the intermediate values that appear in the computation. Since, x−n = (1/x)n,
it suffices to deal with positive values of n. The most frequently encountered
algorithm is the “square and multiply” method, it is based on the following
equation:

xn = ((((xn`)2xn`−1)2 · · ·)2xn1)2xn0 , (2.12)

© 2009 by Taylor and Francis Group, LLC

36 Algorithmic Cryptanalysis

Algorithm 2.7 Multiplication modulo N
Require: Input x and y

Let p←− xy
Using Euclidean division, write p = qN + r
Output r

Algorithm 2.8 Multiplicative inverse modulo N
Require: Input x

Compute extended GCD g of x and N (g = ax+ bN)
if g 6= 1 then

Output “x is non-invertible modulo N”
else

Output a
end if

where n =
∑`
i=0 ni2

i is the binary expansion of n. Taking care to perform
modular reduction after each operation to avoid an uncontrolled growth of
representative, this equation can be used as a basis for an efficient exponen-
tiation algorithm in two different ways, reading it either from left to right or
from right to left. This yields Algorithms 2.9 and 2.10.

Algorithm 2.9 Exponentiation in Z/NZ, left-to-right version
Require: Input N , x ∈ Z/NZ and integer n on ` bits

if n < 0 then
Let n←− −n
Let x←− (1/x) (mod N)

end if
Write n in binary n =

∑`−1
i=0 ni2

i

Let y ←− 1
for i from `− 1 downto 0 do

Let y ←− y2 (mod N)
if ni = 1 then

Let y ←− xy (mod N)
end if

end for
Output y

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 37

Algorithm 2.10 Exponentiation in Z/NZ, right-to-left version
Require: Input N , x ∈ Z/NZ and integer n on ` bits

if n < 0 then
Let n←− −n
Let x←− (1/x) (mod N)

end if
Write n in binary n =

∑`−1
i=0 ni2

i

Let y ←− 1
for i from 0 to `− 1 do

if ni = 1 then
Let y ←− xy (mod N)

end if
Let x←− x2 (mod N)

end for
Output y

2.3.1.1 Invertible elements in Z/NZ

Another aspect of modular arithmetic is the set of elements in Z/NZ that
are invertible, i.e., coprime to N . This set forms a multiplicative group de-
noted by (Z/NZ)∗. The cardinality of this multiplicative group is called the
Euler’s totient function or Euler’s phi function and usually denoted by φ(N).
If N is decomposed into primes as:

N =
n∏
i=1

peii , (2.13)

then

φ(N) =
n∏
i=1

(pi − 1)pei−1
i . (2.14)

A well-known theorem from group theory is the following:

THEOREM 2.1
Let G be a multiplicative group, e the neutral element in G and |G| the cardi-
nality of G, then for any element x in G we have x|G| = e.

PROOF See [Lan05, Chapter I, Proposition 4.1].

Applying this theorem to (Z/NZ)∗, we find that for any x such that 0 <
x < N and GCD(x,N) = 1, we have:

xφ(N) = 1 (mod N). (2.15)

© 2009 by Taylor and Francis Group, LLC

38 Algorithmic Cryptanalysis

2.3.2 Primality testing

Since primes are used in many cryptosystems, the ability to efficiently detect
that numbers are primes is an essential task in cryptography. Note that, since
the density of primes is quite high1, knowing how to test primality is enough
to generate prime numbers: it suffices to pick numbers at random and test
their primality. After testing about ln(N) candidates in the range [N/2, N],
we obtain a prime number of the prescribed size.

Known primality tests are of two kinds: pseudo-primality tests and true
primality tests. Pseudo-primality tests rely on a basic randomized subroutine
which always returns true when its input is a prime and which returns false
with noticeable probability when its input is a composite. After calling the
basic subroutine a large enough number of times and obtaining true each
time, we know that either the input is a prime or we have been unlucky to
an unbelievable extreme. Note that we never know for sure when the input is
prime. However, a single false output guarantees that the input is composite.
The most frequently used pseudo-primality test is the Miller-Rabin primality
test, it is based on the fact that for any prime p, if we write p− 1 = 2eq, with
q odd, and define for any integer 0 < z < p, the sequence (zi) for 0 ≤ i ≤ e
by:

z0 = zq (mod p) and (2.16)
zi+1 = z2

i (mod p).

Then, we either have z0 = 1 or there exists an integer i < e such that zi = −1.
Moreover, if N is an odd composite, defining N − 1 = 2eq and proceeding as
above yields a negative result for at least 3/4 of the integers 0 < z < N .

From a practical point-of-view and especially for cryptography, pseudo-
primality tests are enough. However, a true polynomial time algorithm for de-
ciding primality was discovered in 2002 by Agrawal, Kayal and Saxena [AKS02].
It is known as the AKS primality test.

2.3.2.1 Computing square roots modulo primes

Computing modular square roots or, more generally, finding roots of modu-
lar polynomials (see Section 2.5.3) is one specific task which is easy to perform
modulo primes and, in general, hard to perform modulo composites, unless
their factorization is known. Depending on the value of the prime p, the
available algorithms for computing square roots vary. The simplest case oc-
curs with primes p such that p = 3 (mod 4). Indeed, for such primes, if z is
a quadratic residue (i.e., a square), then z(p+1)/4 is a square root for z. This
is easily seen by writing z = u2 and remarking that:

z(p+1)/4 = u(p+1)/2 = u · u(p−1)/2 = ±u. (2.17)

1For numbers around N , the fraction of primes is essentially 1/ ln(N).

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 39

Indeed, u(p−1) = 1 and consequently u(p−1)/2 = ±1. Note that, when p = 3
(mod 4), then −1 is a quadratic non-residue. Thus, exactly one of u and −u
is a square. In addition, z(p+1)/4 is the only square root of z which is itself a
square.

When p = 1 (mod 4), matters become more complicated, especially if a
large power of 2 divides p − 1. In that case, we need to write p − 1 = 2eq
with q odd. The method of choice to compute square roots in this case is
Shanks-Tonelli algorithm. This method is based on the remark that for any
quadratic residue z = u2 (mod p), the value z(q+1)/2 is “almost” a square
root for z. More precisely, if we let θ = z(q+1)/2/u, then θ2e = 1. Indeed:

θ2e =
(
uq+1

u

)2e

= u2eq = up−1 = 1 (mod p). (2.18)

As a consequence, to obtain a correct square root, it suffices to multiply
z(q+1)/2 by an adequate 2e-th root of unity in Fp. If we are given a primitive
2e-th root of unity, this can be done efficiently using a special case of Pohlig-
Hellman method for discrete logarithm that is described in Chapter 6. This
is precisely described as Algorithm 2.11.

2.3.2.2 Jacobi symbols

In Shanks-Tonelli square root algorithm, we simply assumed that the input
is a quadratic residue. However, it is useful to have an algorithm for testing
this property. Modulo a prime p, testing whether an element z is a quadratic
residue is easy, it suffices to check that z(p−1)/2 is equal to 1 modulo p. How-
ever, there exists a more efficient way to compute this information. Given a
prime p and an integer z, we define the Legendre symbol

(
z
p

)
to be 0 if z = 0

(mod p), 1 if z is a quadratic residue and −1 if z is a quadratic non-residue.
Given two odd primes p and q, the values

(
q
p

)
and

(
p
q

)
are related by the

law of quadratic reciprocity which asserts that:(
q

p

)
·
(
p

q

)
= (−1)(p−1)(q−1)/4. (2.19)

Another noteworthy property of the Legendre symbol is its multiplicativity:(
ab

p

)
=
(
a

p

)
·
(
b

p

)
. (2.20)

In order to compute the Legendre symbol, it is first generalized into the
Jacobi symbol

(
a
b

)
, defined for arbitrary non-negative integers a and b as:

(a
b

)
=
∏
i

(
a

pi

)ei
, (2.21)

© 2009 by Taylor and Francis Group, LLC

40 Algorithmic Cryptanalysis

Algorithm 2.11 Shanks-Tonelli algorithm for square roots in Fp
Require: Input p = 2eq + 1, p prime, q odd, z a quadratic residue in Fp

repeat
Pick a random g in F∗p
Let g ←− gq
Let h←− g, i←− 0
while h 6= 1 do

Let h←− h2, i←− i+ 1
end while

until i = e {Here g is a primitive 2e-th root of unity}
Let h←− z(q+1)/2

Let θ ←− h2/z
while θ 6= 1 do

Let k ←− θ2, i←− 1
while k 6= 1 do

Let k ←− k2, i←− i+ 1
end while
Let k ←− g
for j from 1 to e− i− 1 do

Let k ←− k2

end for
Let h←− hk
Let θ ←− θk2

end while
Output h

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 41

where
∏
i pi

ei is the decomposition of b into primes. With this generalized
definition, the law of quadratic reciprocity still holds for arbitrary odd integers
a and b. Using this generalization, it is possible to write down Algorithm 2.12
in order to compute Jacobi symbols.

2.3.3 Specific aspects of the composite case

In the composite case, using knowledge of the factorization of N , it is possi-
ble to represent Z/NZ in several different ways. The first available represen-
tation simply uses a representative in the interval [0, N−1] (or]−N/2, N/2]).
The other representations correspond to factorizations of N in a product of
pairwise coprime factors. Mathematically, they come from the Chinese re-
mainder theorem:

THEOREM 2.2
Let N be a composite integer and let N = N1N2 · · ·N`, be a factorization
of N into factors such that all pairs (Ni, Nj) are coprime. Then the two
rings Z/NZ and Z/N1Z×Z/N2Z×· · ·Z/N`Z are isomorphic. Moreover, this
isomorphism can be explicitly and efficiently computed.

PROOF Working by induction on the number of factors, it suffices to
address the basic case of a two-factor decomposition N = N1N2 with N1 and
N2 coprime.

In one direction, going from Z/NZ to Z/N1Z × Z/N2Z is easy, it suffices
to send x to (x mod N1, x mod N2). Clearly, two different representatives for
the same equivalence class in Z/NZ are sent to the same element in Z/N1Z×
Z/N2Z, since N = 0 (mod N1) and N = 0 (mod N2). Moreover, it is clear
that mapping elements in this way is compatible with the ring operations. In
the reverse direction, since N1 and N2 are coprime, we first use the extended
Euclidean algorithm and write:

α1N1 + α2N2 = 1. (2.22)

We can remark that α1N1 is congruent to 0 modulo N1 and congruent to 1
modulo N2. Conversely, α2N2 is congruent to 1 modulo N1 and to 0 modulo
N2. As a consequence, to any pair (x1, x2) in Z/N1Z×Z/N2Z, we can associate
the element x = x1α2N2 + x2α1N1 in Z/NZ; this element x satisfies:

x ≡ x1 (mod N1) and (2.23)
x ≡ x2 (mod N2).

Instead of using induction, it is also possible to derive direct coefficients
to make the isomorphism between Z/NZ and Z/N1Z × Z/N2Z × · · ·Z/N`Z
explicit. For any i in [1, `], let Mi =

∏
j 6=iNj and remarking that Ni and Mi

© 2009 by Taylor and Francis Group, LLC

42 Algorithmic Cryptanalysis

Algorithm 2.12 Computation of Jacobi symbols
Require: Input a ≥ 0 and b ≥ 0

if b = 0 then
if a = 1 then

Output 1
else

Output 0
end if

end if
if a and b are even then

Output 0
end if
Let i←− 0
while b is even do

Let b←− b/2 and i←− i+ 1
end while
if i is even then

Let S ←− 1
else

Let S ←− 1 if a is either 1 or 7 modulo 8
Let S ←− −1 if a is either 3 or 5 modulo 8

end if
while a 6= 0 do

Let i←− 0
while a is even do

Let a←− a/2 and i←− i+ 1
end while
if i is odd then

Let S ←− −S if b is either 3 or 5 modulo 8
end if
if (a− 1)/2 and (b− 1)/2 are both odd then

Let S ←− −S
end if
Let c←− a
Let a←− b mod c
Let b←− c

end while
if b = 1 then

Output S
else

Output 0
end if

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 43

are coprime write:
βiMi + γiNi = 1. (2.24)

Since βiMi is congruent to 1 modulo Ni and to 0 modulo each Nj for j 6= i,
the isomorphism between x and (x1, ·, x`) is given by reduction modulo each
Ni in the forward direction and by:

x =
∑̀
i=1

xiβiMi (mod N) (2.25)

in the reverse direction.

We leave it to the reader to express the Chinese remainder theorem in
effective algorithmic form.

2.3.3.1 Square roots and factoring from φ(N)

Let N be a composite number and, for simplicity, assume that N = pq
is a product of two primes2. One key observation is that, modulo N , 1 has
four square roots, 1, −1 and the two numbers obtained using the Chinese
remainder theorem on 1 mod p and −1 mod q or on −1 mod p and 1 mod q.
We call 1 and −1 the trivial square roots of 1. Let z be a non-trivial square
root of 1, then z can be used to factor N . Indeed, z − 1 is a multiple of p or
q, but not both. Thus, the GCD of N and z − 1 is a proper divisor of N .

This observation can be used in several ways. A first application is to show
that any algorithm for computing square roots modulo N can be used to
factor N . Note that it does not suffice to call this algorithm on the value 1
because it may then return 1. Instead, we use a self-randomizing property of
modular square roots, choose a random value r and ask for a square root s
of r2 (mod N), while keeping r secret. After this operation, r/s is a random
square root of 1. Thus, it is non-trivial with probability 1/2 (or more, if N
has more factors) and leaks the factorization of N .

Another application is to show that the knowledge of φ(N) is also enough
to factor N . Indeed, writing φ(N) = 2eI, we may see that for any number
x in Z/NZ, letting y = xI and squaring y repeatedly, we obtain 1. Thus,
somewhere in the path between y and 1, we encounter a square root of 1. If
this square root is trivial or in the rare case where y = 1, we simply choose
another value for x. In truth, the knowledge of φ(N) is not really needed to
use this argument: it is also possible to factor N using the same method when
a multiple of φ(N) is known. Also note that in the two-factor case, there is an
easy deterministic method to factor N when φ(N) is known. Indeed, in that
case, we know that pq = N and p+ q = N + 1− φ(N). As a consequence, p
and q are the roots of the quadratic equation x2− (N + 1− φ(N))x+N = 0.

2If N has more factors, the same kind of argument applies. The only difference is that there
are more non-trivial square roots of 1.

© 2009 by Taylor and Francis Group, LLC

44 Algorithmic Cryptanalysis

2.4 Univariate polynomials and rational fractions

Polynomials in a single variable are also very frequently encountered in
cryptography. Given a ring R, we define the ring R[X] of polynomials in the
variable X as follows:

• A polynomial P is a formal sum P (X) =
∑Np
i=0 piX

i, where pi is a
sequence of elements of R. The value pi is called the coefficient of Xi in
P . For convenience, it is useful to define pi = 0 for all i > Np, to omit
Np and write P (X) =

∑∞
i=0 piX

i. However, the reader should keep in
mind that P only contains finitely many non-zero coefficients.

• The degree of a polynomial P is the largest integer d(P) such that the
coefficient of Xd(P) is non-zero. For the zero polynomial 0 corresponding
to the null sequence, we define d(P) = −∞.

• The sum of two polynomials P (X) =
∑∞
i=0 piX

i andQ(X) =
∑∞
i=0 qiX

i

is defined as (P + Q)(X) =
∑∞
i=0(pi + qi)Xi. Each polynomial has an

opposite, (−P)(X) =
∑∞
i=0(−pi)Xi.

• The degree of a sum is at most the largest among the degrees of the sum-
mands P and Q, i.e., d(P +Q) ≤ max((d(P), d(Q)). When, the degrees
of P and Q are different, equality holds: d(P +Q) = max((d(P), d(Q)).

• The product of two polynomials P (X) =
∑∞
i=0 piX

i and Q(X) =∑∞
i=0 qiX

i is defined as:

(PQ)(X) =
∞∑
i=0

 i∑
j=0

pjqi−j

Xi. (2.26)

We leave it to the reader to check that the sum in the above equation
is indeed finite and that R[X] is a ring. Note that no non-constant
polynomial has an inverse.

• The degree of a product is the sum of the degrees d(PQ) = d(P) +d(Q)
under the convention that addition with −∞ yields −∞.

• A polynomial is called unitary when its coefficient of highest degree
is 1. In other words, P is unitary when P (X) = Xd +

∑d−1
i=0 piX

i.
When R is a field, any non-zero polynomial can be transformed into a
unitary polynomial by multiplication by the inverse of its highest degree
coefficient.

• Given a polynomial P and a unitary polynomial Q, it is possible to
write P = AQ + R, with R a polynomial of smaller degree than Q:

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 45

d(R) < d(Q). As in the integer case, A and R are called the quotient
and remainder of the (Euclidean) division of P by Q. When R = 0, we
say that Q divides P .

• When R is an entire ring, a unitary polynomial P is called reducible
when there exists two non-constant polynomials Q and R, i.e., d(Q) 6= 0
and d(R) 6= 0 such that P = QR. Otherwise, P is called irreducible.

When P is reducible, it is possible to choose Q and R unitary in the
expression P = QR.

• Over an entire ring, any unitary polynomial P can be written as a
product of irreducible polynomials, i.e.:

P =
t∏
i=1

P eii . (2.27)

Moreover, up to the order of factors, this decomposition is unique.

Note that when non-entire rings are involved, polynomials may factor in
very strange ways. To take a simple example, over Z/15Z, one may see that
(3x2− 1) · (5x2 + 2) = x2− 2 mod 15. Furthermore, x2− 2 is irreducible both
modulo 3 and modulo 5.

2.4.1 Greatest common divisors and modular arithmetic

Thanks to the existence of a Euclidean division process for polynomials, it
is possible to use Euclid’s algorithm to compute the greatest common divisor
of two polynomials over a field (or an entire ring). It is possible to directly use
Algorithm 2.1 without any change, simply replacing numbers by polynomials
where appropriate. Similarly, the extended Algorithm 2.2 can also be used
directly for polynomials. However, it is interesting to consider the analog of
the results of Section 2.2.2 and look at the degrees of intermediate polyno-
mials that appear during the extended GCD algorithm. Instead of having
a multiplicative relation relating the product of the current coefficients and
of the current reduced value to the initial values of the algorithm as in the
integer case, we obtain a similar additive relation involving the degrees of the
corresponding polynomials. In particular, we can expect along the GCD com-
putation a partial relation where all the polynomials have half degree, when
compared to the algorithm’s input.

A variation of Stein’s binary GCD algorithm can also be used for polyno-
mials. Instead of giving a special role to the prime 2, this variation gives this
role to the irreducible polynomial x. It is described as Algorithm 2.13. An
extended version can also be obtained.

© 2009 by Taylor and Francis Group, LLC

46 Algorithmic Cryptanalysis

Algorithm 2.13 Stein’s greatest common divisor algorithm for polynomials
Require: Input two polynomials A(x) and B(x)

Let a(x)←− A(x)
Let b(x)←− B(x)
if a(x) = 0 then

Output b(x)
end if
if b(x) = 0 then

Output a(x)
end if
Let p←− 0
while a(0) = 0 and b(0) = 0 do

Let a(x)←− a(x)/x
Let b(x)←− b(x)/2
Let p←− p+ 1

end while
while a(0) = 0 do
a(x)←− a(x)/x

end while
while b(0) = 0 do
b(x)←− b(x)/x

end while
if deg a > deg b then

Exchange a(x) and b(x)
end if
while a(x) 6= 0 do

Let c(x)←− (b(0)a(x)− a(0)b(x))/x
while c(0) = 0 do
c(x)←− c(x)/x

end while
if deg c ≥ deg a then

Let b(x)←− c(x)
else

Let b(x)←− a(x)
Let a(x)←− c(x)

end if
end while
Output xpb(x) (GCD of A(x) and B(x))

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 47

2.4.2 Derivative of polynomials

A very useful operation when working with polynomials is the computation
of derivatives. We quickly recall the basic definition and properties of deriva-
tives. To any polynomial f in a polynomial ring R[X] we associate the poly-
nomial D(f) or D(f), also denoted f ′, defined as follows: If f(x) =

∑∞
i=0 fix

i,
we let:

D(f)(x) =
∞∑
i=1

ifix
i−1. (2.28)

Note that since f only has finitely many non-zero coefficients, so does D(f).
Thus D(f) is a polynomial. Moreover, for any pair of polynomials f and g,
we have the following properties:

D(f + g) = D(f) +D(g) and (2.29)
D(fg) = D(f)g + fD(g). (2.30)

The Property (2.29) is clear from the definition. Moreover, thanks to this
property, it suffices to prove Property (2.30) in the special case where f is a
monomial, say f(x) = axk. In this special case, we see that:

D(fg) = D(axkg(x)) =
deg(g)+k∑
i=k

aigi−kx
i−1 (2.31)

=
deg(g)∑
i=0

a(i+ k)gixi+k−1

= axk
deg(g)∑
i=1

igix
i−1 + kaxk−1

deg(g)∑
i=0

gix
i

= axkD(g)(x) + kaxk−1g

= fD(g) +D(f)g.

By definition, the derivative of any constant polynomial is zero. The con-
verse is almost true. More precisely, see [Lan05, Chapter IV, Proposition
1.12], for any polynomial f of degree at least 1 over a finite field Fq of char-
acteristic p, i.e., q = pn (see below), either Df 6= 0 or there exists another
polynomial g such that f(x) = g(xp) = g(x)p over Fq[x].

2.5 Finite fields

Finite fields are often considered in cryptography and it is useful to see how
they can be constructed. We have already seen, in the context of modular

© 2009 by Taylor and Francis Group, LLC

48 Algorithmic Cryptanalysis

arithmetic, that Z/pZ is a field, if and only if, p is prime. Using a construction
similar to modular arithmetic and based on polynomials, we are now going to
construct some additional examples of finite fields.

2.5.1 The general case

In this section, we let p be a prime and consider polynomials over Z/pZ. We
also choose an irreducible polynomial I(x) of degree n in this polynomial ring.
Using I(x), we can define an equivalence relation between polynomials that
says that f ≡ g if and only if f(x)− g(x) is a multiple of I(x). Equivalently,
this means that f and g have the same remainder in the Euclidean division
by I(x). Taking the quotient of the ring of polynomials by this equivalence
relation, we obtain a ring containing pn elements. Indeed, in the equivalence
class of an arbitrary polynomial f , there is a polynomial of degree < n: the
remainder in the Euclidean division of f by I. Moreover, no two polynomials
of degree < n may belong to the same class. Since a polynomial of degree < n
is completely described by n coefficients in Z/pZ, the quotient ring contains pn

classes. To prove that this ring is a field, we need to show that any polynomial
f in Z/pZ[x] is either a multiple of I or prime to I. Since I is irreducible, this
holds by definition.

An important theorem stated in [Lan05, Chapter V, Theorem 5.1] says
that all finite fields are either of the form Z/pZ or obtained by the above
construction. Moreover, for each possible value of pn there is a unique field
with pn elements. A field with pn elements, where p is a prime, is said to be of
characteristic p. Alternatively, the characteristic can be defined as the order
of the unit element 1 in the field Fpn viewed as an additive group. Note that,
two different irreducible polynomials of degree n over Z/pZ give two different
representations of the same finite field. Thanks to this remark, when using
this construction directly to represent elements in finite fields and compute
with them, it is possible to make a convenient choice for I in order to speed
up the computations. One frequent option is to use I(x) = xn + i(x), where
i(x) is a polynomial of low degree containing a small number of coefficients.
This specific choice allows to speed-up reduction modulo I. It also permits to
multiply finite field elements faster.

The representation of a finite field Fq by a quotient of Fp[x] by an irreducible
I(x), is usually called a polynomial or a power basis for Fq.

The Frobenius map In a finite field Fpn , the Frobenius map is the func-
tion φ which sends any element x to xp. This map satisfies some essential
properties:

• For all x and y in Fpn , φ(xy) = φ(x)φ(y).

• For all x and y in Fpn , φ(x+ y) = φ(x) + φ(y).

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 49

The first property is a simple consequence of the commutativity of multiplica-
tion. The second property comes from the fact that p divides all coefficients
in the expansion of (x+ y)p, except the coefficients of xp and yp.

The Frobenius map is a very useful tool when working with finite fields. We
discuss it a bit further in Chapter 14, showing that it is also very important
for elliptic curves. For now, let us give a simple example of its power. For any
polynomial f(X) =

∑df
i=0 fiX

i, we define the Frobenius of f as the polynomial
φ(f)(X) =

∑df
i=0 φ(fi)Xi. The reader can easily check that for any element

x in Fpn we have φ(f(x)) = φ(f)(φ(x)).
The Frobenius map can also be used to characterize the subfields of Fpn .

For any divisor m of n, let us denote by φm the composition of the Frobenius
map with itself m times. Then, the subset of elements x in Fpn such that
φm(x) = x is the finite field Fpm . When n is prime, the only proper subfield
of Fpn is Fp itself.

Multiple extensions. In some cases, it can be useful to represent Fpn1n2

as an extension of degree n2 of Fpn1 . This can be done using an irreducible
polynomial I of degree n2 with coefficients in Fpn1 . In the special case where
n1 and n2 are coprime, this can even be done with an irreducible polynomial
I with coefficients in Fp.

Normal bases. We saw that by choosing sparse irreducible polynomials, it
is possible to obtain efficient representations of finite fields by a polynomial
basis that allows faster multiplication. Another frequent representation is the
use of normal bases which represent elements of F2n as sums of α, α2, α4,
. . . , α2n−1

, for a well-chosen value of α. With normal bases, the Frobenius
map can be applied very easily, by simply rotating the coefficients. However,
multiplications become more costly. For special finite fields, it is even possible
to use optimal normal bases that allow faster computation of multiplication
and Frobenius.

Recently, a new representation was proposed in [CL09] by Couveignes and
Lercier that allows these fast operations for all finite fields. This representa-
tion is more complex that normal bases and makes use of elliptic curves over
the base field to represent extension fields.

2.5.2 The special case of F2n

Finite fields of characteristic 2 are frequently encountered in cryptographic
algorithms. As a consequence, fast implementations of arithmetic operations
in F2n have been developed for this special case, both in software and in
hardware. One frequently encountered method makes use of linear feedback
shift registers (LFSR). Since LFSR are also used as a basis for many stream
ciphers, we now describe them in more details.

© 2009 by Taylor and Francis Group, LLC

50 Algorithmic Cryptanalysis

rt

Figure 2.1: Ordinary LFSR

2.5.2.1 Representation by LFSRs

A LFSR on n bits is formed of n individual registers each able to store a
single bit, say r0, r1, . . . , rn−1. The value contained in each register changes
with time. For LFSRs, time is discretized and follows a clock signal. We
assume that the clock is initially set to 0 and goes up by increments of 1.
We denote the value contained in ri at time t by r

(t)
i . There exist two dif-

ferent kinds of LFSRs, Galois LFSR and ordinary LFSR, which differ by the
evolution of the register from time t to time t + 1. They are represented in
Figures 2.1 and 2.2.

From time t to time t+1, a Galois LSFR evolves according to the following
rules:

• For all 0 ≤ i < n − 1 : r(t+1)
i+1 = r

(t)
i ⊕ ci+1r

(t)
n−1, where each ci is a

constant 0 or 1.

• Moreover, r(t+1)
0 = r

(t)
n−1.

The time advance of a Galois LFSR can be interpreted as multiplication as
a polynomial by X modulo a polynomial of F2[X]. Indeed, if we let I(X) =
Xn ⊕

⊕n−1
i=1 ciX

i ⊕ 1 and let f (t) for every value of t denote the polynomial
f (t)(X) =

⊕n−1
i=0 r

(t)
i Xi. We easily see that when r(t)

n−1 = 0, then f (t+1)(X) =
Xf (t)(X). Similarly, when r(t)

n−1 = 1 then f (t+1)(X) = Xf (t)(X)⊕I(X). As a
consequence, assuming that I is irreducible, the simple rule for advancing the
corresponding Galois LFSR corresponds to multiplication by α, a root of I in
F2n . This correspondence holds under the convention that the registers (ri)
of a Galois LFSR encode the finite field element

⊕n−1
i=0 riα

i. Clearly, the sum
of two finite field elements can be obtained by a simple XOR of the registers.
Finally, multiplication by an arbitrary element can be obtained by a sequence
of multiplications by α and XOR operations, similar to the exponentiation
Algorithm 2.9 or 2.10. A simple implementation of F232 using a Galois LFSR
in C code is given as Program 2.1.

To understand the other kind of LFSR called ordinary LFSR when opposed
to Galois LFSR or simply LFSR in many contexts, it is useful to focus on the
sequence of bits st = r

(t)
n−1 obtained by considering only the high order bit

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 51

rt

Figure 2.2: Galois LFSR

Program 2.1 Representation of F232 with a Galois LFSR
#include <stdio.h>
#include <stdlib.h>

/* GF(2^32) using x^32+x^7+x^3+x^2+1 -> 2^7+2^3+2^2+1=141*/
#define IRRED 141

typedef unsigned int state;

state Mul_by_alpha(state val)
{
state res;

res=(val<<1); if (val&0x80000000) res^=IRRED;
return(res);

}

state Add(state val1, state val2)
{
return(val1^val2);

}

state Mul(state val1, state val2)
{
state res=0;

while(val2!=0) {
if (val2&1) res=Add(res,val1);
val1=Mul_by_alpha(val1);
val2>>=1;

}
}

© 2009 by Taylor and Francis Group, LLC

52 Algorithmic Cryptanalysis

of a Galois LFSR. Let us follow the evolution of one bit r(t)
n−1 as time passes.

After one round, the bit is in r(t+1)
0 . After i rounds, we see by induction that:

r
(t+i)
i−1 = r

(t)
n−1 ⊕

i−1⊕
j=1

cjr
t+j
n−1. (2.32)

Finally, with the additional convention that c0 = 1, we find that:

st+n =
n−1⊕
j=0

cjst+j . (2.33)

Ordinary LSFRs directly compute the sequence s from this recurrence rela-
tion. Once again we need a register able to store n bits. For simplicity, we
reuse the same notation r

(t)
i . With ordinary LFSRs, with well-chosen initial

values of the registers, we can achieve the relation r
(t)
i = st−i, for all accept-

able values of i and t, i.e., 0 ≤ i < n and t − i ≥ 0. The evolution rules for
ordinary LFSRs from time t to time t+ 1 are the following:

• For all 0 ≤ i < n− 1 : r(t+1)
i+1 = r

(t)
i .

• Moreover, r(t+1)
0 is obtained as the XOR of a subset of the values r(t)

i .
More precisely, we have:

r
(t+1)
0 =

n−1⊕
i=0

cir
(t)
i , (2.34)

where each ci is the same constant as before.

The above discussion shows that extracting a single bit from a Galois LFSR or
for the corresponding ordinary LFSR yields the same sequence. Both LFSRs
are thus said to be equivalent. One very important property about LFSRs is
that they produce periodic sequences whose lengths are equal to the multi-
plicative order of the root α of I in the finite field F2n . Note that the all-zeros
sequence can also be produced by any LFSR and is an exception to this rule
since its periodicity is 1. If α is a generator of the multiplicative group F∗2n ,
its order is 2n − 1 and the length of the sequence is maximal. When this
condition is satisfied, the irreducible polynomial I is said to be primitive.

Letting N = 2n − 1, to check whether α has order N , we need to know
the factorization of N . Assuming that N =

∏t
i=1 p

ei
i , we can check that no

proper divisor of N is the order of α simply by checking that for all 1 ≤ i ≤ t :

αN/pi 6= 1. (2.35)

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 53

2.5.2.1.1 Berlekamp-Massey algorithm Knowing that LFSR can gen-
erate long periodic sequences by using simple linear recurrences, it is also
interesting to consider the dual question. Given a sequence of bits, can we
determine the short linear recurrence expression that can generate this se-
quence?

The Berlekamp-Massey algorithm is a very efficient method to solve this
question. It can be applied to find an optimal linear recurrence that generates
a given sequence over any field K. In order to describe this algorithm, it is
useful to introduce a few notations. Given a sequence T of elements of the
field K, a nice way to describe the shortest linear recurrence is to introduce
the notion of minimal polynomial of a sequence.

First, let us define the evaluation of a polynomial f of K[X] of degree df on
a sequence T of elements of K. Assuming that f(X) =

∑df
i=0 αiX

i, we define
the sequence S = f(T) by the following formula:

Si =
df∑
j=0

αjTi+j . (2.36)

If T is an infinite sequence, S is also infinite. Otherwise, S contains df fewer
elements than T . We say that f annihilates T if and only if f(T) is the all
zero sequence. We define IT to be the set of all polynomials that annihilate
T . This set is an ideal of K[X]. When IT is different from the zero ideal, we
can find a generator fT of IT (unique up to multiplication by a constant of
K∗) is called the minimal polynomial of S. Note that fT is the polynomial of
smallest degree that annihilates T .

In this section, we assume for simplicity that T is an infinite sequence of
numbers over a field K, with minimal polynomial fT of degree d. By definition,
fT annihilates T , thus fT (T) = 0. It is useful to express the sequence T
by forming series T (x) =

∑∞
i=0 Tix

i in K[[x]]. Matching the definition of
multiplication for series and polynomials and the definition of evaluation of
fT at T , we see that i-th term of fT (T) is the coefficient of xd+i in f̃T (x)T (x),
where f̃T is the reciprocal polynomial of fT , i.e., when fT =

∑d
i=0 f

(i)
t xi we

write f̃T =
∑d
i=0 f

(i)
t xd−i. Since, fT (T) is the zero sequence, we see that

f̃T (x)T (x) is a polynomial gT (x) of degree at most d− 1. In other words:

T (x) =
gT (x)

f̃T (x)
, (2.37)

using division according to increasing powers of x, i.e., considering each poly-
nomial as a Taylor series. Note that we need to take some care with Equa-
tion (2.37). To see why, let us construct a sequence T , starting with d ar-
bitrary values from T0 to Td−1 and constant after that point. The minimal
polynomial of such a sequence is xd − xd−1. Now the reciprocal polynomial
is simply x − 1. The problem is that this polynomial no longer contains in-
formation about the degree d. Thankfully, in this case, the degree of gT is

© 2009 by Taylor and Francis Group, LLC

54 Algorithmic Cryptanalysis

exactly d− 1 and this allows us to recover d. In order to compute f̃T and gT ,
it suffices to consider the first D terms of T and to decompose T (x) as a sum
T (x) = TD(x) + xDTD(x). Thus:

TD(x) =
gT (x)

f̃T (x)
− xDTD(x). (2.38)

Multiplying by f̃T (x) and matching terms of the same degrees, we see that:

f̃T (x)TD(x) + xDhT (x) = gT (x), (2.39)

where hT is a polynomial of degree at most d− 1. When D ≥ 2d, this expres-
sion can be obtained through a partial run of the extended Euclidean algo-
rithm on the polynomials TD and xD and this is at the core of the Berlekamp-
Massey algorithm.

A slightly different formulation allows to remove the cumbersome issue of
having to alternate between the fT and f̃T representations. The idea is to
take the reciprocal of all polynomials in Equation (2.39), with a small caveat
on our use of the word reciprocal. As defined above, the reciprocal is defined
as the sum up to the degree of the polynomial. Here, instead of using the
effective value of the degree, we use the expected value and treat TD as a
polynomial of degree D even when its coefficient of xD is zero; similarly, hT
is viewed as a polynomial of degree d − 1. The case of gT is slightly more
subtle, it should be considered as a polynomial of degree D + d − 1, with at
least its D upper coefficients equal to zero. To emphasize this fact, we write
the reciprocal as xDg̃T (x), where g̃T is a reciprocal of gT viewed as a degree
d− 1 polynomial. After this, Equation (2.39) becomes:

fT (x)T̃D(x) + h̃T (x) = xDg̃T (x) or (2.40)

fT (x)T̃D(x)− xDg̃T (x) = h̃T (x).

Once again, we can use an extended Euclidean algorithm, this time on the
polynomials T̃D and xD.

However, this is not the complete story. Indeed, both of the above ap-
proaches have a notable disadvantage; they require as input an upper bound
d on the degree of fT , in order to choose D and this value controls the whole
computation. It is much preferable to rewrite the operation in a way that
lets us increase D as the computation proceeds. The idea is to create a se-
ries of polynomials that each annihilate increasingly long subsequences of the
original sequence. A typical example is a polynomial f such that:

f(x)TN (x) = g(x) + xNh(x), (2.41)

with deg g < deg f ≤ N/2 and h(0) 6= 0. Assume that we know an equation
as above and have another equation:

F (x)TM (x) = G(x) + xMH(x), (2.42)

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 55

with M > N . If N − deg f ≥ M − degF, we can improve the precision of
Equation (2.42) by letting:

F ′(x) = F (x)− H(0)
h(0)

xM−Nf(x) and (2.43)

G′(x) = G(x)− H(0)
h(0)

xM−Ng(x).

Then, there exists H ′ such that

F ′(x)TM+1(x) = G′(x) + xM+1H ′(x).

Moreover, we can check that the degree of F ′ is equal to the degree of F and
that degG′ < degF ′.

By repeating this improvement to Equation (2.42), we obtain an incremen-
tal way to compute fT , the resulting process is given as Algorithm 2.14. In
this algorithm, polynomials need to be encoded as arrays. However, for ease of
reading, we write them as polynomials and denote by [xl]F the l-th coefficient
of the polynomial F , with numbering starting at 0.

2.5.3 Solving univariate polynomial equations

Over finite fields, there are efficient algorithms, Berlekamp’s and Cantor-
Zassenhaus, for finding roots of polynomials equations f(x) = 0 and also to
factor f(x) into irreducible factors. Of course, we may, without loss of gener-
ality assume that f is unitary, after multiplying it by the inverse of its highest
degree coefficient. Moreover, it is clear that factoring f into irreducible fac-
tors directly yields the roots of f(x) = 0, simply by considering the irreducible
factors of degree 1. Indeed, r is a root of f , if and only if, x− r divides f(x).

In order to factor f , there are two essential intermediate steps, squarefree
factorization and distinct degree factorization.

Squarefree factorization A polynomial is said to be squarefree when no
irreducible factor appears with exponent greater than 1 in its factorization.
The goal of squarefree factorization is to decompose f into a product:

f(x) =
m∏
i=1

f (i)(x), (2.44)

where each factor is squarefree. Clearly, unless we give more precision, this
does not define a unique decomposition for f . To make the decomposition
unique, we require the squarefree decomposition to be minimal, i.e., to contain
as few factors as possible.

In order to compute such a minimal squarefree factorization, we rely on the
basic property that whenever the square of an irreducible polynomial divides

© 2009 by Taylor and Francis Group, LLC

56 Algorithmic Cryptanalysis

Algorithm 2.14 Berlekamp-Massey algorithm
Require: Input sequence S of N elements over Fq

Let f(x)←− 1
Let L0 ←− 0
while S[L0] = 0 do

Let L0 ←− L0 + 1
end while
Let α←− S[L0]
Let F (x)←− 1
Let δ ←− 1
for l from 0 to N − 1− L0 do

Let β ←−
∑l
i=0 S[l + L0]([xl]F) in Fq

if β 6= 0 then
if 2L > l then

Let F (x)←− F (x)− (β/α)xδf(x)
Let δ ←− δ + 1

else
Let L←− l + 1− L
Let g(x)←− F (x)− (β/α)xδf(x)
Let f(x)←− F (x)
Let F (x)←− g(x)
Let δ ←− 1
Let α←− β

end if
else

Let δ ←− δ + 1
end if

end for
Output F (x)xL0 (lowest degree annihilator of S up to N elements)

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 57

f , then the irreducible polynomial also divides Df . Indeed, if f = g2h, we
have:

D(f) = D(g(gh)) = gD(gh) +D(g)gh = g(D(gh) +D(g)h). (2.45)

Thus, g divides D(f).
Conversely, if g is an irreducible polynomial that divides f , such that g2

does not divide f , then g does not divide Df . Indeed, write f = gh with
h not a multiple of g. If g divides Df , the equality Df = gD(h) + D(g)h
implies that g divides D(g)h. Since g is irreducible and h not a multiple of g,
we find that D(g) is a multiple of g. Since the degree of D(g) is lower than
the degree of g, this is possible only if D(g) = 0. We saw previously that D(g)
can be zero, when g is either a constant polynomial or a p-th power. Since g
is irreducible, none of these options is possible. We conclude that g cannot
divide Df .

With this remark in mind, let us consider the GCD of f and Df . If Df = 0
then f is a p-th power. Otherwise, if g is an irreducible polynomial that
divides f and gt the greatest power of g that divides f , we find that gt−1

divides Df and thus the above GCD. Letting f (1) = f/GCD(f,Df) yields
the first step of the squarefree factorization. f (1) is the product of all irre-
ducible polynomials that divide f , without their exponents. The other factor
GCD(f,Df) contains the irreducible polynomials that appear at least twice
in f , with an exponent equal to the corresponding exponent in f minus 1.
Repeating the same process with GCD(f,Df), we obtain f (2) that contains
all the irreducible appearing at least twice, each with exponent 1 and so on.
Finally, we obtain a decomposition as in Equation (2.44), where f (i) is the
product of all irreducible polynomials that appear at least i times in f . This
squarefree decomposition is described as Algorithm 2.15.

Distinct degree factorization The next step toward complete factoriza-
tion of polynomials is to take as input a squarefree polynomial f , usually
a polynomial coming out of Algorithm 2.15 and to write it as a product of
several factors. The i-th factor in the decomposition is the product of all
irreducible polynomials of degree i.

The key ingredient of distinct degree factorization is the fact that every
element α in a finite field Fqn of characteristic p, i.e., where q is either p or a
proper power of p, satisfies:

αq
n

− α = 0. (2.46)

If I(x) is an irreducible polynomial of degree n over Fq, we know that I can be
used to represent Fqn . Applying Equation (2.46) to a root α of I implies that
I(x) divides the polynomial Pq,n(x) = xq

n − x. Since the argument applies
to all irreducible of degree n, all these polynomials divide Pq,n. Moreover, no
irreducible polynomial of degree higher than n may divide Pq,n.

As a consequence, taking the GCD of f with Pq,1 yields the product f (1)

of all irreducible of degree 1 dividing f . Replacing f by f/f (1) and taking

© 2009 by Taylor and Francis Group, LLC

58 Algorithmic Cryptanalysis

Algorithm 2.15 Squarefree factorization of polynomials
Require: Input polynomial f , finite field Fpn

Let m←− 0
Let a be the highest degree coefficient of f
Let f ←− f/a
repeat

Let g ←− D(f)
if g = 0 then

Here f is a p-th power
Recurse on f1/p, multiply all multiplicities by p and return

end if
Let h←− GCD(f, g)
Let m←− m+ 1 and f (m) ←− f/h
Let f ←− h

until f = 1
Output a and f (1), . . . , f (m)

the GCD with Pq,2 yields the product f (2) of all irreducible of degree 2 and
so on. For practicality of the resulting algorithm, it is essential to split the
GCD computations encountered here into two parts. Indeed, the polynomials
Pq,n have a high degree qn and it would not be practical to directly use
Algorithm 2.1. Instead, we first compute the polynomial xq

n

modulo the
other polynomial f(x) using Algorithm 2.9 or 2.10. After subtracting x from
the result, we may use Algorithm 2.1 to conclude the GCD computation.
Distinct degree factorization is given as Algorithm 2.16.

Algorithm 2.16 Distinct degree factorization of a squarefree polynomial
Require: Input unitary squarefree polynomial f
Require: Input prime power q

Let m←− 0
repeat

Let m←− m+ 1
Let g ←− xqm mod f(x)
Let g ←− g − x
Let f (m) ←− GCD(f, g)
Let f ←− f/f (m)

until f = 1
Output f (1), . . . , f (m)

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 59

Concluding the factorization At this final stage, we receive as input
a polynomial f , knowing that it has no repeated factors and that all its
factors have the same degree k. The strategy is to split f into a product
of polynomials of smaller degree until all the factors have degree k. At this
point, we know that the factorization is complete and we stop. Thanks to
distinct degree factorization, we know that the GCD of f and xq

k −x is equal
to f . When q is odd, we see that qk is also odd and we may write:

xq
k

− x = x(x
qk−1

2 − 1)(x
qk−1

2 + 1). (2.47)

This remark can be used to split f into polynomials of smaller degree. First,
if k = 1 we can easily test whether x divides f or not, simply by looking at
the constant coefficient of f . Second, we can compute the GCD of f with
x(qk−1)/2− 1. We expect that this yields a factor of f , roughly of half degree.

This is a nice start, but does not suffice to conclude the factorization of f .
In order to go further, we need to repeat the same idea with other polynomials.
To illustrate this, let us consider the case k = 1. In this case, we know that
f divides xq − x but also any polynomial of the form (x − a)q − (x − a). To
prove this, it suffices to consider the polynomial g defined by g(x) = f(x+a).
Since f splits into factors of degree 1, g also splits into factors of degree 1,
thus xq − x divides g. Replacing x by x− a in the division yields the desired
result. Since,

(x− a)q − (x− a) = (x− a)((x− a)
q−1

2 − 1)((x− a)
q−1

2 + 1) (2.48)

we get another chance of decomposing f into smaller factors. We obtain an
efficient probabilistic algorithm simply by trying a small number of random
values for a.

When k is larger than 1, we can use the same argument and prove that f
divides (x− a)q

k − (x− a). However, in general, this is not sufficient to fully
factor f . Instead, we need to generalize the idea and remark that for any
polynomial h, f divides h(x)q

k − h(x). Using random polynomials of degree
k suffices to conclude the factorization using the identity:

h(x)q
k

− h(x) = h(x)(h(x)
qk−1

2 − 1)(h(x)
qk−1

2 + 1). (2.49)

The resulting probabilistic method is described as Algorithm 2.17.
In characteristic 2, with q = 2e the same idea is used with a different way

of splitting x2ke − x. When ke is 1 or 2, it suffices to use exhaustive search.
Indeed, the only possible roots when e = 1 and k = 1 are 0 and 1. When
e = 1 and k = 2, we are looking for the only irreducible factor of degree 2
over F2: i.e., x2 + x+ 1. When e = 2 and k = 1, we search for roots over F4:
i.e 0, 1, ρ or ρ+ 1. Here ρ is a non-trivial cube root of unity in F4, satisfying
ρ2 + ρ+ 1 = 0.

When ke is even and larger than 2, we use the same approach as in the odd
characteristic case, but we use different relations. Two cases are distinguished.

© 2009 by Taylor and Francis Group, LLC

60 Algorithmic Cryptanalysis

Algorithm 2.17 Final splitting of polynomials
Require: Input unitary squarefree polynomial f with factors of degree k only
Require: Input prime power q

Let g(x) be a random unitary polynomial of degree k
Create an empty list of factors L
Let f0 ←− GCD(f(x), g(x))
if deg f0 = k then

Add f0 to the list of factors L
end if
Let G(x)←− g(x)(qk−1)/2 in Fq[X]/(f(x))
Let f1 ←− GCD(f(x), G(x)− 1)
if deg f1 > k then

Recursively call the final splitting on f1 and obtain a list L1

Concatenate L1 after L
else

if deg f1 = k then
Append f1 to L

end if
end if
Let f−1 ←− GCD(f(x), G(x) + 1)
if deg f−1 > k then

Recursively call the final splitting on f−1 and obtain a list L−1

Concatenate L−1 after L
else

if deg f−1 = k then
Append f−1 to L

end if
end if
Output the list of factors L

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 61

When e is odd or equivalently when F2e does not contains a cube root of unity,
we use the identity:

x2k ⊕ x = x(x(2k−1)/3 ⊕ 1)(x2(2k−1)/3 ⊕ x(2k−1)/3 ⊕ 1). (2.50)

When e is even, we let ρ denote a cube root of unity in F2e and we use the
identity:

x2k ⊕ x = x(x(2k−1)/3 ⊕ 1)(x(2k−1)/3 ⊕ ρ)(x(2k−1)/3 ⊕ ρ⊕ 1). (2.51)

Finally, when e and k are both odd, we remark that x2ek +x divides x22ek
+x

modulo two and use the analog of Equation (2.50) for this higher degree
polynomial.

2.6 Vector spaces and linear maps

A vector space over a field K is a set V , whose elements are called vectors,
together with two operations, addition of two vectors and multiplication of a
vector of V by an element of K, satisfying the following properties:

• Addition has a neutral element called the zero vector and denoted by ~0.

• Every vector ~v has an opposite−~v, which can be obtained by multiplying
~v by the constant −1 in K. In particular, if K is a field of characteristic
2, every vector ~v is its own opposite.

• Multiplication by a constant is distributive, i.e., for any pair of vectors
(~v, ~w) and any scalar α in K, we have:

α(~v + ~w) = α~v + α~w. (2.52)

• Similarly, for any vector ~v and any pair of scalars (α, β), we have:

(α+ β)~v = α~v + β~v. (2.53)

A finite family of n vectors (~v1, · · · , ~vn) is a generating family for V , if
and only if, for all vector ~v in V there exists (at least) one n-uple of scalars
(α1, · · · , αn) such that:

~v =
n∑
i=1

αi~vi. (2.54)

A family (~v1, · · · , ~vn) is a free family, if and only if, any n-uple of scalars
(α1, · · · , αn) such that

∑n
i=1 αi~vi = ~0 is the all zero n-uple.

© 2009 by Taylor and Francis Group, LLC

62 Algorithmic Cryptanalysis

A family of vectors (~v1, · · · , ~vn) which is both free and a generating family
for V is called a basis of V . For any vector ~v of V , there exists a unique n-uple
(α1, · · · , αn) such that Equation (2.54) holds. All bases of V have the same
cardinality, called the dimension of V and denoted dimV . Note that, in this
book, we only consider finite dimensional vector spaces.

For example, K is a vector space of dimension 1 over itself. More generally,
Fpn can be seen as a vector space of dimension n over Fp.

A subset of V stable by addition and by multiplication by K is called a
vector subspace of V .

Given two vector spaces V and W over K, a map L from V to W is said to
be linear, if and only if, for all pairs of scalars (α, β) and all pairs of vectors
(~v, ~w), we have:

L(α~v + β ~w) = αL(~v) + βL(~w). (2.55)

The subset of vectors ~v of V such that L(~v) = ~0 is a subspace of V called the
kernel of L and denoted by Ker(L). Similarly, the set of all vectors L(~v) is a
subspace of W called the image of L and denoted by Im(L). The dimensions
of the kernel and image of L satisfy the relation:

dimV = dim Im(L) + dim Ker(L). (2.56)

For any vector ~y in Im(L), there exists (at least) one vector ~x such that
L(~x) = ~y. Moreover, the set of vectors that are mapped to ~y by L is ~x+Ker(L).
If the dimension of Ker(L) is zero, then Ker(L) = {~0} and any vector in Im(L)
has a unique inverse image. In that case, we say that L is invertible or that it
has full rank. We can then define the map that sends ~y to this inverse image,
it is a linear map, called the inverse of L and denoted by L−1. Note that
L−1 is only defined on Im(L). The composition L−1 ◦L is the identity on V .
Moreover, if W = Im(L), then L ◦ L−1 is the identity on W .

If (~v1, · · · , ~vn) is a basis for V and (~w1, · · · , ~wm) is a basis for W , then a
linear map from V to W can be described by a matrix M with m rows and
n columns. Letting Mi,j denote the entry on row i and column j of M , we
define the entries of M by considering the unique decomposition of each L(~vi)
as a sum:

L(~vi) =
m∑
j=1

Mi,j ~wj . (2.57)

With this representation, composition of linear maps can be computed using
matrix multiplication.

Linear maps from V to K are called linear forms. The set of all linear forms
on V is a vector space over K, called the dual space of V . The dual of V has
the same dimension as V .

Both for matrices and for linear maps from a vector space to itself, it is
possible to define a deep mathematical invariant called the determinant, e.g.,
see [Lan05, Chapter XIII]. The determinant is non-zero, if and only if, the
matrix or linear map is invertible. Moreover, the determinant of the product

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 63

of two matrices or of the composition of two maps is equal to the product of
the determinants. The computation of determinants is described in Chapter 3.

2.7 The RSA and Diffie-Hellman cryptosystems

To conclude this chapter, we use the number theory to briefly recall the
description of the RSA and Diffie-Hellman cryptosystems.

2.7.1 RSA

The system of Rivest, Shamir and Adleman (RSA) is based on the structure
of the multiplicative group Z/NZ, when N is the product of two large primes
p and q. After choosing p and q, we also choose an encryption exponent e
coprime to φ(N) and let d denote the inverse of e modulo φ(N). Thus, we
have ed = 1 + λφ(N) for some integer λ.

Since φ(N) = (p − 1)(q − 1), we know that for all integers 0 < x < N,
coprime with N , we have xφ(N) = 1 (mod N). As a consequence:

xed = x1+λφ(N) = x · (xφ(N))λ = x (mod N). (2.58)

This shows that the two maps:

x→ xe (mod N) and
x→ xd (mod N)

are inverses of each other in the group (Z/NZ)∗. We leave it as an exercise to
the reader to show that the two maps are inverses of each other everywhere in
Z/NZ. Note that this is not really needed for the RSA cryptosystem. Indeed,
we may assume that no one ever encrypts an integer 0 < x < N not coprime
to N , since that would essentially reveal the factorization of N . We may also
assume that no one ever encrypts 0, since it is a weak message for RSA.

RSA as a whole is an efficient system for the following reasons:

• RSA modulus can be efficiently constructed. Indeed, to construct RSA
modulus, we need the ability to pick large prime at random. This can be
done easily, thanks to the efficient primality testing algorithm described
in Section 2.3.2. Note that many practical implementations of RSA key
do not choose large primes uniformly at random in a specified interval,
instead, the start from a random number in the interval and find the next
prime after this number. Since primes are non-uniformly distributed,
this procedure favors primes which are far apart from their immediate
predecessor. However, RSA numbers of this type are not easier to factor

© 2009 by Taylor and Francis Group, LLC

64 Algorithmic Cryptanalysis

than ordinary RSA numbers and no attack is known against this non-
uniform generation.

• Computing decryption exponents is easy and results from a simple ap-
plication of Euclid’s algorithm.

• The RSA encryption and decryption permutations are, givenN and e (or
d), efficiently computed. If suffices to use a fast modular exponentiation
algorithm such as Algorithms 2.9 or 2.10.

From the security point-of-view, it is clear that RSA can be completely broken
using a modular e-th root algorithm. However, at the present time, the only
known approach to compute arbitrary e-th roots without external help, i.e.,
given only N and e, is to factor N and then to proceed as the private key
owner. Note that, the knowledge of both e and d can be used to compute a
multiple of φ(N) and, as shown in Section 2.3.3.1, this multiple can be used
to recover the factorization of N . For these reasons, it is usually said that the
security of RSA relies on the hardness of factoring N .

In the above paragraph, the words “arbitrary” and “external help” are es-
sential to the link between factoring and the security of RSA. Concerning
“arbitrary,” we see that since RSA encryption is deterministic, it is easy to
decrypt a value x chosen from a small subset, simply by enumerating pos-
sible encryptions. A more advanced attack, described in Chapter 8 allows
to decrypt x efficiently, with a non-negligible probability of success, when it
belongs to a small interval. Concerning “external help,” let us remark that
plain RSA does not resist chosen ciphertext attacks, i.e., given access to a
RSA decryption box, it is also possible to decrypt messages not submitted to
the box. This is based on an essential property of RSA, which is not shared
by trapdoor one-way permutations in general: its multiplicativity. By multi-
plicativity of RSA, we simply mean that given x and y in Z/NZ the following
relation is satisfied:

(xy)e = xe · ye (mod N). (2.59)

To realize a chosen ciphertext attack, the attacker receives a value z and tries
to compute x = zd (mod N) without submitting this value to the decryption
box. He chooses a random element r in Z/NZ∗ and computes z1 = zre

(mod N). Sending z1 to the decryption box, he receives a value x1 such that
x1 = xr (mod N). Thus, a modular division by r suffices to recover x.

Despite these attacks, the multiplicativity of RSA is not necessarily a bad
thing. Indeed, it can also be used constructively. In particular, homomorphic
encryption based on RSA or on similar computations, such as the Paillier’s
cryptosystem [Pai99], explicitly requires multiplicativity. Moreover, general
methods have been devised to use RSA securely, both for signature, such as
the full domain hash and probabilistic signature schemes of [BR96], and for
encryption, such as the optimal asymmetric encryption scheme of [BR94].

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 65

2.7.2 Diffie-Hellman key exchange

Let K be any finite field and let g be a generator of a subgroup of K∗ of
order q, preferably prime. In order to create a common secret, two users A
and B proceed as follows:

• Each user chooses a random integer in the range [0, q − 1], a for user A
and b for user B, and raises g to this power.

• Then A sends ga to B and B sends gb to A.

• Upon reception A computes (gb)a and B computes (ga)b. Clearly, these
two elements of K are equal and their common value is gab, where ab is
computed modulo q.

• Finally, A and B extract their common secret from gab. Two frequently
encountered approaches are to extract a few bits from the binary rep-
resentation of gab or, alternatively, to use a hash value of gab. This last
option is often used in proofs that rely on the random oracle model.

From a security point-of-view, an algorithm that could solve computational
Diffie-Hellman, i.e., compute gab given ga an gb, but not a or b, would com-
pletely break Diffie-Hellman key exchange. At the present time, this only
known general algorithm, involves computing discrete logarithms, i.e. recover-
ing a or b. Computations of discrete logarithms are discussed in Chapters 6, 7
and 15.

Note that the Diffie-Hellman key exchange algorithm is not secure against
active attackers. The simplest attack is probably to substitute ga and gb by 1
during transmission. After this tampering, A computes 1a = 1 as its common
key andB computes 1b = 1 as its common key. Since the two users end up with
the same key, the communication may proceed without problem. After that
initial tampering, the attacker knows the common secret 1. As a consequence,
he just needs to eavesdrop on the remainder of the communication. Of course,
this can be avoided by excluding 0 from the allowed range of a and b and by
aborting if the incoming value is a 1.

Another well-known active attack against Diffie-Hellman key exchange is
the man-in-the-middle attack. Here, the attacker breaks the communication
link between A and B. Afterwards, he communicates with A pretending to
be B and with B pretending to be A. On each side, he participates in a
copy of the Diffie-Hellman key exchange. After that, the attacker plays the
role of a proxy between A and B, he decrypts with one common key any
incoming message, reencrypts it with the other key and, finally, forwards the
message. As a consequence, he listens to the whole communication. Neither
A and B can detect the man-in-the-middle attack, unless some external mean
of authentication is used.

© 2009 by Taylor and Francis Group, LLC

66 Algorithmic Cryptanalysis

Non interactive Diffie-Hellman

The Diffie-Hellman key exchange algorithm can be used as a hybrid cryp-
tosystem in a very simple way. Each user simply needs to choose a pair (x, gx)
as in the Diffie-Hellman key exchange algorithm. However, instead of choosing
a new pair for each run of the protocol, he keeps it fixed. As a consequence,
x becomes the user’s private key and gx his public key. With this change,
it becomes possible to exchange a secret in a non-interactive fashion. When
a user wants to initiate a communication, he chooses a random value r and
compute gr. Then, considering that the public key of the intended recipient
as the other party contribution to this run of the protocol, he can derive a
common secret grx and, finally, extracting a key from this common secret, he
can encrypt the message he wants to transmit using a secret key cryptosys-
tem. Attaching gr to the encrypted message allows the recipient to recover
grx and decrypt.

ElGamal encryption [ElG85] is a variant that encrypts by multiplying grx

with a message m consisting of a number in Fp. As RSA, it suffers from
several weaknesses related to multiplicativity, for an example see Chapter 8.

Zero-knowledge proofs of discrete logarithms

Once a user has a public key gx, he can use it to prove his identity. Of course,
this should be done without revealing the secret key x. An ideal tool for this
purpose is the notion of zero-knowledge proof [GMR89], which formally defines
the meaning of proving that x is known, without giving away information on
x. For discrete logarithm, there is a simple and efficient protocol that achieves
this. Assuming that the system parameters, i.e., the prime p and an element
g of prime order q, are known and that the prover wants to prove knowledge
of x such that Y = gx (mod p), the protocol proceeds as follows:

• The prover chooses a random number r in the range [0, q − 1] and an-
nounces R = gr mod p.

• The verifier chooses a random number c in the range [0, q − 1], called
the challenge and sends it to the prover.

• The prover computes u = (r + cx) mod q and sends it to the verifier.

• The verify checks that gu = R ·Y c (mod p) and, if so, accepts the proof.

It is easy to check that an honest prover, who knowns x and follows the
protocol correctly always successfully convinces the verifier. Moreover, if, for
a fixed value of R, a prover can give convincing answers u and u′ for two
different challenges c and c′, he can recover x by remarking that (u′ − u) =
(c′ − c)x (mod q). As a consequence, a cheating prover, i.e., someone who
does not know x and tries to run the protocol as prover, has at most 1 chance
out of q to succeed. This probability is so low that it can be ignored for
all practical purposes. This proof is zero-knowledge because a verifier can

© 2009 by Taylor and Francis Group, LLC

Elementary number theory and algebra background 67

produce a convincing copy of a legitimate proof, by first choosing the challenge
c, the answer u and then by computing R as gu · Y −c (mod p). Using this
method, the verifier is able to simulate the prover on the single challenge c
(for the value R) and this fake proof cannot be distinguished from a real one
by a third party.

In cryptography, such knowledge proofs are often used as authentication
protocols.

Signature based on discrete logarithm

The above zero-knowledge proof is easy to transform into a signature by
replacing the interaction with the verifier by the output of a hash function H.
Assuming that H is a random oracle with output in [0, q−1], the simplest way
is to use Schnorr’s signature [Sch90] and let c = H(R,M), where R = gr is
produced by the signer and M is the message to be signed. After computing
u, the pair (R, u) becomes a signature for M . There are several possible
variations of this idea, including ElGamal’s signature [ElG85] and NIST digital
signature algorithm.

© 2009 by Taylor and Francis Group, LLC

Part II

Algorithms

© 2009 by Taylor and Francis Group, LLC

Chapter 3

Linear algebra

Linear algebra is a widely used tool in computer science and cryptography is
no exception to this rule. One notable difference is that in cryptography and
cryptanalysis, we mostly consider linear algebra over finite fields (or sometimes
rings). Compared to linear algebra over real or complex numbers, there are
two essential changes. One for the best: no stability problems can occur; one
for the worst: the notion of convergence is no longer available. This makes
linear algebra in cryptanalysis quite different from linear algebra for scientific
computing. The reader interested in the scientific computing aspect of linear
algebra may refer to [GL96].

3.1 Introductory example: Multiplication of small ma-
trices over F2

In order to illustrate the specificities of the linear algebra problem encoun-
tered in cryptography, we first consider the multiplication of small matrices
over the finite field F2. More precisely, we show how to optimize the imple-
mentation of the basic matrix multiplication Algorithm 3.1, directly derived
from the mathematical definition of matrix multiplication, when multiplying
Boolean matrices. We especially consider matrices of size 32× 32, 64× 64 or
128× 128. The natural idea that first comes to mind is to directly follow the
algorithm description and write the simple Program 3.1. As written, it works
on 32×32 matrices, but this can be easily changed by defining DIM differently.

One important drawback of this elementary implementation is that it wastes
memory. Indeed, each matrix entry is represented by a full integer. This is
clearly suboptimal, since a single bit would suffice. This waste can be re-
duced by encoding the entries using shorter integers. However, even using
8-bit integers (the C type char) is already costly in terms of memory. As
a consequence, before trying to improve the code running time, we replace
the matrix representation by an optimal representation where several bits are
packed into a single integer. With 32-bit integers, this is extremely well-suited
to represent square matrices whose dimension is a multiple of 32. On comput-

71

© 2009 by Taylor and Francis Group, LLC

72 Algorithmic Cryptanalysis

Algorithm 3.1 Elementary square matrix multiplication
Require: Input n× n matrices M and N

Create n× n matrix R initialized to 0
for l from 1 to n do

for c from 1 to n do
for k from 1 to n do
R[l, c]←− (R[l, c] +M [l, k] ·N [k, c]) mod 2

end for
end for

end for
Output R

ers that offer larger 64- or 128-bit integers, matrices’ dimension divisible by 64
or 128 are a natural choice. In particular, many recent processors have spe-
cial instructions to work with such extended integers, interested readers may
refer to Figure 3.1. Assuming 32-bit words, we are going to focus on 32× 32
matrices. Changing the memory representation and using logical operations
to compute arithmetic modulo 2 (logical AND for multiplication and XOR
for addition) yields the code of Program 3.2. In order to access the individ-
ual elements of the matrices in each line, the program uses two preprocessors
macros. The first macro bit(M,l,c) extracts the bit in line l and column c
of the matrix M under the convention that each line of the matrix is stored in
an unsigned integer of the correct size. The second macro flipbit(M,l,c)
flips the value of the bit from 0 to 1 or from 1 to 0. We do not give a macro
for writing a value into a specific bit, since flipping bits is sufficient for our
purpose, easier to write and faster to execute.

In order to improve the matrix multiplication algorithm and compare the
performance of various implementations, we need a reliable way of measuring
the running times. Since the time for performing a single multiplication is
negligible compared to the time of starting the program and reading the input
matrices, it is useful to add a loop in order to repeat the multiplication a large
number of times, say 100,000 times.

Our first optimization comes from an improvement of the binary scalar
product of two 32-bit words. Instead of using a loop to extract one bit posi-
tion from each word, multiply these bits together and add up the products,
we remark that all the multiplications can be performed in parallel using a
single wordwise logical AND of integers. Moreover, adding up the products
requires a smaller number of XOR than initially expected. The key idea is
to XOR the upper and lower halves of a word. This performs 16 additions
in parallel using a single XOR and can be viewed as folding the word in two.
Folding again, we perform 8 additions and obtain an intermediate result on
a single byte. After three more folds, we end up with the expected result
on a single bit. Clearly, since a matrix multiplication consists of computing

© 2009 by Taylor and Francis Group, LLC

Linear algebra 73

Program 3.1 Basic C code for matrix multiplication over F2

#include <stdio.h>
#include <stdlib.h>
#define DIM 32

void input_mat(int mat[DIM][DIM])
{
int l,c;
for (l=0;l<DIM;l++) {
for (c=0;c<DIM;c++) {
scanf("%d",&mat[l][c]); } } }

void print_mat(int mat[DIM][DIM])
{
int l,c;
for (l=0;l<DIM;l++) {
for (c=0;c<DIM;c++) {
printf("%d ",mat[l][c]); }

printf("\n"); } }

void Mul(int res[DIM][DIM],
int mat1[DIM][DIM], int mat2[DIM][DIM])
{
int l,c,k;
for (l=0;l<DIM;l++) {
for (c=0;c<DIM;c++) { res[l][c]=0;
for (k=0;k<DIM;k++) {
res[l][c]+=mat1[l][k]*mat2[k][c];

}
res[l][c]%=2; } } }

main()
{
int mat1[DIM][DIM]; int mat2[DIM][DIM];
int mat3[DIM][DIM]; int count;
printf("Input Mat1\n"); input_mat(mat1);
printf("Input Mat2\n"); input_mat(mat2);
for (count=0;count<100000;count++) Mul(mat3,mat1,mat2);
printf("Product :\n"); print_mat(mat3);

}

© 2009 by Taylor and Francis Group, LLC

74 Algorithmic Cryptanalysis

Program 3.2 Matrix multiplication over F2 with compact encoding
#include <stdio.h>
#include <stdlib.h>
#define DIM 32
#define WORD unsigned int
#define bit(M,l,c) ((M[l]>>c)&1)
#define flipbit(M,l,c) if (1) {M[l]^=(1UL<<c);} else

void input_mat(WORD mat[DIM])
{
int l,c,val;
for (l=0;l<DIM;l++) {
mat[l]=0;
for (c=0;c<DIM;c++) {
scanf("%d",&val);
if (val) flipbit(mat,l,c); } } }

void print_mat(WORD mat[DIM])
{
int l,c;
for (l=0;l<DIM;l++) {
for (c=0;c<DIM;c++) {
printf("%d ",bit(mat,l,c)); }

printf("\n"); } }

void Mul(WORD res[DIM],WORD mat1[DIM],WORD mat2[DIM])
{
int l,c,k,val;
for (l=0;l<DIM;l++) {
res[l]=0;
for (c=0;c<DIM;c++) {
val=0;
for (k=0;k<DIM;k++) {
val^=bit(mat1,l,k)&bit(mat2,k,c); }

if (val) flipbit(res,l,c); } } }

main()
{
WORD mat1[DIM]; WORD mat2[DIM]; WORD mat3[DIM]; int count;
printf("Input Mat1\n"); input_mat(mat1);
printf("Input Mat2\n"); input_mat(mat2);
for(count=0; count<100000; count++) Mul(mat3,mat1,mat2);
printf("Product :\n"); print_mat(mat3);

}

© 2009 by Taylor and Francis Group, LLC

Linear algebra 75

Recent microprocessors are becoming more and more powerful and manufac-
turers use this additional power to enrich the functionalities of processors.
MMX and SSE instructions have been introduced as part of this process.
They allow to compute on 64-bit and 128-bit specific registers. The ad-
vantage of these instructions, when optimizing programs, is twofold. First,
these instructions compute faster than ordinary microprocessor instructions.
Second, since these instructions operate on specific registers rather than on
the main registers, they are extremely useful for codes which require many
registers. For example, the bitslice technique, described in Chapter 5, re-
quires a large number of registers and MMX or SSE instructions are very
useful in this case.
One important caveat is that MMX or SSE registers share their storage area
with floating point registers. As a consequence, both types of instruction
cannot be interleaved within a program and when starting a sequence of
MMX or SSE instructions or a sequence of floating point instructions, the
storage area needs to be cleared by using a specific instruction called EMMS.
Otherwise, we get either unpredictable results or unwanted errors.
MMX and SSE operations can view the specific registers in several ways.
For example, a 64-bit MMX register can be considered either as eight bytes,
four 16-bit words or two 32-bit words, optionally using saturated arithmetic
of signed or unsigned kind. There are instructions to add in parallel eight
bytes, four 16-bit words or two 32-bit words. SSE registers can also contain
these different types of contents; however, they contain twice as many of
each. One notable exception, which is very useful for cryptographic purposes,
concerns logical operations. Indeed, performing a logical AND, OR or XOR
on eight bytes or on two 32-bit words yields the same result. Thus, for logical
operations, it is not necessary to have three different types.
At the present time, with the GCC compiler, MMX and SSE operations can
only be used in C programs by using a specific mean of inlining assembly
code. The easiest way probably is to use the definitions from the include files
mmintrin.h, emmintrin.h, pmmintrin.h, tmmintrin.h and xmmintrin.h.
This files defines two new data types m64 for 64-bits MMX registers and
m128 for 128-bits SSE registers. These special data types can be operated

on using specific operations. A few of these operations are listed below.
Instruction name Functionality Data type
mm empty Reset storage area None
mm add pi16 Addition Four 16-bit words
mm sub pi8 Subtraction Eight bytes
mm xor pd XOR 128-bit word

Figure 3.1: MMX and SSE instructions

© 2009 by Taylor and Francis Group, LLC

76 Algorithmic Cryptanalysis

the scalar products of lines with columns, this can be very useful. Since in
our representation words are used to encode lines, we first need to extract
columns from the representation of the second matrix and encode them back
into another integer. The multiplication subroutine thus obtained is given as
Program 3.3.

Program 3.3 Matrix multiplication using fast scalar product
void Mul(WORD res[DIM], WORD mat1[DIM], WORD mat2[DIM])
{
int l,c,k;
WORD val,mask;
for (l=0;l<DIM;l++) res[l]=0;
for (c=0;c<DIM;c++) { mask=0;
for (k=0;k<DIM;k++) {
mask^=(bit(mat2,k,c)<<k); }

for (l=0;l<DIM;l++) {
val=mat1[l]&mask;
val^=(val>>16); val^=(val>>8);
val^=(val>>4); val^=(val>>2);
val^=(val>>1);
if (val&1) flipbit(res,l,c);

}
}

}

In order to further improve this code, we are going to modify two parts of
the program. The first modification replaces the extraction of columns from
the second matrix by a faster approach. Since we need all the columns of this
matrix, we are, in truth, computing the transpose of this matrix. Thus, our
modification consists of writing a fast transpose procedure and applying it
before calling the matrix multiplication. The second modification is to speed
up the slow part of the scalar product. Clearly, when performing the scalar
products, the multiplication part is optimal since we compute 32 parallel bit
multiplications using the logical AND on 32-bit words. However, the addition
part is suboptimal, we need five folds to compute a single bit. This can be
improved by remarking that the second fold only uses 16 bits out of 32, the
third only 8 bits and so on. . . Thus, it is possible to share the logical AND
operations between several folds thus computing several bits of the resulting
matrix at once.

Let us start by improving matrix transposition. In order to do this, we view
the original matrix as a 2× 2 block matrix. Transposing this matrix, we find

© 2009 by Taylor and Francis Group, LLC

Linear algebra 77

that:
>(

A B
C D

)
=
(>A >C
>B >D

)
.

Using the above remark, transposing a 32 × 32 matrix can be done in five
steps. The first step exchanges the upper right and lower left 16×16 matrices.
The second step performs a similar exchange on four pairs of 8× 8 matrices.
Then 16 pairs of 4×4 matrices, followed by 64 pairs of 2×2 matrices and finally
256 pairs of 1 × 1 matrices are exchanged. By using logical operations and
shifts, each of these steps costs a small number of operations per line. From
an asymptotic point-of-view 2t × 2t matrices can be transposed in O(t 2t)
operations on 2t-bit words, instead of 22t operations for the basic algorithm.
The transposition C code for 32 matrices is given as Program 3.4. Note the
constants defined at the beginning of the program which are defined in order
to extract the bits contained in the submatrices that need to be exchanged at
each step.

Improving the additions during the scalar product multiplication is done in
a similar way. The first fold is performed as before, since it uses up full words.
The second fold regroups the computation of 2 second stage folds in a single
operation, the third fold regroups 4 third stage folds, and so on. This allows
us to compute 32 bits using a total of 63 elementary fold operations, thus
the amortized cost is less than two operations per bit, instead of five in the
previous approach. The corresponding code for matrix multiplication makes
use of the fast transposition Program 3.4 and is included as Program 3.5. To
illustrate the technique, the inner loops have been partially unrolled.

In order to compare the practical performance of these algorithms, we give
in Table 3.1 a sample of running times on a laptop computer, with each
program compiled using gcc’s -O3 option. These timings are given using 3
different versions of gcc. They clearly illustrate that low-level optimization
are not only machine dependent, but also deeply rely on the specific compiler
being used. For example, the loop unrolling in Program 3.5 improves the
running time with gcc 4.0.1 but makes it worse for the other two versions.
With gcc 4.3.2, Programs 3.1 and 3.5 illustrate the fact that this compiler
version can vectorize some programs using MMX and SSE instructions (see
Figure 3.1).

3.2 Dense matrix multiplication

The complexity of matrix multiplication is a very important and difficult
problem in computer science. Indeed, the complexity of many important
linear algebra problems can be reduced to the complexity of matrix multipli-
cation. As a consequence, improving matrix multiplication is a key problem.

© 2009 by Taylor and Francis Group, LLC

78 Algorithmic Cryptanalysis

Program 3.4 Fast transposition of 32× 32 matrices over F2

#define DIM 32
#define Cst16 0xffff
#define Cst8 0xff00ff
#define Cst4 0xf0f0f0f
#define Cst2 0x33333333
#define Cst1 0x55555555

void Transpose(WORD transp[DIM], WORD mat[DIM])
{
int l,c,l0,l1;
WORD val1,val2;
for (l=0;l<DIM/2;l++) {
transp[l]=(mat[l]&Cst16)|((mat[l+(DIM/2)]&Cst16)<<16);
transp[l+(DIM/2)]=((mat[l]>>16)&Cst16)|

(mat[l+(DIM/2)]&(Cst16<<16));
}
for(l0=0;l0<2;l0++)
for (l1=0;l1<DIM/4;l1++) {
l=l0*(DIM/2)+l1;
val1=(transp[l]&Cst8)|((transp[l+(DIM/4)]&Cst8)<<8);
val2=((transp[l]>>8)&Cst8)|(transp[l+(DIM/4)]&(Cst8<<8));
transp[l]=val1; transp[l+(DIM/4)]=val2;

}
for(l0=0;l0<4;l0++)
for (l1=0;l1<DIM/8;l1++) {
l=l0*(DIM/4)+l1;
val1=(transp[l]&Cst4)|((transp[l+(DIM/8)]&Cst4)<<4);
val2=((transp[l]>>4)&Cst4)|(transp[l+(DIM/8)]&(Cst4<<4));
transp[l]=val1; transp[l+(DIM/8)]=val2;

}
for(l0=0;l0<8;l0++)
for (l1=0;l1<DIM/16;l1++) {
l=l0*(DIM/8)+l1;
val1=(transp[l]&Cst2)|((transp[l+(DIM/16)]&Cst2)<<2);
val2=((transp[l]>>2)&Cst2)|(transp[l+(DIM/16)]&(Cst2<<2));
transp[l]=val1; transp[l+(DIM/16)]=val2;

}
for (l=0;l<DIM;l+=2) {
val1=(transp[l]&Cst1)|((transp[l+1]&Cst1)<<1);
val2=((transp[l]>>1)&Cst1)|(transp[l+1]&(Cst1<<1));
transp[l]=val1; transp[l+1]=val2;

}
}

© 2009 by Taylor and Francis Group, LLC

Linear algebra 79

Program 3.5 Faster scalar product for multiplying of 32× 32 matrices
void Mul(WORD res[DIM], WORD mat1[DIM], WORD mat2[DIM]) {
int l,c,k; WORD transp[DIM]; WORD tmp[DIM]; WORD val;
Transpose(transp,mat2);
for (l=0;l<DIM;l++) {
for (c=0;c<DIM;c+=4) {
val=mat1[l]&transp[c];
val^=(val>>16); val&=Cst16;
tmp[c]=val;
val=mat1[l]&transp[c+1];
val^=(val>>16); val&=Cst16;
tmp[c+1]=val;
val=mat1[l]&transp[c+2];
val^=(val>>16); val&=Cst16;
tmp[c+2]=val;
val=mat1[l]&transp[c+3];
val^=(val>>16); val&=Cst16;
tmp[c+3]=val; }

for (c=0;c<DIM/2;c+=4) {
val=tmp[c]|(tmp[c+(DIM/2)]<<(DIM/2));
tmp[c]=(val&Cst8)^((val>>(DIM/4))&Cst8);
val=tmp[c+1]|(tmp[c+1+(DIM/2)]<<(DIM/2));
tmp[c+1]=(val&Cst8)^((val>>(DIM/4))&Cst8);
val=tmp[c+2]|(tmp[c+2+(DIM/2)]<<(DIM/2));
tmp[c+2]=(val&Cst8)^((val>>(DIM/4))&Cst8);
val=tmp[c+3]|(tmp[c+3+(DIM/2)]<<(DIM/2));
tmp[c+3]=(val&Cst8)^((val>>(DIM/4))&Cst8); }

for (c=0;c<DIM/4;c+=2) {
val=tmp[c]|(tmp[c+(DIM/4)]<<(DIM/4));
tmp[c]=(val&Cst4)^((val>>(DIM/8))&Cst4);
val=tmp[c+1]|(tmp[c+1+(DIM/4)]<<(DIM/4));
tmp[c+1]=(val&Cst4)^((val>>(DIM/8))&Cst4); }

for (c=0;c<DIM/8;c+=2) {
val=tmp[c]|(tmp[c+(DIM/8)]<<(DIM/8));
tmp[c]=(val&Cst2)^((val>>(DIM/16))&Cst2);
val=tmp[c+1]|(tmp[c+1+(DIM/8)]<<(DIM/8));
tmp[c+1]=(val&Cst2)^((val>>(DIM/16))&Cst2); }

val=tmp[0]|(tmp[2]<<2);
tmp[0]=(val&Cst1)^((val>>1)&Cst1);
val=tmp[1]|(tmp[3]<<2);
tmp[1]=(val&Cst1)^((val>>1)&Cst1);
val=tmp[0]|(tmp[1]<<1);
res[l]=val; } }

© 2009 by Taylor and Francis Group, LLC

80 Algorithmic Cryptanalysis

Program Runtime (100,000 mult.)
gcc 4.0.1 gcc 4.2.1 gcc 4.3.2

3.1 9.01 s 8.16 s 3.68 s
3.2 8.09 s 12.51 s 12.39 s
3.3 1.38 s 1.38 s 1.30 s
3.5 0.32 s 0.38 s 0.27 s
3.5 without loop unrolling 0.38 s 0.24 s 0.11 s

Table 3.1: 32× 32 Boolean matmul. on Intel Core 2 Duo at 2.4 GHz

Asymptotically, the basic Algorithm 3.1 multiplies n × n matrices in time
O(n3). In the other direction, we have a trivial lower bound of the running
time of matrix multiplication: O(n2) which is the time to read the input ma-
trices and/or write the result. The first matrix multiplication that beats n3

complexity was proposed in 1969 by Volker Strassen. After that initial step,
several further asymptotic improvements were proposed; they are discussed
in Section 3.2.2.

Throughout the current section, we focus on matrices represented by a
dense array of coefficients. Matrices with sparse encoding are discussed in
Section 3.4. We consider the complexity of matrix multiplication, detail many
practical aspects of matrix multiplication algorithms, overview some asymp-
totic complexity results and show the relation between matrix multiplication
and other linear algebra problems.

3.2.1 Strassen’s algorithm

The first matrix multiplication with asymptotic complexity better than n3

of Strassen [Str69] is a divide-and-conquer algorithm built on a “magic” recipe
for multiplying 2×2 matrices. The ordinary formula for 2×2 matrices requires
8 multiplications and 4 additions. Strassen’s formula requires 7 multiplica-
tions and 18 additions. For 2 × 2 matrices, this costs more than the usual
algorithm; however, for large 2n × 2n matrices, we need 7 multiplications of
n×n matrices and 18 additions. Since matrices can be added together in time
quadratic in n, the contribution of the additions to the asymptotic complexity
is negligible and the analysis focuses on the number of multiplications. We see
that the running time T (n) of Strassen algorithm as a function of n satisfies
a recurrence formula:

T (2n) = 7 · T (n) +O(n2)

and conclude that T (n) = nlog 7/ log 2 ≈ n2.807.

© 2009 by Taylor and Francis Group, LLC

Linear algebra 81

Strassen’s formula for multiplying M =
(
a b
c d

)
by M ′ =

(
a′ b′

c′ d′

)
are:

P1 = (a+ c) · (a′ + b′), (3.1)
P2 = (b+ d) · (c′ + d′),
P3 = (b+ c) · (c′ − b′),
P4 = c · (a′ + c′),
P5 = b · (b′ + d′),
P6 = (c− d) · c′,
P7 = (a− b) · b′ and

M ·M ′ =
(
P1 + P3 − P4 − P7 P5 + P7

P4 − P6 P2 − P3 − P5 + P6

)
.

Note that another set of formulas with as many multiplications but fewer
additions was later proposed as an alternative by Winograd and described
further on in this section. To transform the formulas of Strassen into a matrix
multiplication algorithm, the basic idea is to use a recursive algorithm that
multiplies matrices using seven recursive calls to itself on matrices of half
size. The problem is that while this approach works very well for matrices
whose dimensions are powers of two, it needs to be modified to deal with
matrices which do not obey this restriction. From a theoretical point-of-view,
the easiest way to multiply n× n matrices is to embed them within matrices
of dimension 2t× 2t with the smallest possible value of t such that 2t ≥ n. In
the worst case, this embedding doubles the dimension of the matrix and thus
this only affects the constant factor in the runtime complexity O(nlog2 7), not
the exponent. However, from a practical point-of-view, it is better to deal
with the difficulty progressively throughout the algorithm rather than once
and for all at the beginning. To multiply matrices of even dimensions, we use
a direct recursion. To multiply matrices of odd dimensions, we need to deal
with the imperfect split. Two methods are possible, we can round the size
of the half-size matrices either up or down. To round up, it suffices to add
bordering zeros to increase the size of the original matrix. To round down,
we use the ordinary matrix multiplication formulas to deal with the extra line
and column. The two methods are respectively presented as Algorithms 3.2
and 3.3.

Practical aspects of Strassen’s multiplication

When implementing Strassen’s algorithm, it is clearly better to have a cutoff
point and to turn back to ordinary matrix multiplication for small matrices,
thus aborting the recursion earlier. Indeed, for small matrices, the overhead
of dividing and reassembling the matrices dominates the running time. In this
section, we give some explicit data comparing ordinary matrix multiplication
with Strassen’s multiplication for some typical matrices. This data is far from

© 2009 by Taylor and Francis Group, LLC

82 Algorithmic Cryptanalysis

Algorithm 3.2 Strassen matrix multiplication (rounding up)
Require: Input n× n matrices M and N

if n = 1 then
Return a 1× 1 matrix with entry M [1, 1] ·N [1, 1]

end if
Let h1 ←− dn/2e
Let n1 ←− 2h1

If needed, add zeros to expand M and N into n1 × n1 matrices
Create R a n1 × n1 matrix with zero entries
Create a h1 × h1 matrix M1, with M1[i, j] = M [i, j] +M [h1 + i, j]
Create a h1 × h1 matrix N1, with N1[i, j] = N [i, j] +N [i, h1 + j]
Recursively compute R1 = M1 ·N1

Add R1 to upper left quadrant of R, i.e., R[i, j]+ = R1[i, j]
Create a h1×h1 matrix M2, with M2[i, j] = M [i, h1 + j] +M [h1 + i, h1 + j]
Create a h1 × h1 matrix N2, with N2[i, j] = N [h1 + i, j] +N [h1 + i, h1 + j]
Recursively compute R2 = M2 ·N2

Add R2 to lower right quadrant of R, i.e., R[h1 + i, h1 + j]+ = R2[i, j]
Create a h1 × h1 matrix M3, with M3[i, j] = M [i, h1 + j] +M [h1 + i, j]
Create a h1 × h1 matrix N3, with N3[i, j] = N [h1 + i, j]−N [i, h1 + j]
Recursively compute R3 = M3 ·N3

Add R3 to upper left quadrant of R, i.e., R[i, j]+ = R3[i, j]
Subtract R3 from lower right quadrant of R, i.e., R[h1+i, h1+j]− = R3[i, j]
Create a h1 × h1 matrix M4, with M4[i, j] = M [h1 + i, j]
Create a h1 × h1 matrix N4, with N4[i, j] = N [i, j] +N [h1 + i, j]
Recursively compute R4 = M4 ·N4

Subtract R4 from upper left quadrant of R, i.e., R[i, j]− = R4[i, j]
Add R4 to lower left quadrant of R, i.e., R[h1 + i, j]+ = R4[i, j]
Create a h1 × h1 matrix M5, with M5[i, j] = M [i, h1 + j]
Create a h1 × h1 matrix N5, with N5[i, j] = N [i, h1 + j] +N [h1 + i, h1 + j]
Recursively compute R5 = M5 ·N5

Add R5 to upper right quadrant of R, i.e., R[i, h1 + j]+ = R5[i, j]
Subtract R5 from lower right quadrant of R, i.e., R[h1+i, h1+j]− = R5[i, j]
Create a h1×h1 matrix M6, with M6[i, j] = M [h1 + i, j]−M [h1 + i, h1 + j]
Create a h1 × h1 matrix N6, with N6[i, j] = N [h1 + i, j]
Recursively compute R6 = M6 ·N6

Add R6 to lower right quadrant of R, i.e., R[h1 + i, h1 + j]+ = R6[i, j]
Subtract R6 from lower left quadrant of R, i.e., R[h1 + i, j]− = R6[i, j]
Create a h1 × h1 matrix M7, with M7[i, j] = M [i, j]−M [i, h1 + j]
Create a h1 × h1 matrix N7, with N7[i, j] = N [i, h1 + j]
Recursively compute R7 = M7 ·N7

Add R7 to upper right quadrant of R, i.e., R[i, h1 + j]+ = R7[i, j]
Subtract R6 from upper left quadrant of R, i.e., R[i, j]− = R7[i, j]
Return the upper left n× n submatrix of R

© 2009 by Taylor and Francis Group, LLC

Linear algebra 83

Algorithm 3.3 Strassen matrix multiplication (rounding down)
Require: Input n× n matrices M and N

if n = 1 then
Create R a 1× 1 matrix with entry M [1, 1] ·N [1, 1]
Return R

end if
Let h1 ←− bn/2c
Let n1 ←− 2h1

Create R a n1 × n1 matrix with zero entries
Prepare, perform and post-process 7 recursive calls as in Algorithm 3.2
if n is odd then

Redefine R as n× n.
for i from 1 to n1 do

for j from 1 to n1 do
Let R[i, j]←− R[i, j] +M [i, n] ·N [n, j]

end for
end for
for i from 1 to n1 do

Let R[i, n]←−
∑n
k=1M [i, k] ·N [k, n]

Let R[n, i]←−
∑n
k=1M [n, k] ·N [k, i]

end for
Let R[n, n]←−

∑n
k=1M [n, k] ·N [k, n]

end if
Return n× n matrix of R

© 2009 by Taylor and Francis Group, LLC

84 Algorithmic Cryptanalysis

Winograd’s formulas for multiplying 2 × 2 matrices also re-
quire 7 multiplications, as in Strassen’s algorithm, but only
15 additions. Using the same notations, to multiply M by
M ′, the formulas are:

S1 = c+ d, S2 = S1 − a,
S3 = a− c, S4 = b− S2,

S5 = b′ − a′, S6 = d′ − S5,

S7 = d′ − b′, S8 = S6 − c′,
Q1 = S2 · S6, Q2 = a · a′,
Q3 = b · c′, Q4 = S3 · S7,

Q5 = S1 · S5, Q6 = S4 · d′,
Q7 = d · S8,

T1 = Q1 +Q2, T2 = T1 +Q4 and

M ·M ′ =
(
Q2 +Q3 T1 +Q5 +Q6

T2 −Q7 T2 +Q5

)
.

Figure 3.2: Winograd’s formulas for matrix multiplication

exhaustive and is here simply to highlight some unexpected technical details
that arise when implementing matrix multiplication. We consider two cases
of matrix multiplication which are cryptographically relevant. One case uses
multiplication of machine size integers and to avoid overflows when multiply-
ing numbers, we chose to work in Fp, where p = 46337 is the largest prime
such that 2p2 fits in an unsigned number on 32 bits. The second case mul-
tiplies Boolean matrices whose sizes are multiples of 32. In this second case,
elementary block matrices of size 32 × 32 are multiplied using Program 3.5.
Both programs are too long to print here and are available on the book’s
website.

In both cases, another consideration is to decide whether to use the round-
down as in Algorithm 3.2 or the round-up approach of Algorithm 3.3 when
implementing Strassen’s algorithm. Both approaches work equally well for
matrices whose dimensions (or numbers of blocks over F2) are powers of two.
Similarly, both approaches have a worse case for which the other approach
would yield a much faster alternative. Namely, using the rounding up ap-
proach for a matrix of dimension of the form 2t + 1 is a bad idea. Likewise,
using the rounding down approach for a matrix of dimension 2t − 1 is inad-
equate. Moreover, rounding up costs more than rounding down on average.
Thus, to minimize the adverse consequences of rounding, we implemented
both approaches within each of our matrix multiplication codes, choosing the

© 2009 by Taylor and Francis Group, LLC

Linear algebra 85

rounding up option only for dimensions congruent to -1 modulo some small
power of 2. This choice allows us to use one rounding up instead of four
rounding down when possible. It is not optimal, but gives a nice, easy to
implement compromise and the resulting running times behave reasonably
nicely as a function of the dimension.

In both cases, we compare the running time of our implementation of
Strassen’s algorithm with an elementary matrix multiplication. Over F2 this
elementary multiplication uses a block by block approach in order to make use
of the fast code we have for 32 × 32 matrices. Programs 3.6 and 3.7 contain
the elementary matrix multiplication used as a reference. One drawback of
Program 3.7 is that it performs a modular reduction after each multiplication,
which is quite costly. A better approach is to perform the modular reduction
once, at the end of each scalar product, as in Program 3.8. However, this
limits the modulus that can be achieved with a fixed integer size. Similarly,
in Program 3.6, instead of using the 32×32 matrix multiplication routine in a
black box manner, we can combine the inner optimizations together with the
block matrix structure; see Exercise 4. Note that depending on the specific
machine or compiler, the programs can sometimes be improved by reversing
the order of the two outer loops.

Over F2, pushing the recursion in Strassen’s algorithm all the way down
to 32 × 32 matrices, the resulting running times almost perfectly reflect the
asymptotic analysis. The running times are given in seconds in Table 3.2 and
shown on a graph in Figure 3.3. Both sets measured running times closely fol-
low the theoretical predictions and can be approximated by curves of the form
t0 ·(x/X)3 and t1 ·(x/X)log2 7, where t0 and t1 are the respective running times
of the two multiplication programs on the last data point available: X. More-
over, Strassen’s algorithm quickly becomes more effective than the ordinary
matrix multiplication. It is interesting to remark that near 512 blocks, our
rounding strategy does not behave well, which explains the irregular running
times. Also note that these codes can still be greatly improved. In particular,
enlarging the basic block to 64 or 128 bits would be a very good idea. It is
also possible to improve the basic block multiplication with a time-memory
tradeoff algorithm called the algorithm of four Russians [ADKF70]. This is
especially useful here since each basic block appears in several multiplications.
With these improvements, the cutoff point for Strassen’s algorithm would be
higher.

Over Fp, we experimented several different values of the cutoff parameters,
namely 32, 64 and 128, it turns out that, with the simple basic implementation
we have, 64 seems to be a reasonable choice for the cutoff value. The running
times are shown on a graph in Figure 3.4. Note that the basic implementation
we are using is not optimized, as a consequence, by writting it more carefully,
it would be possible to speed up the matrix multiplication in Fp by at least an
order of magnitude. The reader can experiment this on the various computer
algebra systems listed in the Preface.

With our implementation, Strassen’s algorithm over Fp also behaves as ex-

© 2009 by Taylor and Francis Group, LLC

86 Algorithmic Cryptanalysis

Program 3.6 C code for elementary 32n×32n matrix multiplication over F2

#include <stdio.h>
#include <stdlib.h>

#define WORD unsigned int

#define access(M,i,j,bsize) (&M[((i)*(bsize)*DIM)+((j)*DIM)])

/* External procedure for 32x32 boolean matrix multiplication */
extern void Mul(WORD res[DIM], WORD mat1[DIM], WORD mat2[DIM]);

void matmul(WORD * A, WORD * B, WORD *Res, int bsize) {
int i,j,k,l;
WORD tmp[DIM];

for(i=0;i<DIM*bsize*bsize;i++)
Res[i]=0;

for(i=0;i<bsize;i++)
for(j=0;j<bsize;j++) {
for(k=0;k<bsize;k++) {
Mul(tmp, access(A,i,k,bsize), access(B,k,j,bsize));
for(l=0;l<DIM;l++) {
access(Res,i,j,bsize)[l]^=tmp[l];

}
}

}
}

Num. of blocks (n) Ordinary mult. Strassen’s mult.
16 0.01 < 0.01
24 0.02 0.01
32 0.04 0.03
48 0.13 0.08
64 0.29 0.20
96 0.98 0.60

128 2.32 1.41
192 7.88 4.22
256 18.79 9.94
384 63.97 29.75
511 147.88 69.94

Table 3.2: Times for (32n)× (32n) Boolean matrix multiplication

© 2009 by Taylor and Francis Group, LLC

Linear algebra 87

Dimension

T
im

e
(s

ec
.)

Strassen

Ordinary

50

100

150

128 256 384 512

Figure 3.3: Performance of Strassen’s multiplication over F2

© 2009 by Taylor and Francis Group, LLC

88 Algorithmic Cryptanalysis

Program 3.7 C code for elementary matrix multiplication over Fp
#include <stdio.h>
#include <stdlib.h>

#define TYPE unsigned short
#define MODULO 46337 /* Also works with primes up to 65521*/
#define access(M,i,j,size) M[(i)+((j)*(size))]

void matmul(TYPE * A, TYPE * B, TYPE *Res, int size) {
int i,j,k;
unsigned int tmp;

for(i=0;i<size;i++)
for(j=0;j<size;j++) {
tmp=0;
for(k=0;k<size;k++) {
tmp=(tmp+access(A,i,k,size)*access(B,k,j,size))%MODULO;

}
access(Res,i,j,size)=tmp;

}
}

pected. For large values of the dimension, however, we can see some cyclic
variations around the theoretical behavior. This probably reflects the fact
that the difference in terms of performances between rounding up and round-
ing down is a function of the dimension. It shows once again that the rounding
strategy can be improved. On the contrary, the behavior of the elementary
algorithm is much more surprising. Instead of following a simple cubic equa-
tion, the running times seem to follow some cubic equation, then switch to
another and possibly a third. Moreover, for a small number of specific values
of the dimension, the behavior is even worse. This mysterious behavior calls
for an explanation. In fact, it is due to cache effects when reading the ma-
trices from memory during multiplication. These effects are a side-effect of
cache mecanisms, a frequently used tool in computer science. The common
basic idea of cache mecanism is to keep local copies of data elements in order
to avoid fetching them again when they are requested a second time. This
can be used to speed up all kind of data accesses. Frequently encountered
applications are disk or webpage accesses. More information about the use of
cache in modern processors can be found on Figure 3.5.

To understand why cache effects arise in our implementation of elementary
multiplication, we can remark that the two innermost loops on j and k com-
pletely read the matrix B and scan the same line of A over and over. On the
one hand, the total size of B expressed in bytes is 2n2 for a n× n matrix and

© 2009 by Taylor and Francis Group, LLC

Linear algebra 89

for values of n within a reasonable range, it is comparable to the size of either
the first (up to n ≈ 150) or the second level (up to n ≈ 1000) of memory
cache. On the other hand, the size of a single line of A is 2n and thus should
comfortably fit into the first level of cache. To explain the misbehaviors of
the code, we should look for transitions of B from the first level of cache to
the second level or from the second level of cache to the main memory. This
first cache effect corresponds to the progressive slow-down of the code as the
dimension increases. To explain the second effect, we should also look for ex-
ceptional cases where – for technical reasons – a line of A cannot be kept in the
first level of cache. This happens when many addresses with a large number
of equal low order bits are required at the same time. This phenomenon is
due to the low level details of the implementation of the cache mechanism. In
fact, each memory address can only be stored in a small number of possible
different locations in the cache. These authorized locations are determined
by looking at a number of low order bits (say 20 or a bit less). When the
dimension of the matrix is divisible by a large power of 2, due to the memory
representation we are using, several memory locations may compete for the
same cache locations. In this case, the same line of A needs to be fetched
over and over again from memory. Moreover, reading A in this context is
even slower than reading B from main memory, because B takes advantage of
automatic prefetching mechanisms.

These cache effects are more visible on the faster implementation that uses
fewer modular reductions. The reason is that the memory accesses in this
implementation use up a larger fraction of the running time. Note that the
effect of cache misses greatly depends on the considered computer architecture.
More recent computers seem to perform better in this respect.

All these cache misbehaviors, or at least most of them, can be avoided
by reorganizing the loops and thus the memory accesses. However, this is
not straightforward and it can take a long time for a programmer to find a
working approach. It is extremely interesting to remark that thanks to its
use of a divide-and-conquer approach, Strassen’s algorithm neatly avoids this
problem.

3.2.2 Asymptotically fast matrix multiplication

After the discovery of Strassen’s algorithm, the question of finding an op-
timal asymptotic algorithm for matrix multiplication became an essential is-
sue. Great advances were made and the exponent of matrix multiplication
was lowered a lot. These improvements rely on increasingly complex formulas
for multiplying various tensor forms. In particular, the use of approximate
formulas was essential to lower the number of necessary multiplications. For
example, a method of Bini, Capovani, Romani and Lotti [BCRL79] allows to
multiply a 3 by 2 matrix and a 2 by 3 matrix using only 10 multiplications of
low degree polynomials and leads to a complexity O(n2.7799). These methods
are discussed in detail in a book by Pan [Pan84]. The best current asymp-

© 2009 by Taylor and Francis Group, LLC

90 Algorithmic Cryptanalysis

Program 3.8 C code for matrix mult. over Fp with fewer modular reductions
#include <stdio.h>
#include <stdlib.h>

#define TYPE unsigned short
#define MODULO 46337
#define access(M,i,j,size) M[(i)+((j)*(size))]

void matmul(TYPE * A, TYPE * B, TYPE *Res, int size) {
int i,j,k;
unsigned int tmp;

for(i=0;i<size;i++)
for(j=0;j<size;j++) {
tmp=0;
for(k=0;k<size;k++) {
tmp=(tmp+access(A,i,k,size)*access(B,k,j,size));
if (tmp>=(MODULO*MODULO)) tmp-=MODULO*MODULO;

}
access(Res,i,j,size)=tmp%MODULO;

}
}

© 2009 by Taylor and Francis Group, LLC

Linear algebra 91

Dimension

T
im

e
(s

ec
.)

Strassen

Few
reductions

Ordinary

100

200

300

400

500

128 256 384 512 640 768 896 1024

Figure 3.4: Performance of Strassen’s multiplication over Fp

© 2009 by Taylor and Francis Group, LLC

92 Algorithmic Cryptanalysis

In modern processors, a need for cache mechanisms arised from the fact that
processors speeds have been progressing much faster than memory speeds.
In this context, a CPU cache is a piece of fast memory located as close to
the processor unit as possible. Of course, the size of caches is much smaller
than the size of the main memory of the computer. As a consequence,
it is necessary to devise efficient heuristic techniques to make sure that in
many applications the cache will hold the necessary piece of data when it
is required. This good event is called a cache hit. The bad case, where a
required piece of data is not present in the cache, is called a cache miss.
Each entry in a CPU cache contains both a copy of a data piece from the
main memory and the address of this data in the memory. To avoid using
a large proportion of the fast cache memory simply to store addresses, CPU
caches do not individually store very small pieces of memory. The basic
unit is called a cache line and can contain several integers. To simplify the
management of the CPU cache, the cache lines are usually aligned, i.e., they
can only start at a position in memory whose address is a multiple of the
size of a cache line. Moreover, cache mechanisms cannot use too complex
algorithmic techniques to detect whether a data is already present in the
cache or not. Thus, to simplify the issue, cache lines are often grouped into
several smaller caches depending on the bit patterns of their addresses. These
smaller caches are called banks. This allows the CPU to load more than one
piece of data per clock cycle as long as the data comes from different banks.
Otherwise, there is a bank conflict which slows things down. Similarly, since
many applications use a limited amount of memory, cache accesses often
ignore the higher bits of addresses during the initial data search. This causes
another kind of conflict when two pieces of data located at positions whose
addresses differ by a large power of 2 are needed.
CPU caches are further complicated by the fact that the first level of cache
is usually too small and that a second level of bigger but slower cache is
often added on top of it. They are also usually combined with prefetching
mechanisms which try to predict future memory accesses and load the corre-
sponding data in advance into the cache, this works quite well with accesses
to regularly spaced memory addresses. In multitasking operating systems,
the conversion of the virtual memory addresses seen by an individual task
into physical memory addresses can become extremely slow if the tables
needed for the conversion cannot be held into first level of cache. Another
important issue is that cache mechanisms may induce security concerns and
allow an adversarial program to learn secret data, such as cryptographic
keys, which it should not be able to access [AS08, AScKK07, OST06].
Algorithms and computer programs that take cache mechanisms into
account in order to achieve better performance are called cache-
oblivious [FLPR99].

Figure 3.5: Principles of cached memory in processors

© 2009 by Taylor and Francis Group, LLC

Linear algebra 93

totic result is the method of Coppersmith and Winograd [CW90] which yields
a matrix multiplication algorithm running in time O(n2.376). This algorithm
has recently been reformulated in a group theoretic setting by Cohn, Klein-
berg, Szegedy and Umans [CKSU05]. However, no recent advances have been
made concerning the exponent of the complexity of matrix multiplication. A
widely held opinion is that the correct exponent is 2 and that the asymptotic
complexity of matrix multiplication probably is O(n2 log(n))t for some small
integer t.

From a practical point-of-view, these algorithms with an asymptotic com-
plexity better than Strassen’s are not applicable. Indeed, they involve ex-
tremely large constant overheads, due to the highly complex basic formulas
that are used. In practice, none of the algorithms with asymptotic complexity
better than Strassen’s has been reported as useful. Thus, as far as practical
aspects are considered, and in particular for cryptanalysis, the best currently
achievable exponent for matrix multiplication is log2 7.

3.2.3 Relation to other linear algebra problems

Since all linear algebra problems can be solved using matrix multiplication,
addition and inverse, in order to relate the general complexity of linear al-
gebra to the complexity of matrix multiplication, it suffices to determine the
complexity of inversion from the complexity of matrix multiplication. Indeed,
addition of n×n matrices can be done in time n2, and thus it cannot increase
the exponent in the complexity of linear algebra problems. In this section, we
assume that we are given a matrix multiplication algorithm with complexity
O(nω), for some constant 2 < ω ≤ 3 and we would like to show that matrix
inversion can also be performed in time O(nω). As Strassen’s algorithm, this
can be obtained by working with 2× 2 block matrices. Write:

M =
(
A B
C D

)
, (3.2)

and remark that when D is invertible then multiplying M on the right by

N =
(

Id 0
−D−1C Id

)
(3.3)

yields:

MN =
(
A−BD−1C B

0 D

)
. (3.4)

In this equation, A − BD−1C is called the Schur complement of M, in the
sequel, we denote it by S. Since a triangular matrix is easy to invert, indeed:(

U V
0 W

)−1

=
(
U−1 −U−1VW−1

0 W−1

)
, (3.5)

© 2009 by Taylor and Francis Group, LLC

94 Algorithmic Cryptanalysis

we can compute the inverse of M as:

M−1 = N

(
S B
0 D

)−1

. (3.6)

This equation only requires two inversions of half-size matrices (D and S) and
some matrix multiplications and additions. As a consequence, it can be used
as a basis for a recursive matrix inversion algorithm with asymptotic running
time of the same form as the underlying matrix multiplication algorithm, i.e.,
O(nω).

The use of the Schur complement is a powerful tool for numerical analysis,
many of its applications in this context are described in Zhang’s book [Zha05].

It is also possible to use the Schur complement to invert matrices over
finite fields. Two methods are possible. The first option is to lift the matrix
to a larger field. For example, a matrix modulo a prime p can be lifted
to an integer matrix. However, this approach is costly, since the inverse of
the integer matrix may involve large denominators. The other option is to
compute Schur complement directly in the finite field. In this case, a specific
difficulty arises: we need to make sure that D is invertible at each step of
the algorithm. Indeed, over the finite field Fq, even a random matrix is not
guaranteed to have full rank. This is most critical when considering matrices
over F2, because a random square matrix of dimension n over F2 has full rank
with probability

∏n
i=1(1− 2−i), which is close to 0.29 when n becomes large.

3.3 Gaussian elimination algorithms

When working with matrices, frequently encountered problems are to solve
a linear system of equations or to invert a matrix. In Section 3.2.3 we described
a recursive approach to matrix inversion. Here, we consider a more direct
approach: Gaussian elimination algorithms. Since the problems of solving
systems of equations and of inverting matrices are related, it is convenient to
start by the simpler problem: solving linear system of equations.

Gaussian elimination works in two phases. During the first phase, called
Gauss’s pivoting, we progressively modify the original system of equations
using reversible transforms, in order to turn it into a triangular system of
equations. During the second phase, thanks to the triangular form, it becomes
possible to determine, one at a time, the value of each unknown.

Gaussian elimination is quite simple to describe; however, when writing
down a complete algorithm, some technicalities arise in order to avoid any
division by zero. To avoid these technicalities, we initially write down slightly
incorrect versions of the two phases in order to outline the basic idea. To
simplify the presentation and avoid dealing with the representation of the

© 2009 by Taylor and Francis Group, LLC

Linear algebra 95

linear equations themselves, we simply assume that each equation is given as
an equality between a linear combination of variables xi given on the left-
hand side and a constant value given on the right-hand side. Moreover, we
assume that we have access to elementary routines that compute the addition
or subtraction of two equations, multiply an equation by a given scalar and
access individual coefficients within an equation. The first phase in simplified
form is given as Algorithm 3.4 and the second phase as Algorithm 3.5. The
action of the ingredient of Algorithm 3.5, pivoting, on the matrix of coefficients
of a linear system is illustrated in Figure 3.6.

Another application of Gaussian elimination is to compute the determinant
of a matrix. Indeed, the first phase does not modify the determinant and once
we have a triangular matrix, it suffices to compute the product of diagonal
element to obtain the determinant.

Algorithm 3.4 Triangularization of a linear system (simplified, incorrect)
Require: Input linear system n equations Ei in n unknowns xi

for i from 1 to n− 1 do
Let P be the non-zero coefficient of xi in Ei
for j from i+ 1 to n do

Let C be the coefficient of xi in Ej
Ej ←− Ej − (C/P) · Ei

end for
end for
Output modified upper triangular system of n equations Ei

Algorithm 3.5 Backtracking to solve a triangular system
Require: Input triangular linear system n equations Ei in n unknowns xi

Create an array X of n elements to store the values of variables xi
for i from n down to 1 do

Let V be the constant term in equation Ei
for j from i+ 1 to n do

Let C be the coefficient of xj in Ei
V ←− V − C ·X[j]

end for
Let P be the non-zero coefficient of xi in Ei
Let X[i]←− V/P

end for
Output array of determined values X

© 2009 by Taylor and Francis Group, LLC

96 Algorithmic Cryptanalysis

a1,1 × × . . . × × . . . ×
0 a2,2 × . . . × × . . . ×
0 0 a3,3 . . . × × . . . ×
...

...
...

. . .
... × . . . ×

0 0 0 . . . ai,i × . . . ×
0 0 0 . . . ai+1,i × . . . ×
...

...
...

. . .
...

...
. . .

...
0 0 0 . . . an,i × . . . ×

⇒

a1,1 × × . . . × × . . . ×
0 a2,2 × . . . × × . . . ×
0 0 a3,3 . . . × × . . . ×
...

...
...

. . .
... × . . . ×

0 0 0 . . . ai,i × . . . ×
0 0 0 . . . 0 × . . . ×
...

...
...

. . .
...

... updated

...
0 0 0 . . . 0 × . . . ×

Figure 3.6: Effect of a pivoting step

Our simplified algorithms are incorrect in general. They work correctly
under several important assumptions. The first of these assumptions is that
the input system has n equations in n unknowns and a unique solution. In
general, this need not be the case, linear systems may have more unknowns
than equations or the reverse. And, as recalled in Chapter 2, even systems
of n equations in n unknowns do not necessarily have a unique solution. If
their kernel is non-zero, they may have none or infinitely many. The next
assumption is that whenever we request the coefficient of xi in equation Ei
at some step of the algorithm, this value is non-zero. This assumption is
highlighted in boldface type in the algorithms.

When the first assumption does not hold, i.e., when the system of equations
does not have full rank, printing out an error message may, at least for now,
be an acceptable solution. However, the second assumption that no zeros
are encountered as denominators throughout the algorithm, is a technical
assumption that does not reflect any underlying mathematical invariant of
the linear system. In order to better understand its role, let us discuss the
inner working of Algorithm 3.4. This algorithm has a main loop where variable
i is used to successively go through all equations. At each step, we take the
coefficient of xi in the current version of equation Ei. Thanks to the work
already performed by the algorithm, all coefficients of previous variables x1

up to xi−1 are zero in Ei. Assuming that the coefficient of xi is non-zero,
the inner loop indexed by j then modifies the system to make xi vanish in
all subsequent equations. It is important to note that this transformation,
called pivoting, is reversible and thus does not change the set of solutions of
the linear system. As a consequence of the successive pivoting steps, after the
algorithm execution, the linear system becomes upper triangular. The non-
zero coefficient of xi in Ei used for pivoting is called the pivot. Taking the i-th
pivot from equation Ei comes naturally when writing down the algorithm, but
it is unessential to its inner working. In truth, for each pivoting step it suffices
to find a pivot, i.e., a non-zero coefficient, for xi in any equation that has not
yet been used for this purpose. In fact, as long as the system of equations is

© 2009 by Taylor and Francis Group, LLC

Linear algebra 97

invertible, at each step of the algorithm it is always possible to find at least one
equation Ej with j ≥ i such that the coefficient of xi in Ej is non-zero. Thus,
by reordering the equations, we can modify Algorithm 3.4 into Algorithm 3.6.
When working over finite fields, this change suffices to obtain a fully function
Gaussian elimination algorithm. Over the real or complex fields, this is not
the end of story. Since this is outside of the scope of this book, let us simply
state that in this case the pivot should be chosen with even more care in order
to minimize the loss of accuracy during the algorithm execution.

Algorithm 3.6 Triangularization of a linear system
Require: Input linear system n equations Ei in n unknowns xi

for i from 1 to n− 1 do
for j from i to n do

Let P be the coefficient of xi in Ej
if P 6= 0 then

Exit Loop
end if

end for
if P = 0 then

Output ‘Non-invertible system’, Exit Algorithm
end if
Exchange equations Ei and Ej
Let P be the non-zero coefficient of xi in Ei
for j from i+ 1 to n do

Let C be the coefficient of xi in Ej
Ej ←− Ej − (C/P) · Ei

end for
end for
Output modified system of n equations Ei

Once the linear system is transformed into triangular form, finding the
value of each variable within the unique solution is a simple matter. Due to
the triangular form of the transformed system, the last equation relates the
value of the single variable, the last one, to a constant. Thus dividing the
constant in this equation by the coefficient of the last variable xn, we recover
its value. Once the value of xn is known, we can substitute this value in the
previous equation which only contains xn and xn−1. After the substitution,
we can recover the value of xn−1. Following this approach, we successively
determine xn−2 and all other variables. Algorithm 3.5 uses this approach.

© 2009 by Taylor and Francis Group, LLC

98 Algorithmic Cryptanalysis

3.3.1 Matrix inversion

With Gaussian elimination as a tool to solve invertible linear systems of
equations, we can now turn to the problem of computing the inverse of a ma-
trix. Remember that M is invertible, if and only if, there exists a matrix N
such that: MN = Id. Here, Id denotes the identity matrix, with a diagonal
of ones and zeros everywhere else, which is the neutral element in the multi-
plicative group of n×n matrices. Viewing the matrix N as n column vectors
N (i), each such vector satisfies a linear equation: M ·N (i) = ∆(i), where ∆(i)

is the vector whose coordinates are 0 everywhere except on line i where the
coefficient is 1. Solving these n linear systems of equations, we thus invert
M . However, from a complexity point-of-view this approach is not satisfying.
Instead, it is preferable to use the similarity between all these systems and
solve them all at once. Indeed, the sequence of operations in Algorithms 3.5
and 3.6 does not depend on the constant side of the equations. This allows
us to perform these operations in parallel on these n related systems.

To illustrate these ideas in the context of 32×32 Boolean matrices as in Sec-
tion 3.1, we give in Program 3.9 a C code compatible with the representation,
input and output routines given in the matrix multiplication Program 3.2.

3.3.2 Non-invertible matrices

Linear systems of equations encountered in cryptography do not necessarily
have full rank. When faced with such a system, Gaussian elimination is also
very useful. However, we need to change and complete our algorithms. Our
goal is to find whether a given system has solutions and, at least, to compute
a single solution. More generally, for non-invertible square matrix M , we aim
at computing its kernel Ker(M) and image Im(M).

Since these sets are linear subspaces, they can be very large, or even infinite
when the base field is infinite. Thus, it is not conceivable to represent them
by a list of elements; instead, we would like to obtain efficient representations
such as linear bases for these subspaces.

Remember that a linear system of equations, written in matrix form as
M~x = ~y, with M non-invertible, has the following properties:

• If ~y does not belong to the image ofM , then the equation has no solution.

• If ~y belongs to the image of M , then the set of solutions is an affine
subspace.

• More precisely, starting from an arbitrary solution ~x0 of the system, the
set of solutions is ~x0 + Ker(M).

When solving a single system for a non-invertible matrix M , it is convenient
to write a variation of Algorithms 3.5 and 3.6 to solve the system. When faced
with many systems of equations involving a single matrix M , it is preferable to
first compute global information about the matrix, find its rank and describe

© 2009 by Taylor and Francis Group, LLC

Linear algebra 99

Algorithm 3.7 Matrix inversion
Require: Input n× n matrix M

Initialize matrix N to identity
for i from 1 to n− 1 do

for j from i to n do
Let P = Mj,i

if P 6= 0 then
Exit Loop

end if
end for
if P = 0 then

Output ‘Non-invertible matrix’, Exit Algorithm
end if
Exchange lines i and j in M
Exchange lines i and j in N
Divide lines i of M and N by P
for j from i+ 1 to n do

Let C = Mj,i

Subtract C times line i of M from line j of M
Subtract C times line i of N from line j of N

end for
end for
Assert: M is upper triangular with a diagonal of 1
for i from n down to 1 do

for j from 1 to i− 1 do
Let C = Mj,i

Subtract C times line i of M from line j of M
Subtract C times line i of N from line j of N

end for
end for
Assert: M is the identity matrix
Output N the inverse of input matrix M

© 2009 by Taylor and Francis Group, LLC

100 Algorithmic Cryptanalysis

Program 3.9 Inversion of 32× 32 matrix over F2

/* Warning: mat is transformed during MatInv */
int MatInv(WORD mat[DIM], WORD inv[DIM])
{
int piv,l,c,k;
WORD val,vali,mask;
for(piv=0,mask=1;piv<DIM;piv++,mask<<=1)
inv[piv]=mask;

for(piv=0,mask=1;piv<DIM;piv++,mask<<=1) {
for (c=piv;c<DIM;c++) if (mask&mat[c]) break;
if (c>=DIM) return(FALSE);
val=mat[c];mat[c]=mat[piv];mat[piv]=val;
vali=inv[c];inv[c]=inv[piv];inv[piv]=vali;
for(c=0;c<DIM;c++) if ((c!=piv)&&(mask&mat[c])) {
mat[c]^=val;inv[c]^=vali; }}

return(TRUE);
}

its kernel and image. This global information then allows fast resolution of
the systems involving M . This approach is similar to the computation of a
matrix inverse with Algorithm 3.7.

Let us start with the single system case. Since the system is non-invertible,
we know that running Algorithm 3.6 on it produces the error message “Non-
invertible system.” This occurs when no pivot can be found for a variable xi.
However, at that point, since xi has a zero coefficient on all lines from i to
n, the triangularization is in some sense already complete for line i, except
that there is a zero on the diagonal at this position, instead of a 1. Thus,
instead of aborting, we could simply skip to the next iteration of the main
loop. However, if we do not make sure that the current line is going to be
considered when looking for the next pivot, then the backtracking phase may
incorrectly claim that the system does not have a solution. To avoid this, the
simplest approach is to renumber the variables, pushing those without a pivot
toward the end. With this simple modification, all systems of equations can be
written, after renumbering the variables, in a nice triangular form, possibly
with a bunch of zeros at the lower right end of the diagonal. Once such a
system goes as input to Algorithm 3.5, it is easy to modify this algorithm to
find solutions. For all the trailing zeros on the diagonal, if the corresponding
equation has a non-zero constant, the system does not have any solution.
Otherwise, the corresponding variable may be set at random. For the non-zero
diagonal entries, the backtracking algorithm resumes its former behavior. The
modified triangularization and backtracking algorithms (for a single solution)
are given as Algorithms 3.8 and 3.9.

Let us now consider the case of multiple systems involving the same matrix

© 2009 by Taylor and Francis Group, LLC

Linear algebra 101

Algorithm 3.8 Triangularization of a possibly non-invertible system
Require: Input linear system n equations Ei in n unknowns xi

Create an array Π of n entries, initialized to Π[i] = i.
Let Last = n
for i from 1 to Last do

for j from i to n do
Let P be the coefficient of xΠ[i] in Ej
if P 6= 0 then

Exit Loop
end if

end for
if P 6= 0 then

Exchange equations Ei and Ej
Let P be the non-zero coefficient of xΠ[i] in Ei
for j from i+ 1 to n do

Let C be the coefficient of xΠ[i] in Ej
Ej ←− Ej − (C/P) · Ei

end for
else

Exchange Π[i] and Π[Last]
Decrement Last
Decrement i (to re-run the loop on the same i value)

end if
end for
Output modified system of n equations Ei and renumbering Π of the vari-
ables x

© 2009 by Taylor and Francis Group, LLC

102 Algorithmic Cryptanalysis

Algorithm 3.9 Backtracking of a possibly non-invertible triangular system
Require: Input triangular linear system n equations Ei in n unknowns xi
Require: Renumbering of the variables Π

Create an array X of n elements to store the values of variables xi
for i from n down to 1 do

Let V be the constant term in equation Ei
Let P be the coefficient of xΠ[i] in Ei
if P = 0 then

if V 6= 0 then
Output ‘No solution exists’, Exit Algorithm

else
Assign random value to X[Π[i]]

end if
else

for j from i+ 1 to n do
Let C be the coefficient of xΠ[j] in Ei
V ←− V − C ·X[Π[j]]

end for
Let X[Π[i]]←− V/P

end if
end for
Output array of determined values X

M . In that case, we need to compute several objects. More precisely, we
need a basis of the kernel of M to recover all solutions of the system, we need
an efficient way to test whether a vector ~y belongs to the image of M and a
procedure to compute a solution ~x0 for the system.

The easiest approach is to start by modifying Algorithm 3.7 in order to avoid
any division by zero, using the same renumbering idea as in Algorithms 3.8
and 3.9. At the end of the modified algorithm, the matrix M is transformed,
in renumbered form into a matrix:

H =
(
Id K

0 0

)
. (3.7)

At the same point, matrix N contains a transformation matrix such that
H = NMPΠ, where PΠ is the permutation matrix representing the permuta-
tion Π. Alternatively, reversing the roles of rows and columns, we can similarly
write H ′ = P ′ΠMN ′, where:

H =
(
Id 0
K ′ 0

)
. (3.8)

In that case, the matrix H ′ is a basis for the image of M , with permuted
coordinates, and the final columns N ′ corresponding to null columns after
multiplications by M form a basis of the kernel of M .

© 2009 by Taylor and Francis Group, LLC

Linear algebra 103

3.3.3 Hermite normal forms

In all the Gaussian elimination algorithms we presented in this section,
we encounter divisions by diagonal elements. When the considered matrix
or system of equations is defined over a field, all the divisions, by non-zero
elements, can be performed without trouble. However, if the matrix is defined
over a ring, we may have difficulties. The typical example is the case of
a system of equations defined over the integers. Such a system does not
necessarily have an integer solution. In that case, it would be nice to compute
the triangularization of the matrix in a way that avoids all non-exact divisions.
When the matrix is invertible this is related to the computation of a Hermite
normal form.

DEFINITION 3.1 An invertible square matrix M with integer coef-
ficients is said to be in Hermite normal form if it is upper triangular,
with positive elements on its diagonal and if furthermore all non-diagonal ele-
ments are non-negative and smaller than the diagonal element in their column.
Equivalently:

∀i > j : Mi,j = 0 (3.9)
∀i : Mi,i > 0 (3.10)

∀i < j : 0 ≤Mi,j < Mj,j (3.11)

Computing Hermite normal forms is reminiscent of both Gaussian elimina-
tion and GCD computations. During the first phase of Gaussian elimination,
at each pivoting step, we choose in the current column the smallest non-zero
entry (in absolute value) as pivot. We move the corresponding row in order
to have this pivot on the diagonal, potentially replace it by its opposite to get
a positive pivot, and remove integer multiples of this row from all rows below
it. We choose the multiples to make sure that the coefficients in the current
column become non-negative and smaller than the coefficient of the pivot.
If all coefficients of transformed rows in this column are zeros, we proceed
to the next column, otherwise we repeat the same computation, choosing a
smaller pivot. During the second phase of Gaussian elimination, we remove
multiples of each row from the rows above it, to make all non-diagonal entries
non-negative and smaller than the diagonal entry in their column. This is
described as Algorithm 3.10. This algorithm can easily be modified to keep
track of the transformations in an auxiliary matrix as in the matrix inversion
Algorithm 3.7. Note that a similar algorithm can be used to transform a
non-invertible matrix into something called a row echelon form. The main
difference with the Hermite normal form is that in columns that do not have
any non-zero pivot, the size of the entries in previous rows cannot be reduced.

© 2009 by Taylor and Francis Group, LLC

104 Algorithmic Cryptanalysis

Algorithm 3.10 Hermite normal forms
Require: Input invertible n× n matrix M with integer entries

for i from 1 to n− 1 do
Let done←− false
while done 6= true do

Let P ←− 0
for k from i to n do

if Mi,k 6= 0 then
if P = 0 or |Mi,k| < P then

Let j ←− k; let P ←−Mi,j

end if
end if

end for
if P = 0 then

Output ‘Non-invertible system’, Exit Algorithm
end if
Let done←− true
Exchange rows Mi and Mj

if P < 0 then
Let row Mi ←− −Mi; let P ←− −P

end if
for j from i+ 1 to n do

Let C ←−Mj,i

Let row Mj ←−Mj − bC/P c ·Mi

if Mj,i 6= 0 then
Let done←− false

end if
end for

end while
end for
if Mn,n = 0 then

Output ‘Non-invertible system’, Exit Algorithm
end if
if Mn,n < 0 then

Let row Mn ←− −Mn

end if
for i from 2 to n do

Let P ←−Mi,i

for j from 1 to i− 1 do
Let C ←−Mj,i

Let row Mj ←−Mj − bC/P c ·Mi

end for
end for
Output Hermite normal form M

© 2009 by Taylor and Francis Group, LLC

Linear algebra 105

3.3.3.1 Linear algebra modulo composites and prime powers

When performing linear algebra modulo a composite number N , several
cases can be encountered. If the determinant of the matrix that defines the
system is invertible modulo N , then the solution is unique and can be derived
using Gaussian elimination as in Section 3.3. However, if the determinant is
not invertible modulo N , then Gaussian elimination fails. In fact, without
loss of generality, we can limit ourselves to considering the case where N is
prime power. Indeed, otherwise we can use the Chinese remainder theorem.
More precisely, when N = N1 · N2 and N1 and N2 are coprime, then any
solution of the linear system modulo N can be obtained by pasting together
a solution modulo N1 and a solution modulo N2.

When N is a prime power, say N = pe, we can generalize Gaussian elim-
ination and solve the linear system anyway. The basic idea, remains the
same, first we triangularize the linear system, choosing for each pivot a value
which is “as invertible as possible.” Formally, this means that if we define the
valuation v(x) of an element x in Z/peZ as the multiplicity of p in any repre-
sentative for x, we should always choose as pivot the value in a given column
with the smallest valuation. During the second stage, when creating the list
of solutions, we can divide a value y by a pivot x if and only if v(y) ≥ v(x).
When possible, such a division yields pv(x) different solutions.

3.4 Sparse linear algebra

All the linear algebra algorithms that we have presented up to now deal
with dense matrices represented by their complete lists of entries. However,
there are many applications, both in scientific computing and in cryptography,
where sparse matrices are involved. A sparse matrix is a matrix that contains
a relatively small number of non-zero entries. Very frequently, it takes the
form of a matrix in which each line (or column) only contains a small number
of non-zero entries, compared to the dimension of the matrix. With sparse
matrices, it is possible to represent in computer memory much larger matrices,
by giving for each line (resp. column) the list of positions containing a non-
zero coefficient, together with the value of the coefficient. Indeed, assuming an
average of l entries per line, storing a n×n matrix requires about 2ln numbers
instead of n2. When dealing with a sparse linear system of equations, using
plain Gaussian elimination is often a bad idea. Each pivoting step during
Gaussian elimination increases the number of entries in the matrix and after
a relatively small number of steps, the matrix can no longer be considered
as sparse. As a consequence, if the dimension of the initial matrix was large,
Gaussian elimination quickly overflows the available memory. In order to deal
with sparse systems, a different approach is required. Moreover, sparsity is

© 2009 by Taylor and Francis Group, LLC

106 Algorithmic Cryptanalysis

not a well-behaved mathematical property. In particular, the inverse of a
sparse invertible matrix is not necessarily sparse. As a consequence, the best
we can hope for is an efficient, sparsity preserving algorithm to solve a single
linear system of equations.

Two main families of algorithms have been devised for sparse systems. One
family called structured Gaussian elimination contains variations on the ordi-
nary Gaussian elimination that chooses pivots in order to minimize the loss
of sparsity. The other family uses a totally different approach; it does not try
to modify the input matrix but instead aims at directly finding a solution of
the linear system using only matrix by vector multiplications. In this family,
we find the Lanczos’s and the Wiedemann’s algorithms.

3.4.1 Iterative algorithms

3.4.1.1 Lanczos’s algorithm

Lanczos’s algorithm is a famous algorithm which has been devised to find
solutions of linear algebra systems of real or complex numbers. It is much
easier to describe when we can rely on a notion of convergence. Thus to
explain this algorithm, we temporarily leave our usual setting, forget about
finite field and consider a linear equation M~y = ~x over the real numbers. For
simplicity, we assume that M is square and invertible. Moreover, without loss
of generality, we may assume that M is symmetric. Indeed, multiplying the
initial equation by the transpose of M , it can be transformed to an equation
(>MM)~y = (>M~x), where (>MM) is a symmetric matrix. When a square
n× n matrix M is real, symmetric and invertible, it induces a scalar product
(·|·)M on the vector space Rn, defined from the usual scalar product by:

(~u|~v)M = (~u|M~v) = (M~u|~v). (3.12)

This scalar product induces a norm ‖ · ‖M defined as:

‖~u‖M =
√

(~u|~u)M (3.13)

Over the field of real numbers, Lanczos’s algorithm works by first construct-
ing an orthonormal basis of Rn for the scalar product (·|·)M , i.e., a family of
vectors ~v1, ~v2, . . . , ~vn such that:

(~vi|~vi)M = 1 ∀i ∈ [1 · · ·n] and (3.14)
(~vi|~vj)M = 0 ∀i 6= j.

Then it decomposes the solution ~y of M~y = ~x over the basis (vi)i∈[1···n] using
the decomposition formula:

~y =
n∑
i=1

(~y|~vi)M ~vi. (3.15)

© 2009 by Taylor and Francis Group, LLC

Linear algebra 107

This decomposition formula can be used to solve the equation because the
coefficients (~y|~vi)M can be computed from ~x without previous knowledge of ~y
by remarking that:

(~y|~vi)M = (M~y|~vi) = (~x|~vi). (3.16)

Since the decomposition formula does not cost too much in terms of running
time, because it only requires n scalar products, this gives an efficient algo-
rithm if and only if the orthonormal basis can be constructed efficiently. A
nice approach works as follows, first choose a random vector ~w1, then compute
~v1 as:

~v1 =
~w1

‖~w1‖M
. (3.17)

From ~v1, we construct the orthonormal basis iteratively, computing for
each i, ~wi = M ·~vi and letting ~vi by the vector obtained by orthonormalizing
~wi, i.e., letting:

~w′i = ~wi −
i−1∑
j=1

(~wi|~vj)M~vj and (3.18)

~vi =
~w′i

‖~w′i‖M
. (3.19)

At first, this orthonormalization process does not seem efficient, because
a naive implementation requires i scalar products at each step and O(n2)
scalar products for the complete algorithm. However, it is easy to modify the
computation and perform two scalar products at each step. The reason is
that for i > j + 1, the scalar product (~wi|~vj)M is already 0, as a consequence
we can rewrite the computation of ~w′i as:

~w′i = ~wi − (~wi|~vi−1)M~vi−1 − (~wi|~vi−2)M~vi−2 (3.20)

The reason for this simplification is that:

(~wi|~vj)M = (M~vi|~vj)M = (~vi|M~vj)M = (~vi|~wj)M . (3.21)

Since ~wj is in the vector space spanned by ~v1, . . . , ~vj+1, whenever i > j + 1,
this coefficient is already 0.

We stop the process, when the orthogonalized vector is equal to ~0. Clearly,
the sequence of vectors ~v1, . . . , ~vk that is generated is an orthonormal family.
However, is it a basis? The answer is yes if the family is large enough, more
precisely, if k = n. Due to the initial random choice of ~v1, this is the most
frequent case.

Moreover, with most real matrices, Lanczos’s algorithm has a very useful
property of convergence; even partial decompositions, which are obtained by
truncating the sum in Equation (3.15), quickly give very good approximations
of ~y.

© 2009 by Taylor and Francis Group, LLC

108 Algorithmic Cryptanalysis

Very surprisingly, Lanczos’s algorithm can also be applied to linear system
defined over finite fields. Of course, in finite fields, we cannot rely on conver-
gence arguments and need to run the algorithm till the end. However, if the
sequence (~vi) really forms a basis of the image vector space of M , everything
remains fine. Thus, Lanczos’s algorithm works over finite field, as long as the
construction of the sequence (~vi) does not abort prematurely. It can abort for
two main reasons. First, as in the real field case, some vector ~wk may already
belong to the vector space spanned by the previously obtained vectors in (~vi).
Second, in finite field, it may happen that ‖~w′i‖M = 0 with ~w′i 6= ~0. This
comes from the fact that in a finite field, all computations need to be per-
formed modulo the characteristic of the field. To illustrate the problem, take
the row vector ~x = (1, 1), over the real field, its Euclidean norm is ‖~x‖ = 2;
however, over F2 the norm is taken modulo 2 and thus equal to 0. When the
characteristic is small, this problem occurs frequently and Lanczos’s algorithm
needs to be modified into a block algorithm (see Section 3.4.1.3). However,
when the characteristic is a large prime p, this is a very rare event. More
precisely, due to the initial randomization, we can heuristically estimate the
probability of error at each step of the algorithm as 1/p. As a consequence,
the overall probability of failure is roughly n/p. Thus, for large values of p,
this probability is negligible.

When implementing Lanczos’s algorithm over finite fields, in order to avoid
the computation of the square roots that appear in the computation of norms,
it is preferable to avoid normalizing the vectors ~vi and instead to divide by
their norms where necessary. This is described in Algorithm 3.11.

3.4.1.2 Wiedemann’s algorithm

Wiedemann’s algorithm is another approach to find solutions of linear sys-
tems using matrix-vector products. However, instead of computing an or-
thogonal family of vectors, it aims at reconstructing a minimal polynomial.
Before presenting this algorithm, we need to recall a few facts about square
matrices and minimal polynomials.

3.4.1.2.1 Minimal polynomials of matrices Given a square matrix A
over a field K and a univariate polynomial f in K[X], it is clear that we can
evaluate f at A, thus computing another matrix f(A) of the same dimension
as f . When f(A) is the zero matrix, we say that f annihilates A. Let IA be
the set of polynomials of K[X] that annihilate A. In fact, this set IA is an
ideal of K[X]. Indeed, if f and g both annihilate A, then for all polynomial
α and β, we see that αf + βg also annihilates A. Since IA is an ideal of
univariate polynomials, if IA is different from the zero ideal, there exists a
polynomial fA, unique up to multiplication by a non-zero element of K, that
generates IA. This polynomial fA is called the minimal polynomial of A.

It remains to show that IA is not the zero ideal. This is a simple corollary
of the Cayley-Hamilton theorem:

© 2009 by Taylor and Francis Group, LLC

Linear algebra 109

Algorithm 3.11 Lanczos’s algorithm over finite fields

Require: Input vector ~x and routines for multiplications by M and >M
Let ~X ←− >M · ~x
Initialize vector ~y to zero
Initialize vector ~v1 to random
Let ~w1 ←− >MM ~v1

Let N1 ←− (~w1|~v1)
Let ~y ←− (~X| ~w1)~v1/N1

Let ~v2 ←− ~w1 − (~w1| ~w1)~v1/N1

Let ~w2 ←− >MM ~v2

Let N2 ←− (~w2|~v2)
Let ~y ←− ~y + (~X| ~w2)~v2/N2

for i from 3 to n do
Let ~v3 ←− ~w2 − (~w2| ~w1)~v1/N1 − (~w2| ~w2)~v2/N2

Let ~w3 ←− >MM ~v3

Let N3 ←− (~w3|~v3)
if N3 = 0 then

Exit Loop.
end if
Let ~y ←− ~y + (~X| ~w3)~v3/N3

Let ~v1 ←− ~v2, ~w1 ←− ~w2, N1 ←− N2.
Let ~v2 ←− ~v3, ~w2 ←− ~w3, N2 ←− N3.

end for
Let ~z ←−M~y
if ~z = ~x then

Output: ~y is a solution of the system.
else

Let ~Z ←− >M~z
if ~Z = ~X then

Output: ~z − ~x is in the kernel of >M .
else

Output: Something wrong occurred.
end if

end if

© 2009 by Taylor and Francis Group, LLC

110 Algorithmic Cryptanalysis

THEOREM 3.1
For any square matrix A, let FA, the characteristic polynomial of A, be defined
as FA(X) = det(A−X · Id). Then, FA annihilates A.

PROOF See [Lan05].

3.4.1.2.2 Application to linear systems Writing down the minimal
polynomial of A as:

fA(X) =
d∑
i=0

αiX
i, (3.22)

we can rewrite fA(A)0 as:
d∑
i=0

αiA
i = 0. (3.23)

As a consequence, for any vector ~b, we find:

d∑
i=0

αi(Ai ·~b) = ~0. (3.24)

This implies that the sequence ~B defined as ~Bi = Ai ·~b satisfies a relation of
linear recurrence:

~Bi+d = − 1
αd

d−1∑
j=0

αj ~Bi+j . (3.25)

If α0 6= 0, then this linear recurrence can be used backward and in particular,
we may write:

~B0 = − 1
α0

d∑
i=1

αi ~Bi. (3.26)

Note that when α0 = 0, we can factor X out of the minimal polynomial fA and
writing A·(fa/X)(A) = 0 conclude that A is non-invertible. Indeed, otherwise
fA/X would annihilate A, which by minimality of fA is not possible.

From this remark, we can derive the basic idea of Wiedemann’s algorithm:

• To solve A~x = ~y, build a sequence ~y, A~y, . . . , Ai~y, . . .

• Find a recurrence relation in the above sequence.

• Remark that the sequence can be expanded on its left by adding ~x and
use the recurrence backward to recover ~x.

However, this basic idea, as we just presented, suffers from a major ob-
struction. In order to determine this recurrence relation, we need a number

© 2009 by Taylor and Francis Group, LLC

Linear algebra 111

of vectors at least equal to the length of the relation. Storing all these vec-
tors requires roughly the same amount of memory as storing a dense matrix
of the same dimensions as A. Of course, this is not acceptable for a sparse
linear algebra algorithm. To avoid this problem, we do not store all the vec-
tors in the sequence. Instead, we only keep their scalar product with some
fixed vector. Of course, the current vector needs to be kept in memory when
computing the next one, it is only erased after this computation. After com-
puting enough of these scalar products, roughly twice the dimension of A, we
can use Berlekamp-Massey algorithm from Chapter 2 to recover the minimal
recurrence relation satisfied by the sequence of scalar product. Expressed as
a polynomial, this recurrence relation divides the minimal polynomial fA. In
order to get rid of the bad case where we have a proper divisor, it is useful to
study more carefully the relation between these polynomials.

For this analysis, let us look at the following polynomials:

• fA the minimal polynomial of A.

• f~bA the minimal polynomial of the sequence S~b of vectors ~b, A~b, . . . , Ai~b,
. . .

• f~b,~uA the minimal polynomial of the sequence T~b,~u of vectors (~b|~u), (A~b|~u),
. . . , (Ai~b|~u), . . .

It is clear that fA annihilates S~b and that f~bA annihilates T~b,~u. As a conse-

quence, f
~b,~u
A divides f~bA and f~bA divides fA. Note that when the constant term

of f
~b,~u
A or of f~bA is zero, so is the constant term of fA and A is non-invertible.

The reverse is false in general. In fact, it is even possible to have f
~b,~u
A = 1, for

example when ~u = ~0.
To solve a system A~y = ~x, it suffices to compute f~xA. Indeed, assume that

f~xA =
∑d
i=0 αiX

i with α0 6= 0 and consider the vector:

~y = − 1
α0

d∑
i=1

αiA
i−1~x. (3.27)

Multiplying by A, we find that:

A~y = − 1
α0

d∑
i=1

αiA
i~x = ~x, (3.28)

by definition of the polynomial f~xA.
However, as said above, directly computing f~xA would require to store the

sequence S~b and would be too costly in terms of memory. As a consequence,
Wiedemann’s algorithm focuses on the computation of f

~b,~u
A for a random

(non-zero) vector ~u. Moreover, it uses probabilistic arguments to show that

© 2009 by Taylor and Francis Group, LLC

112 Algorithmic Cryptanalysis

computing f
~b,~u
A for at most a few vectors ~u suffices to recover f~bA with a good

enough probability. For example, when f
~b
A is an irreducible polynomial over

the finite field we are considering, we necessarily have f~bA = f
~b,~u
A when ~u 6= ~0.

Even when f
~b
A is composite, a fraction of the vectors ~u satisfies f~bA = f

~b,~u
A .

Moreover, we can recover f~bA by taking the lowest common multiple of a few

polynomials of the form f
~b,~u
A .

Thus, to complete the description of Wiedemann’s algorithm, we need to
efficiently compute f

~b,~u
A from the sequence T

~b,~u. This can be done using
Berlekamp-Massey algorithm, as described in Chapter 2. Since this algorithm
recovers the minimal polynomial with degree at most d from a sequence of
2d elements over a finite field, it can be used in the context of Wiedemann’s
algorithm by letting d be the dimension of the matrix A. Note that when A
is non-square, the smallest dimension suffices.

3.4.1.3 Block iterative algorithms

In Section 3.4.1.1, we have seen that over small finite fields, Lanczos’s algo-
rithm may fail by encountering self-orthogonal vectors during its computation.
We recall that a self-orthogonal vector ~x whose coordinates lie in a finite field
Fq is self-orthogonal when (~x|~x) = 0 (in Fq). Heuristically, this bad event
occurs with probability near 1/q for each scalar product occurring in the al-
gorithm. This implies that for small finite fields, Lanczos’s algorithm is likely
to fail. When this happens, there is a simple way to avoid the problem: in-
stead of using Equation (3.15) with an orthogonal basis (~vi) defined over Fq,
we consider an orthogonal basis defined over an extension field FQ, with Q a
large enough power of q. With this simple change, the individual probabil-
ity of failure of each scalar product becomes 1/Q, assuming that the initial
vector ~v1 is chosen at random in this large field. The fact that we search a
solution for the linear system in Fq does not affect these probabilities, since it
only impacts the scalar products with ~y, which are not used as denominators.
Thus, this simple change removes the bad behavior of Lanczos’s algorithm.
However, this change is very costly because each computation in Fq is replaced
by a computation in FQ, without lowering the number of computations that
need to be performed.

Another approach is the block Lanczos algorithm proposed in [Mon95],
which starts from a block of several initial random vectors. At each round,
this algorithm computes a new block of vectors by multiplying the previous
block by the matrix and by performing orthogonalization with respect to the
previous blocks. The details are similar to those of plain Lanczos’s; however,
there are some additional steps. First, the orthogonalization process requires
linear algebra on some matrices, whose dimensions are the number of blocks.
Second, some self-orthogonal vectors may be encountered during the compu-
tation and in order to deal with them, they are removed from the current

© 2009 by Taylor and Francis Group, LLC

Linear algebra 113

block and added to the next one. This implies that block Lanczos algorithm
needs to deal with block of (slightly) varying size.

In addition to the possibility of working with small finite fields, block Lanc-
zos has another advantage compared to ordinary Lanczos: it is much better
suited for parallel computer architecture. As a consequence, it is frequently
used for computations in large dimension. Note that Wiedemann’s algorithm
also has a block version [Cop94], which is also well adapted to parallel or even
distributed computation (see [AFK+07] for an example).

3.4.2 Structured Gaussian elimination

Structured Gaussian elimination was first introduced in the context of
index calculus algorithms by Odlyzko in [Odl85] (see also Lamacchia and
Odlyzko [LO91]). Its goal is, starting from a large sparse system of linear
equations, to reduce it to a smaller system, while maintaining a relative spar-
sity. It has been especially devised for the kind of linear system typically
encountered in index calculus algorithms. In these systems, some variables
occur very frequently in equations while others are quite rare. Moreover, with
enough sieving effort, these systems can be largely overdefined. These two
specific properties are essential to the behavior of Lamacchia and Odlyzko’s
algorithm. Note that this algorithm is heuristic and that no definite analy-
sis of its complexity is available. However, this is not essential in practice.
Indeed, structured Gaussian elimination is not used alone, but always in con-
junction with an iterative algorithm, as a practical method to reduce the cost
of this iterative algorithm. Moreover, using such structured Gaussian elimi-
nation does not improve the asymptotic complexity of index calculus methods
as described in Chapter 15.

In the sequel, we are given a sparse linear system of equations and we
try to simplify the system, reducing the number of equations and unknowns,
without losing too much sparsity. Note that it is useful to start with an
overdetermined system, i.e., with more equations than unknowns. This allows
us to discard some equations along the way, when they become too dense. It
is also convenient to assume that most coefficients that appear in the linear
system are either 1 or −1 and that an overwhelming majority of coefficients
are small enough to fit in a single computer word or even in a single byte.

To introduce the ideas used in structured Gaussian elimination, we start
by considering some special cases of interest. The simplest transform that
can be applied to the initial system of equations is the removal of singletons.
Scan the system of equations and if any unknown only appears in a single
equation, remove both the unknown and the equation from the system. This
transform is very efficient since it lowers the number of equations and unknows
and also reduces the total memory size of the linear system description. The
next transform that we can apply looks either for equations containing two
unknowns only or for unknowns that appear in two equations only. In both
cases, it is convenient to add the additional constraint that the two coefficients

© 2009 by Taylor and Francis Group, LLC

114 Algorithmic Cryptanalysis

involved are both either 1 or −1. In this case, an equation containing two
unknowns can be rewritten as y = ±x + a, where x and y are the involved
unknowns and a is a constant; thus y can be replaced everywhere by either x or
−x, with a corresponding change to the right-hand side constants. Similarly, if
x only appears in two equations E and E′, we can replace these two equations
by either E−E′ or E+E′ and remove x from the list of unknowns. Note that
these two transforms are in some sense dual. Applying one to the matrix of a
linear system corresponds to applying the other one to the transposed matrix.
These two transforms remove one equation and one unknown, while leaving
the memory size of the system essentially constant. In fact, the amount of
memory usually decreases by 2 coefficients.

These two simple transforms can be applied iteratively; indeed, removing or
merging equations may create new singletons or doubletons. Once this is done,
we need to consider heavier equations and/or unknowns that appear more
often. Typically, if an equation with t unknowns exists and if, at least, one of
its coefficients is 1 or −1, then the corresponding unknown can be replaced by
an affine combination of the others everywhere in the linear system. Similarly,
if an unknown appears ` times, at least once with coefficient 1 or −1, it can be
eliminated by subtracting the corresponding equation from each of the `− 1
others. In fact, if unknown x appears in equation E with coefficient 1 or
−1, with x appearing a total of t times and if E has weight `, this transform
removes one unknown and one equation; moreover, assuming that no other
cancellation occurs, the memory size is increased by (t−1)(`−1)− t− `+1 =
(t− 2)(`− 2)− 2.

Since we took care to start from an overdefined system of equations, another
basic transform is available; it consists of simply removing some equations
when the system becomes too large to fit into memory. Of course, during this
step, it is preferable to remove the equation(s) with the largest weight.

All existing variations of structured Gaussian elimination are essentially
heuristic methods that aim at using these transforms or close variations in an
efficient way.

3.4.2.1 Odlyzko’s method

In the original method of Odlyzko, the geometry of the specific systems
of equations encountered during index calculus algorithms1 is also taken into
account. With these systems, some unknowns, corresponding to small primes,
occur frequently, while others are much rarer. This dissymmetry is reflected
in the structured Gaussian elimination by distinguishing between heavy and
light unknowns. The transforms that are applied are adapted to take this
distinction into account. More precisely, transforms in the following list are
applied repeatedly:

1See Chapter 15.

© 2009 by Taylor and Francis Group, LLC

Linear algebra 115

• Find all light unknowns which appear only once and remove the corre-
sponding rows and columns.

• Find all light unknowns which appear alone, with coefficient 1 or −1, in
some row, replace the unknown everywhere by its expression in terms
of heavy unknowns and remove the corresponding row.

• Enlarge the set of heavy unknowns, declaring as heavy some of the
previously light unknowns. These unknowns are selected among the
more frequently occurring.

• Remove some heavy rows.

The above transforms eliminate singletons, with a modified definition of
weight that ignores the contribution of heavy unknowns, i.e., of unknowns
which appear too frequently. In [LO91], the elimination of doubletons was
also considered; however, experiments showed that in this case, the overall
weight grows too quickly.

This approach of Odlyzko works well for linear systems of equations that
appear during index calculus algorithms for factoring or computing discrete
logarithms. Moreover, when implementing the method it is possible to remove
heavy unknowns from memory and to recompute them afterwards by journal-
ing the history of the computation. However, the approach also presents some
drawbacks:

• The approach is not well adapted to the large primes variation of index
calculus. To deal with such systems, it is preferable to work with the
graph method presented below.

• Linear systems arising during the computation of discrete logarithms in
finite fields of small characteristics behave badly with this algorithm.
The problem is that instead of having unknowns associated with prime
numbers, whose frequencies slowly decrease as the primes become larger,
we have unknowns that correspond to irreducible polynomials and the
frequency is a function of the degree of this polynomial. As a con-
sequence, when modifying the set of heavy unknowns, any reasonable
strategy makes jumps and adds a whole family of unknowns, correspond-
ing to the same degree. In this context, the overall behavior is quite bad.
There, the greedy method below is preferable.

• Finally, despite the relative simplicity of the method, programming this
approach is quite tricky and there is no easy way to check that the
structured Gaussian elimination did not subtly alter the system due to
an undetected bug. When faced with this concern, using the lightweight
approach of Section 3.4.2.3 is a good idea.

© 2009 by Taylor and Francis Group, LLC

116 Algorithmic Cryptanalysis

3.4.2.2 Markowitz pivoting

Instead of partitioning the unknowns between the heavy and light cate-
gories, we can use Markowitz pivoting, a greedy method that simply tries
to apply the basic transforms we described in the introduction of this sec-
tion. We already know that performing Gaussian elimination to remove an
unknown that appears in ` different equations and in particular in an equation
of weight t, with a coefficient 1 or −1, usually increases the total number of
entries in the linear system by (t− 2)(`− 2)− 2. Markowitz pivoting selects
at each step of the computation to perform the elimination corresponding to
the smallest possible increases of the linear system size. When applying this
strategy, the size of the system slowly increases; when it reaches a predeter-
mined threshold, a fraction of the equations with highest weight is removed.
The program stops when the number of remaining equations becomes smaller
than the number of remaining unknows plus a small fixed security margin,
e.g., 100 extra equations. Another option for halting structured Gaussian
elimination is to compute at regular intervals an estimate of the complexity
of running an iterative solver on the current system of equations. At the
beginning of structured elimination, this estimate quickly decreases, at some
point of the elimination it reaches a minimum, when this happens, stopping
the structured elimination is a good idea. All in all, this often gives a better
result than pushing the elimination too far, which results in a denser matrix.

The principle of the greedy approach is very simple and was first described
in [Mar57]. However, the bookkeeping required by this approach is quite
massive. The key questions are to efficiently locate at each step the pair
unknown/equation that corresponds to the lowest value of (t−2)(`−2)−2 and
to efficiently perform the Gaussian elimination steps. Clearly, recomputing
(t − 2)(` − 2) − 2 for all pairs at each step of the computation to locate the
minimum value is going to be too costly. Similarly, in order to perform the
Gaussian elimination or pivoting step, we cannot afford to scan the complete
linear system in order to locate the unknown that needs to be eliminated.
Thankfully, these two tasks can be managed efficiently by using adequate
data structures.

3.4.2.2.1 Structure for efficient pivoting Given a pair (E, x) where E
is an equation of weight t and x an unknown that appear in E with coefficient
1 or −1 and ` is the total number of equations that contains x, we need to
efficiently locate all equations that contain x and add/subtract some multiple
of E from these equations. A neat solution to perform this task is to store
not only the sparse matrix corresponding to the system of equations but also
its transpose. Note that when storing this transpose, it is possible to take
advantage of the heavy column idea of Odlyzko’s original approach. Indeed,
unknowns with a very large value for ` are unlikely to minimize W (`, t) =
(` − 2)(t − 2) − 2. As a consequence, it suffices to store a fraction of the
transpose. During pivoting, both the linear system and the transposed matrix

© 2009 by Taylor and Francis Group, LLC

Linear algebra 117

need to be updated. However, since the linear system is sparse, the update
task only affects a fraction of the unknows and equations.

3.4.2.2.2 Structure for pivot selection To select a pivot, we need to
find the pair (E, x) that minimizes the quantity W (`, t). A first remark is
that for a given unknown x, W (`, t) can be computed by scanning the column
of x using the transposed copy of the linear system and by remembering the
equation where x appears with coefficient 1 or −1 that has the lowest weight.
Thus, for every unknown x, we can define a best possible pair (E, x) and a
corresponding value W (`, t). During a pivoting step, thanks to sparsity, only
a small number of unknows are subject to change and need an update of their
W (`, t) value. The only remaining question is to find a data structure that
allows to efficiently locate the unknown with the smallest value at each step
and that also allows efficient updates. This can for example be achieved using
self-balancing tree techniques (see Chapter 6).

3.4.2.3 A lightweight approach

One notable disadvantage of using Markowitz pivoting is that since efficient
implementations of this algorithm require a complex data structure, they may
contain subtle, hard to detect bugs. In the context of index calculus, such a
bug may cause failure of the sparse linear algebra algorithm used after struc-
ture Gaussian elimination. However, such a failure could also arise due to
a bug in sieving or even due to a hardware failure at some point during the
process that would modify a single equation somewhere. When this happens,
it may become necessary to use simpler algorithms. For this reason, we now
propose a lightweight approach to structured Gaussian elimination. After an
initialization step, this approach works in several rounds, each round being
broken into two phases. During initialization, we count the total number of
occurrence of each unknown and memorize the list of light unknowns which
occur less than some fixed threshold. The first phase of each performs statis-
tics on the sparse system of equations, stored in memory. More precisely, it
sorts the equations by increasing values of the weight, or rather estimated
weight. When an equation contains a single light (active) unknown, this un-
known is remembered as a pivot for the equation. In case of conflict between
two equations, the lighter one is given precedence to keep the pivot. The
second phase performs the pivoting step in a lazy way. It simply adds to each
equation containing one or more unknowns declared as pivot a list of entries
that remember that a multiple of the equation corresponding to the pivot
should be added to it. The addition is not performed, however, the estimated
weight of the equation is modified, by adding to it the weight of the equation
being added minus 1. After that, all pivots, together with their corresponding
equations, are declared unactive unknowns and we proceed to the next round.

In a final phase, the algorithm evaluates for each equation the sum of the
initial entry and of the contribution of all equations that have been lazily

© 2009 by Taylor and Francis Group, LLC

118 Algorithmic Cryptanalysis

added. Note, that this needs to be done in a recursive manner since the
added equations may also contain further lazy additions. Any equation that
becomes too large during this process is simply discarded. Note that for
debugging purposes, only this part of the algorithm need to be checked in
details. Indeed, by construction, this part can only output linear combinations
of the original equations, which by definition are valid equations. Any bug
in the previous parts of the program might affect the level of sparsity of the
output system but not its correctness.

3.4.2.4 Graph method

In the so-called large prime variation of index calculus algorithms, we en-
counter systems of equations with some additional structure. More precisely,
the set of unknowns is divided in two parts: unknowns corresponding to regu-
lar primes and unknowns corresponding to large primes. The main difference
is that on average, each large prime appears less than once in the linear sys-
tem, while regular primes appear at least a few times on average. Moreover,
large prime unknowns always have coefficients 1 or −1. Of course, an un-
known that appears only once can be safely removed, with the corresponding
equation from the linear systems. Thus, the average large prime essentially
yields a useless equation. However, due to birthday paradox effects (see Chap-
ter 6), a small fraction of large primes appears at least twice. If there is at
most one large prime in each equation, it suffices to merge the two equations
where a given large prime occurs as in basic structured Gaussian elimination.
The resulting equation has double weight, thus remaining reasonably sparse.
However, with current index calculus algorithms, we may have up to four large
primes per equation.

Another specificity of the large prime variation is that since a large frac-
tion of large primes does not appear, a large fraction of the collected linear
equations is lost. As a consequence, we need to consider a huge system, much
bigger than systems arising from index calculus without large primes. For
this reason, it is important to use algorithms that do not require loading into
memory the complete system of equations. Instead, the algorithms should
work using only the large prime parts of equations. This approach called fil-
tering is in particular discussed in [Cav00]. Of course, in a final stage, it is
necessary to compute the resulting linear system after large prime elimina-
tion. However, this final stage only involves the small fraction of equations
that remains and is not a real problem.

With this idea in mind, specific algorithms were proposed. These algo-
rithms treat Gaussian elimination as a graph problem. To explain how, let us
first consider the restricted case with at most two large primes per equation.
In that case, we can view each unknown of the large type as a node in the
graph and each equation as an edge between the two large primes that appear
in the equation. When a given large prime appears alone in an equation, we
construct an edge between the large prime and a special node no-unknown.

© 2009 by Taylor and Francis Group, LLC

Linear algebra 119

This representation is helpful, because any linear combination (with ±1 co-
efficients) of equations where all large prime unknowns cancel out induces a
cycle in the above graph. Moreover, the converse is “almost” true. If the
linear system is considered modulo 2 as when factoring, since any node in a
cycle appears an even number of times, usually twice, summing all equations
that correspond to the edges of the cycle, the contribution of the large primes
vanishes. When the linear system is modulo a larger prime, it is possible to
adjust the sign of the contribution of each equation in the cycle to make sure
that all unknowns but one vanish. If the special node no-unknown occurs in
the cycle, we can make the contribution of all other nodes vanish and thus
obtain a new equation without large primes. If it does not occur, we need
to rely on luck for eliminating the final large prime unknown and we succeed
with probability 1/2. In truth, the whole approach is more complicated than
that, because it does not suffice to find a single cycle. To make the most out
of the available equations, we need to construct a set called a cycle base which
generates all possible cycles with redundancies.

3.4.2.5 Final backtracking

After applying any of the above structured Gaussian elimination techniques,
one obtains a reduced sparse system of equations which can be solved using
iterative techniques. However, after that, it is often necessary to turn back to
the initial linear system. Two cases arise depending on the target application.
For factoring, the goal of the linear algebra step is to find an element of the
kernel of the sparse matrix. For discrete logarithms, the goal is to find values
for the unknowns.

Let us start by considering the case of discrete logarithms. After apply-
ing the iterative solver, we have values only for the unknowns that remain
in the linear system after structured Gaussian elimination. We would like to
complete this result and recover a value for all unknowns present in the orig-
inal system. This can be done using a very simple backtracking algorithm.
In fact, it suffices to scan the initial system of equations and, whenever an
equation with a single undetermined unknown is encountered, to compute a
value for this unknown. Repeating this step until no new value can be added
yields a complete (or almost complete) table of values for the unknowns of the
initial system. Indeed, since structured Gaussian elimination eliminates one
unknown at a time, this backtracking method can recover the missing values
one by one.

The case of factoring is slightly more complicated. Here, we are given
a kernel element as a linear combination of equations in the transformed
system and we need to express it as a linear combination of equations in
the original system. The simplest way to do this is to use journaling in the
structured Gaussian elimination algorithm. In the journal, we give labels to all
initial equations and to all intermediate equations that arise during Gaussian
elimination. Note that, each intermediate equation is a linear combination

© 2009 by Taylor and Francis Group, LLC

120 Algorithmic Cryptanalysis

of two preexisting equations. We now write a kernel element as a linear
combination of equations, allowing all initial, intermediate or final equations
in the expression. Such a expression can be iteratively transformed using the
journal by replacing each equation by its expression in terms of its immediate
predecessors. At the end, we obtain a linear equation that only involves the
initial equations. Since the linear combinations that represent kernel elements
are not sparse, we can only perform backtracking on a small number of kernel
elements. However, this is enough for factoring purposes.

© 2009 by Taylor and Francis Group, LLC

Linear algebra 121

Exercises

1h. Construct a linear system of 4 equations in 4 unknowns, without a solu-
tion. Another one, over the field of reals, with infinitely many solutions.
Write a linear system of 4 equations in 4 unknowns, with a unique so-
lution, such that Algorithm 3.4 fails. Choose your example in a way
that ensures that if the order of the equations in the system is reversed,
Algorithm 3.4 succeeds.

2. Put together the code fragments in Programs 3.4 and 3.5 to realize
a complete multiplication of 32 × 32 Boolean matrix. Extend this to
64×64 and 128×128. Profile the execution of the resulting code on your
computer, using the available compiler(s), identify the critical parts of
the program. Without changing the algorithm, rewrite the critical parts
of the code to improve the overall performance.

3h. Assume that we would like to multiply one fixed square Boolean matrix
of small dimension by many matrices of the same size. To improve the
performance, we consider the algorithm of four Russians which precom-
putes and stores the results all the possible multiplication for rectangular
slices of the original matrix. Assuming that the number of multipli-
cations is very large, we can ignore the time of this precomputation.
Implement and optimize this on your computer.

4. Program 3.6 uses the 32 × 32 matrix multiplication as a black box, in
order to multiply 32n × 32n Boolean matrices. This can be improved
in many ways. A first option is to simply share the fold operations
rather than doing them independently for each small multiplication. A
second option is to use the algorithm of four Russians from the previous
exercise.

5h. In order to make Strassen’s multiplication algorithm running time be-
have more smoothly as a function of the dimension, we should change
the rounding rule and the decision to cut off the algorithm. One simple
but time-consuming option is to run the program for each size using
three possibilities (or two for even dimensions), Strassen with rounding
up, Strassen with rounding down or basic multiplication. After this,
save the most efficient option for this dimension in a table. Then, when
the multiplication is called recursively from a larger size, reuse the saved
option. Note that this table of decision needs to be constructed by start-
ing from small sizes and going up.

6. Reprogram a recursive multiplication algorithm using Winograd’s for-
mulas instead of Strassen’s.

© 2009 by Taylor and Francis Group, LLC

122 Algorithmic Cryptanalysis

7h. Consider Schur’s complement method for matrix multiplication. How
would you bypass the problem caused by the fact that D might be non-
invertible? The goal is to achieve asymptotic complexity with exponent
log2 7.

8. Gaussian elimination can also be used for matrices defined over a ring.
For example, consider the issue of solving linear systems of equations
modulo 256 when the determinant of the system is a multiple of 256
(see Section 3.3.3.1). What new difficulties do appear? How can you
solve them?

9h. Implement the computation of Hermite normal forms over the integers.

Some of the methods presented in this chapter can also be a basis for pro-
gramming projects. Implementations of structured Gaussian elimination or
iterative algorithms are very interesting in this respect, especially in conjunc-
tion with the applications presented in Chapters 11 and 15.

© 2009 by Taylor and Francis Group, LLC

Chapter 4

Sieve algorithms

Many modern algorithms for factoring and computing discrete logarithms
in finite fields heavily rely on sieving in practical implementations1. These
index calculus algorithms themselves are described in the applications part
of this book, more precisely in Chapter 15. We chose to present the sieve
algorithms in the present chapter in order to focus on the variety of possible
implementations and available trade-offs.

4.1 Introductory example: Eratosthenes’s sieve

Eratosthenes (276–194 BC) was an ancient Greek mathematician. Among
his many contributions, he invented one of the first algorithms known. This
algorithm, called Eratosthenes’s sieve, is an efficient method for computing
all prime numbers up to a given bound. In 2004, Atkin and Bernstein [AB04]
found a faster algorithm for achieving this task. However, before that, Eratos-
thenes’s sieve had essentially been unsurpassed for more than two millennia.
In this section, in order to introduce sieve algorithms, we show how to effi-
ciently implement Eratosthenes’s sieve on modern computers.

4.1.1 Overview of Eratosthenes’s sieve

The basic idea of Eratosthenes’s sieve is to start from a list of integers from 1
up to some initial limit and to remove all non-primes from the list, thus ending
with a list of primes. The first step is to cross 1, which is a unit, thus not a
prime, in the ring of integers. After that, the smallest remaining number, 2,
is a prime. As a consequence, all multiples of 2 are composite numbers and
can be crossed from the list. The next smallest remaining number is 3, which
is prime and its multiples need to be crossed. After that, we find in turn the
prime numbers 5, 7, 11 and so on, cross their multiples and continue until

1As we will see in Chapter 15, sieving is only an implementation aspect of these algorithms
and can be ignored where asymptotic analysis is concerned. Nonetheless, it is a very
important practical aspect.

123

© 2009 by Taylor and Francis Group, LLC

124 Algorithmic Cryptanalysis

we reach the end of our list. To make the description more precise, we write
down the pseudo-code in Algorithm 4.1.

Algorithm 4.1 Eratosthenes’s sieve
Require: Initial limit Lim

Create array IsPrime indexed from 1 to Lim, initialized to true.
IsPrime[1]←− false
for i from 2 to Lim do

if IsPrime[i] is true then
j ←− 2i
repeat
IsPrime[j]←− false; j ←− j + i

until j > Lim
end if

end for
for i from 2 to Lim do

if IsPrime[i] is true then
Display(i,’is prime’)

end if
end for

Before going through the process of programming and optimizing this al-
gorithm, let us analyze its main properties. First of all, the algorithm needs
to work with Boolean values. From a theoretical point-of-view, this is ex-
tremely nice. However, the practical use of Booleans in the C language is
not completely straightforward. Indeed, no Boolean type was defined in early
C89, and while an extension was added in C99, it is still not supported by all
compilers. Thus, as in Chapter 3 we use the trick of packing several Booleans
into the machine representation of a single (unsigned) integer. This allows us
to represent the required array of Lim Booleans into Lim/8 bytes of memory.

From the point-of-view of correctness, let us show that the algorithm works
correctly. It is necessary to prove that any prime number has true stored in
the corresponding entry of table IsPrime and that any composite number C
has false stored. Clearly, since the table is initialized with true and since
only 1 and proper multiples of accepted numbers are crossed, no prime number
may be crossed from the list. Thus, we need to check that all composites are
effectively removed. More precisely, this event happens during the first i loop,
before i reaches value C. Indeed, if C is composite, it has at least one prime
divisor, say P < C. Since P is prime, it remains in the final list and thus all
its multiples, including C are crossed. Thus the algorithm is correct.

As the runtime analysis goes, the algorithm spends dLim/pe steps in the
inner loop to remove the multiples of the prime p (when i is equal to p).

© 2009 by Taylor and Francis Group, LLC

Sieve algorithms 125

Thus, the total running time is bounded by:

Lim∑
p=2

⌈
Lim

p

⌉
. (4.1)

Looking more precisely at the algorithm, we see that every composite is
crossed more than once. This opens the way for a slight improvement, it
suffices to cross multiples of p starting from p2. Indeed, each composite C has
at least one prime divisor p such that p2 ≤ C. This reduces the number of
iterations of the outside loop down to

√
Lim and improves the running time.

However, asymptotically, the gain is negligible. The main reason is that small
primes have many multiples and sieving over these primes is the costly part of
the algorithm. In the next section, we present possible improvements in order
to speed up practical implementation of Eratosthenes’s sieve. Our starting
reference implementation is the C code of Program 4.1.

4.1.2 Improvements to Eratosthenes’s sieve

Looking at our reference Program 4.1, we quickly discover two main lim-
itations on its range of applicability. The first limitation, which is easily
overcome, is the fact that with many compilers, the integer type int repre-
sents signed 32-bit integers which cannot count above 231−1. To remove this
limitation, it suffices to define the loop variables i and j as 64-bit integers.
The next limitation is the need to store the Boolean array containing one bit
for each number up to the considered limit. Even with a 1 Gbyte memory,
this prevents us from building primes further than 233.

4.1.2.1 Wheel factorization

Our first improvement pushes this limit further by focusing on the regularity
of the distribution of multiples of small primes in order to use less memory.
The most basic example of this idea is to remove all even numbers from our
table in memory. This is safe since the only even prime is 2. Moreover, this can
be done without any essential change to the sieving process. Indeed, if x is an
odd multiple of p, the next odd multiple of p is x + 2p whose representation
is located p steps further than the representation of x in memory. As a
consequence, this improvement also allows us to run Eratosthenes’s sieve twice
as far for the same cost in terms of both time and memory. To push this idea
further, let us consider the three primes 2, 3 and 5. Between, 1 and 30, only
eight numbers, namely 1, 7, 11, 13, 17, 19, 23 and 29, are not multiples of
either 2, 3 or 5. Moreover, adding 30 or a multiple of 30 to any number
preserves the properties of being multiple of 2, 3 or 5. As a consequence,
in any interval of 30 consecutive integers, we know that Eratosthenes’s sieve
already removes 22 numbers, simply by sieving over the small primes 2, 3
and 5. We can use this fact and restrict our table of Booleans in memory

© 2009 by Taylor and Francis Group, LLC

126 Algorithmic Cryptanalysis

Program 4.1 Basic C code for Eratosthenes’s sieve
#include <stdio.h>
#include <stdlib.h>

typedef unsigned int packedbool;
packedbool *_IsPrime;

#define NpckBool (8*sizeof(packedbool))
#define GetIsPrime(x) \

(_IsPrime[(x-1)/NpckBool]>>((x-1)%NpckBool))&1
#define SetCompo(x) \

_IsPrime[(x-1)/NpckBool]&=~(1UL<<((x-1)%NpckBool))

SievePrimes(int Limit)
{
int i,j, tabLimit;

tabLimit=(Limit+NpckBool-1)/NpckBool;
for (i=0;i<tabLimit;i++) _IsPrime[i]=~0;
for (i=2;i*i<=Limit;i++){
if (GetIsPrime(i)) {
for (j=i*i;j<=Limit;j+=i){
SetCompo(j); } } }

printf("List of primes up to %d:\n",Limit);
for (i=2;i<=Limit;i++){
if (GetIsPrime(i)) {
printf("%d\n",i); } } }

main()
{
int Limit;
printf("Enter limit ?");
scanf("%d",&Limit);
_IsPrime=(packedbool *)malloc((Limit+NpckBool-1)/8);
SievePrimes(Limit);
free(_IsPrime);

}

© 2009 by Taylor and Francis Group, LLC

Sieve algorithms 127

to consider only numbers of the form 30k + δ, for all integers k and for δ
chosen among 1, 7, 11, 13, 17, 19, 23 and 29. This allows us to represent more
than three times more numbers than the initial sieve into the same amount
of memory. In order to visualize the algorithmic principle, it is useful to
represent the numbers on a modular wheel of perimeter 30 as in Figure 4.1.
For this reason, this particular approach to Eratosthenes’s sieve is often called
wheel factorization.

30k + δ

�0 1
�2

�3

�4

�5

�6

7

�8

�9

��10

11

��12
13

��14��15��16
17

��18
19

��20

��21

��22

23

��24

��25

��26
��27

��28
29

Figure 4.1: Schematic picture of wheel factorization

Of course, we can even add more small primes into the picture to further
improve the ratio, going up to the small prime 11, we restrict ourselves to
480 numbers out of 2310, thus gaining a factor of almost five. Using wheel
factorization also speeds up the computation. Indeed, it removes the need
to sieve over the smallest, more costly, primes. However, the approach has
the drawback of complicating the matter of sieving over larger primes, since
the locations of multiples of these primes are no longer evenly distributed
in memory. To show the difficulty, let us consider the distribution of the
multiples of 7 in a wheel of perimeter 30. We already know that our memory
only holds numbers which are multiples of neither 2, 3 nor 5. We now need to
locate multiples of 7 among these numbers. They are obtained by multiplying

© 2009 by Taylor and Francis Group, LLC

128 Algorithmic Cryptanalysis

together 7 with a number in the wheel, since multiplication by 7 does not
change the divisibility by 2, 3 or 5. Thus, we need to mark all numbers of the
form: 7 · (30k + δ) for all k and for δ in 1, 7, 11, 13, 17, 19, 23 and 29. These
numbers form eight series, one for each value of δ and each series consists in
evenly distributed numbers in memory, separated by a distance of 7 × 8 as
shown in Figure 4.2, with one series in each column. However, the figure also
shows that the starting points of the different series are not evenly spaced. In
our example, the starting points correspond to the numbers 7, 49, 77, 91, 119,
133, 161 and 203 and their respective locations in memory are 1, 13, 20, 24, 31,
35, 42, 54; assuming that 1 is at location 0. This uneven distribution makes
the sieving code more complicated. We need either to sieve with irregular
steps or to repeat the sieve eight times, once for each of the different series.
With a wheel of fixed size, this can be achieved by embedding all the different
cases into the program.

Alternatively, we can let the size of the wheel grow with the upper bound
Lim, this is the dynamic wheel approach initially proposed by Pritchard
in [Pri81]. Programming dynamic wheels is trickier and adds some significant
computational overhead, which may be costly in implementations. However,
it truly improves asymptotic complexities as shown in Section 4.1.2.4. A way
to avoid part of the difficulty is to use dynamic compilation, i.e., to write
a program which given the input bounds generates a new program with an
adapted wheel size.

4.1.2.2 Segmented sieve

Our second improvement aims at removing the memory limitation alto-
gether. It is based on a refinement of the remark that only primes up to
square root of any composite need to be considered in order to cross this com-
posite. As a consequence, the sieving process only needs to know the prime
numbers up to the initial limit in order to proceed further up. Thus, the main
part of the computation only depends on a short initial segment of Eratos-
thenes’s sieve. This implies that the computation can be split into several
smaller computations, each within an interval of length equal to the square
root of the initial limit. Each of these smaller computations is essentially in-
dependent of the previous ones, the notable exception being the computation
of the primes in the first of these intervals. Doing this, we can reduce the
amount of required memory drastically, representing only short intervals of
square root length. However, sieving each interval independently adds some
computational overhead. Indeed, we need to compute the location of the first
multiple of each prime in each interval. In fact, it is better to reuse some
of the memory we just saved in order to remember this location from one
interval to the next. This is illustrated by the C code of Program 4.2.

This approach, which works with each segment in turn, is called segmented
sieve. From a complexity point-of-view, it greatly reduces the amount of
required memory. However, the number of operations to perform remains

© 2009 by Taylor and Francis Group, LLC

Sieve algorithms 129

Program 4.2 Small memory code for Eratosthenes’s sieve
#include <stdio.h>
#include <stdlib.h>
typedef unsigned int packedbool; typedef long long int int64;
packedbool *_IsBPrime; packedbool *_IsPrime; int64 *Offset;
#define Npck (8*sizeof(packedbool))
#define GetBasePrime(x) (_IsBPrime[(x)/Npck]>>((x)%Npck))&1
#define SetBaseCompo(x) _IsBPrime[(x)/Npck]&=~(1UL<<((x)%Npck))
#define GetIsPrime(x) (_IsPrime[(x)/Npck]>>((x)%Npck))&1
#define SetCompo(x) _IsPrime[(x)/Npck]&=~(1UL<<((x)%Npck))
#define Action(p) printf("%lld\n",(int64)(p))

int InitialSievePrimes(int Limit) {
int i, j, count, tabLimit;
count=0; tabLimit=(Limit+Npck-1)/Npck;
for (i=0;i<tabLimit;i++) _IsBPrime[i]=~0;
for (i=2;i*i<Limit;i++){
if (GetBasePrime(i)) { count++;
for (j=i*i;j<Limit;j+=i) SetBaseCompo(j); } }

for (;i<Limit;i++){if (GetBasePrime(i)) count++;}
Offset=(int64 *)malloc(count*sizeof(int64)); count=0;
for (i=2;i<Limit;i++){
if (GetBasePrime(i)) { Action(i);
j=Limit%i; if (j!=0) j=i-j; Offset[count]=j;
count++; } } }

int SievePrimesInterval(int64 offset, int Length) {
int i, j, count, tabLimit;
count=0; tabLimit=(Length+Npck-1)/Npck;
for (i=0;i<tabLimit;i++) _IsPrime[i]=~0;
for (i=2;i<Length;i++) {
if (GetBasePrime(i)) {
for (j=Offset[count];j<Length;j+=i) SetCompo(j);
Offset[count]=j-Length; count++; } }

for (i=0;i<Length;i++) {if (GetIsPrime(i)) Action(offset+i); }
}

© 2009 by Taylor and Francis Group, LLC

130 Algorithmic Cryptanalysis

Program 4.2 Small memory code for Eratosthenes’s sieve (continued)
main() {
int i,j; int64 Limit, tmp; int sqrt;

printf("Enter limit ?"); scanf("%lld",&Limit);

for(tmp=0;tmp*tmp<=Limit;tmp++); sqrt=tmp;

_IsBPrime=(packedbool *)malloc((sqrt+Npck-1)/8);
_IsPrime=(packedbool *)malloc((sqrt+Npck-1)/8);
InitialSievePrimes(sqrt);

for(tmp=sqrt;tmp<Limit-sqrt;tmp+=sqrt)
SievePrimesInterval(tmp,sqrt);

SievePrimesInterval(tmp,Limit-tmp);

free(_IsPrime);free(_IsBPrime);
}

© 2009 by Taylor and Francis Group, LLC

Sieve algorithms 131

M
em

or
y

lo
ca

ti
on

s
N

um
bers

represented

1

31

61

91

121

151

181

211

241

271

301

331

361

7

37

67

97

127

157

187

217

247

277

307

337

367

11

41

71

101

131

161

191

221

251

281

311

341

371

13

43

73

103

133

163

193

223

253

283

313

343

373

17

47

77

107

137

167

197

227

257

287

317

347

19

49

79

109

139

169

199

229

259

289

319

349

23

53

83

113

143

173

203

233

263

293

323

353

29

59

89

119

149

179

209

239

269

299

329

359

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

Figure 4.2: Multiples of 7 in a wheel of perimeter 30

© 2009 by Taylor and Francis Group, LLC

132 Algorithmic Cryptanalysis

essentially the same and the approach does not seem to offer any improvements
to the running time. Yet, in practice, doing the sieve in a segmented way
allows to work in a very small amount of memory. For example, with an
upper-bound Lim = 234, above the limit we previously had with a 1 Gbyte
memory, the basic segment contains 217 integers and is represented by 217

bits or 16 Kbytes. On most modern computers, this fits without any difficulty
in the first level of cache. Since sieving is a simple process that requires few
operations, the time of the main memory accesses dominates the computation
of our reference code for sieving. With the segmented sieve, the memory
accesses in cache are about twice as fast. It is interesting to note that the
gain is quite small compared to the most extreme memory behaviors. One of
the reason is that the basic sieve is already quite good in terms of its memory
access structure. Remember that at lot of time is spent sieving the small
primes and that for small primes we access a sequence of memory positions
not too far from each other. Another reason is that the computational load
for packing the Boolean is not negligible and hides part of the gain.

4.1.2.3 Fast practical Eratosthenes’s sieve

Of course, nothing prevents us from combining both improvements to obtain
an even faster code. However, before devising a combined approach, it is
essential to profile our previous codes in order to understand their limitations.
The very first remark that arises during profiling is that a huge portion of the
running time is used to simply print the prime numbers. From an algorithmic
point-of-view, this is irrelevant, indeed there are many possible applications
to computing prime numbers and many of them do not involve any printing.
For example, we may want to compute general statistics on the distribution
of primes or we may require the creation of prime numbers as pre-requisite
for a subsequent algorithm. As a consequence, before profiling it is important
to replace the action of printing the primes by a different, less costly action.
One simple possibility is to increment a counter and obtain the total number
of prime numbers below the considered bound.

Profiling this code shows that when building the primes up to 109, about
three quarters are spent in the sieving process itself, the final quarter of the
running time is spent in the last line of SievePrimesInterval, where the
Boolean table with the prime status is reread from memory. This is quite
surprising, because from an asymptotic point-of-view, this part of the code
has complexity O(Lim) compared to O(Lim · log log(Lim)) for the sieve itself
and should be negligible. However, for practical values of the bound Lim,
the resulting value log log(Lim) is very small, which explains the apparent
discrepancy.

4.1.2.4 Fast asymptotic Eratosthenes’s sieve

From an asymptotic point-of-view, there are several different optimums
when looking at the sieve of Eratosthenes, depending on the relative contri-

© 2009 by Taylor and Francis Group, LLC

Sieve algorithms 133

bution of time and space to the complexity. In particular, in [Sor98], Sorenson
presented four different combinations with different balance of time and space.

We can either try to optimize the asymptotic running time or take into
account both the running time and the memory use. When considering the
asymptotic running time only, the best known variation on Eratosthenes’s
sieve is an algorithm by Pritchard, described in [Pri81]. This algorithm uses
wheel factorization with the largest possible wheel applicable to the upper
sieve bound Lim given in input. Clearly, the wheel size is a function of Lim and
this approach needs to deal with the additional technicalities of using wheel
of varying size. The resulting algorithm is sublinear in time but requires a
large amount of space.

Another approach proposed by Pritchard [Pri83] is using both wheels and
a segmented sieve. It only achieves linear time but reduces the memory re-
quirements down to the square root of the bound Lim.

4.1.3 Finding primes faster: Atkin and Bernstein’s sieve

As we saw above, asymptotically, the sieve of Eratosthenes can be sublinear;
it can also be performed using a small amount of memory. However, it is not
known how to achieve both properties simultaneously for this sieve. This has
been an open problem for a long time. In 1999, Atkin and Bernstein proposed
in [AB04] a new algorithm, not based on Eratosthenes’s sieve, that solves this
problem. This algorithm is constructed from 3 subroutines each addressing a
subset of the prime numbers, using a characterization of primes which does
not make use of divisibility. The first algorithm can be used to find primes
congruent to 1 modulo 4, the second finds primes congruent to 1 modulo 6
and the third finds primes congruent to 11 modulo 12. Since all primes, but 2
and 3, are of these forms these three subroutines suffice. For primes congruent
to 1 modulo 12, we need to choose either the first or second subroutine.

Let us start with the case of primes congruent to 1 modulo 4. The algorithm
is based on the following theorem:

THEOREM 4.1 (Th. 6.1 in [AB04])

Let n be a square-free positive integer with n ≡ 1 (mod 4). Then n is prime
if and only if the cardinality of the set

{
(x, y)|x > 0, y > 0, 4x2 + y2 = n

}
(or

equivalently of the set
{

(x, y)|x > y > 0, x2 + y2 = n
}

) is odd.

The first subroutine follows quite naturally from this theorem. It contains
two phases: the first phase computes the cardinality of the set given in The-
orem 4.1, the second phase removes non-square-free integers. This results in
Algorithm 4.2. For more efficiency, this algorithm can be combined with a
wheel. For example, in [AB04] it is presented (as Algorithm 3.1) using a wheel
of 30. Note that such a wheel is easily combined with the congruence condi-
tion modulo 4, thus resulting in an extended wheel of length 60 containing 8

© 2009 by Taylor and Francis Group, LLC

134 Algorithmic Cryptanalysis

different numbers.

Algorithm 4.2 Sieve of Atkin and Bernstein for primes ≡ 1 (mod 4)
Require: Initial range Lim . . . Lim + 4Count with Lim ≡ 1 (mod 4)

Create array IsOdd indexed from 0 to Count, initialized to false.
for all (x, y, i) with x > 0, y > 0, i ≤ Count, 4x2 + y2 = Lim + 4i do

Negate the Boolean value of IsOdd[i]
end for
for all prime q with q2 ≤ Lim + 4Count do

for all Lim + 4i multiples of q2 do
Set IsOdd[i] to false

end for
end for

The other subroutines derive from two other Theorems 4.2 and 4.3. They
can also be implemented using extended wheels of 60, respectively containing
eight and four numbers.

THEOREM 4.2 (Th. 6.2 in [AB04])
Let n be a square-free positive integer with n ≡ 1 (mod 6). Then n is prime

if and only if the cardinality of the set
{

(x, y)|x > 0, y > 0, 3x2 + y2 = n
}

is
odd.

THEOREM 4.3 (Th. 6.3 in [AB04])
Let n be a square-free positive integer with n ≡ 11 (mod 12). Then n is

prime if and only if the cardinality of the set
{

(x, y)|x > y > 0, 3x2 − y2 = n
}

is odd.

Putting together the three subroutines implemented with an extended wheel
of 60 gives a practically efficient code. A package called primegen written by
Bernstein and distributed on his web pages gives an efficient implementation
of this algorithm. Moreover, from an asymptotic point-of-view, this new al-
gorithm improves upon the best algorithms based on Eratosthenes’s sieve. In
this case, we need to use a wheel containing all the primes up to

√
log Lim and

achieve running time O(Lim/ log log(Lim)) using Lim1/2+o(1) bits of memory.

4.1.3.1 Further improvements of Atkin and Bernstein’s sieve

While more efficient than algorithms based on the sieve of Eratosthenes,
Atkin-Bernstein’s sieve share a drawback with it. Assume that we do not want
all the primes up to Lim, but only the primes in some interval [Lim1, Lim2].
Then, we see that there is a fixed start-up cost O(

√
Lim2) which is independent

© 2009 by Taylor and Francis Group, LLC

Sieve algorithms 135

of the length of the interval. With the sieve of Eratosthenes, this cost comes
from creating the primes up to

√
Lim2 and finding their smallest multiples in

the interval. For Atkin and Bernstein’s sieve, the cost comes from the number
of pairs (x, y) we need to enumerate. Let us consider the first case that covers
primes congruent to one modulo 4. There, we need to consider all pairs (x, y)
with Lim1 ≤ 4x2 + y2 ≤ Lim2. Equivalently, we need to enumerate all pairs
(x′, y) with Lim1 ≤ x′2 + y2 ≤ Lim2 and x′ even. This can be done by finding
all points with integer coordinates located between two concentric circles of
diameter

√
Lim1 and

√
Lim2. When Lim1 is near from Lim2, it seems natural

to expect that this task requires a walk inside the perimeter of the outer circle
and costs O(

√
Lim2). This is indeed the behavior of the algorithm proposed

by Atkin and Bernstein in [AB04].
Surprisingly, it is possible to enumerate all integer points between two

nearby concentric circles in a more efficient manner. The key idea comes
from a theorem of van der Corput and it has been applied to the algorithm of
Atkin and Bernstein by Galway in his PhD thesis. Using this technique, he
devised a “dissected” sieve based on Atkin-Bernstein’s whose overhead cost
is only O(3

√
Lim2). Using this algorithm, he could enumerate primes in small

intervals for much larger values of Lim2.
At the time of writing, this dissected sieve idea is not used in any cryp-

tographic application. Thus, we do not describe it in detail and refer the
interested reader to Galway’s thesis [Gal04].

4.2 Sieving for smooth composites

In the previous section, we used sieve algorithms to find prime numbers.
However, another very frequent application of sieve algorithms in cryptog-
raphy searches for composite numbers (resp. polynomials) with many small
enough factors, which are usually called smooth numbers (resp. polynomials).
Applications are discussed in Chapter 15. In the present chapter, we simply
focus on the sieve algorithms themselves and show the many possible variants,
together with their performance issues. When sieving for composites instead
of primes, there is a first, essential difference. In order to locate primes, a
Boolean table is enough, indeed, whenever a number has a divisor, it is com-
posite and can be removed. When locating smooth numbers, this is no longer
true, indeed, we need to check that each number has enough divisors and thus
we should be able to count higher than 1.

Another important difference between the sieve algorithms in Sections 4.1
and 4.1.3 and the algorithms in this section is that instead of simply searching
for numbers in an interval we may have an additional degree of freedom and
search in higher dimensional sets. The most frequent case is to consider two

© 2009 by Taylor and Francis Group, LLC

136 Algorithmic Cryptanalysis

dimensional spaces. In this context, there are several possible strategies to
cover the sieving zone. We present two classical options: line and lattice
sieving.

Finally, when using the algorithms presented in this section in applications,
we need to find many smooth objects but it is usually not essential to retrieve
all of them. We can overlook some without any problems as long as we find
many quickly enough.

Due to these differences, to optimize the sieve algorithms in this section, we
cannot follow the same approaches as before and we need to develop specific
strategies.

4.2.1 General setting

The most frequent case for sieve algorithms, especially in index calculus
methods (see Chapter 15), is to consider algebraic objects of the form a+ bα
where α is fixed and a and b vary. Without going into the mathematical
details, which are given in Chapter 15, we need to explain what “smoothness”
means in this context. In fact, there are two different mathematical settings
to consider. The varying elements a and b may be either numbers (integers)
or univariate polynomials over a small finite field. The two settings are very
similar from a high level point-of-view, but the implementation details vary a
lot between the two. Moreover, the mathematical language used to described
both cases is slightly different. For now, we give an overall description using
the language corresponding to the case of numbers. Our first remark is that
we only consider pairs (a, b) where a and b are coprime. Otherwise, we would
be considering multiples of previously seen objects. In the context of index
calculus, this would result in equivalent equations and would not be of any
help. Given such a pair (a, b), we need to consider a + bα modulo a prime p
and test whether we find 0 or not. To do this, we need to define the image
of α modulo p. In general, this image need not be unique, for some primes α
has a single image α(1)

p , for some it has two α(1)
p and α

(2)
p , and so on . . .

There are also primes with no image at all for α, these primes can never
occur among the factors of a+ bα. For both theoretical and practical reasons,
it is best to consider each image of α for the same p as a different factor. With
this convention, we say that a pair (p, α(i)

p) divides a+ bα when a+ bα
(i)
p ≡ 0

(mod p). From a geometric point-of-view, the pairs (a, b) associated to objects
of the form a+ bα divisible by (p, α(i)

p) are nicely distributed in the Euclidean
plane. More precisely, they form a 2 dimensional lattice. This is easily shown,
let a + bα be divisible by (p, α(i)

p), then a + bα
(i)
p ≡ 0 (mod p). Thus there

exists an integer λ such that a = −bα(i)
p + λp. This implies that:(

a
b

)
= b

(
−α(i)

p

1

)
+ λ

(
p
0

)
. (4.2)

Thus, a point associated to an element a+bα divisible by (p, α(i)
p) belongs to

© 2009 by Taylor and Francis Group, LLC

Sieve algorithms 137

the 2-dimensional lattice generated by the two vectors appearing in the right-
hand side of Equation (4.2). Conversely, we can check that both generating
vectors satisfy the divisibility equation, since −α(i)

p + 1 ·α(i)
p ≡ 0 (mod p) and

p + 0 · α(i)
p ≡ 0 (mod p). By linearity, any integer linear combination of the

two vectors also satisfies the divisibility equation. As a consequence, the set
of points associated to elements a + bα divisible by (p, α(i)

p) is precisely this
2-dimensional lattice.

a

b

Figure 4.3: Set of points a+ bα divisible by (11, 5)

To illustrate this geometric point-of-view, we choose the following simple
example: let us take the prime p = 11 and an image for α: α(1)

11 = 5. In this
case, the set of points divisible by (11, 5) is represented by Figure 4.3. In this
example, we see that the generating vectors we gave for this lattice are not
the best possible choice. The two dotted vectors in Figure 4.3 give a better
description of the lattice. Since the lattice is two-dimensional, it is not neces-
sary to use the general purpose algorithms described in Chapter 10 to obtain
this good representation. We can either use Gauss reduction as described in
Chapter 10 or adapt a continued fraction algorithm to our purpose. For now,
we assume when necessary that each pair (p, α(i)

p) is given together with a
good basis describing the corresponding lattice.

Adaptation to polynomials We mentioned at the beginning of the present
section that we adopt here the language of numbers. In the case of polyno-
mials, the necessary adaptations are quite natural. When considering a+ bα,
a and b become univariate polynomials over a finite field, say a(t) and b(t).
The primes p are replaced by irreducible polynomials p(t) over the considered

© 2009 by Taylor and Francis Group, LLC

138 Algorithmic Cryptanalysis

finite field. The images αp also become polynomials and we say that a pair
(p(t), α(i)

p (t)) divides a(t) + b(t)α when a(t) + b(t)α(i)
p (t) is a multiple of p(t)

over the finite field.

4.2.1.1 Smoothness

Now that we know how to find divisors of an element a+ bα, we are ready
to define the notion of smoothness. We start from a smoothness basis B
containing all pairs (p, α(i)

p) with p ≤ B, where B is called the smoothness
bound. We say that a+bα is B–smooth if and only if all its divisors belong to
B. To detect a smooth element, we check that product of the primes occuring
in its divisors is near a number called the norm of a+ bα which roughly gives
the size of a+ bα. This notion of norm is defined precisely in Chapter 15. For
the rest of this chapter, we do not need an exact definition and simply need
to know that a number is B–smooth if and only if its norm is a product of
prime numbers below B.

Without going into details, let us mention an additional complication due
to the fact that the notion of divisibility we presented earlier is also associated
with a notion of multiplicity: a pair (a, b) may be divisible by (p, α(i)

p) more
than once. We chose to ignore that point, which is needed for the algorithms
in Chapter 15, since the notion of multiplicity is usually overlooked by sieving
algorithms.

This means that when computing the product of the primes occuring in the
divisors of a+bα, we do not correctly account for the contribution of multiple
factors. Thus, there is no guarantee that the product is equal to the norm,
but on average we expect it to be close to it. Indeed, we expect multiple
factors to be of small size and the overall multiple contribution to remain
small. Of course, we could also try to account for divisors that occur multiple
times; however, the additional computational cost makes this approach much
less practical. Note that in practice, instead of computing the above prod-
uct, it is more convenient to compute an additive equivalent by adding the
logarithms of the primes occuring in divisors. An even simpler alternative is
to compute the numbers of different divisors, if it is high enough, we expect
a + bα to be smooth quite often. Of course, using these simplifications, i.e.,
ignoring multiplicities and counting the numbers of divisors only, we may well
miss some smooth elements. However, since we only need to find many, not
all, this is not a real problem. A very important parameter when detecting
smooth candidates is the detection threshold. It should be carefully chosen by
balancing the rate of false candidates and the rate of good candidates being
overlooked.

4.2.1.2 Basic Lattice Algorithm

With all these elements in mind, we are now ready to give our first algorithm
to sieve for smooth elements a+ bα with |a| and |b| smaller than sieve limits

© 2009 by Taylor and Francis Group, LLC

Sieve algorithms 139

Sa and Sb. As said before, we are only interested in pairs (a, b) where a and
b are coprime. Moreover, we may remark that it is useless to consider both
a + bα and its opposite. As a consequence, we may assume that a ≥ 0. We
need to explore as sieving zone a rectangle of Sa by 2Sb − 1 points. Using a
direct approach to explore the whole sieving zone results in Algorithm 4.3.

Algorithm 4.3 Two-dimensional sieving for smooth numbers
Require: Smoothness basis B
Require: Sieve limits Sa and Sb
Require: Expected value LogV al for smooth candidates

Create two-dimensional array LogSum indexed by [O · · ·Sa − 1]× [−(Sb −
1) . . . Sb − 1] initialized to zero
for all P = (p, α(i)

p) in B do
for all (a, b) ∈ [O · · ·Sa − 1]× [−(Sb − 1) . . . Sb − 1] with a+ bα divisible
by P do

Add blog pe to LogSum[a, b]
end for

end for
for all (a, b) ∈ [O · · ·Sa − 1]× [−(Sb − 1) . . . Sb − 1] do

if LogSum[a, b] ≥ LogV al then
Check whether a+ bα is really smooth
If so Display((a, b),‘corresponds to a smooth value’)

end if
end for

As stated, this algorithm is not complete; we need to know how to walk
over multiples of (p, α(i)

p) and also how to check whether a candidate a + bα
is really smooth or not. Moreover, even in this basic form, some potential
improvements are already worth considering: Can we expect to go faster than
this basic algorithm? Can we use less memory and work with a smaller array?
In this section, we now give general answers to these questions. More detailed
and specific answers are discussed in Sections 4.2.1.3, 4.2.1.4 and 4.2.1.5.

4.2.1.2.1 Walking the multiples. Given an element (p, α(i)
p) of the smoo-

thness basis B, we need a good presentation of the corresponding lattice given
by two basis vectors ~u and ~v. After that, we search for the lattice elements
within the total sieve area. This is a reasonably simple task performed by
starting from a known lattice element, usually the point at origin and by
adding multiples of the two basis vectors in order to find new points. This is
usually done by nesting two loops, the inner loop goes through the sieve area
by adding multiples of one basis vector, say ~u, thus drawing a line. The outer
loop adds multiples of the other basis vector v. This basic idea needs to be

© 2009 by Taylor and Francis Group, LLC

140 Algorithmic Cryptanalysis

adapted to each specific setting and this can be done quite efficiently for all
of our special cases.

4.2.1.2.2 Speeding up the approach. One basic technique to speed
up the sieve algorithm is to remark that an element of B associated with a
prime p corresponds to a walk over a 1/p fraction of the sieving zone. As
a consequence, elements associated to small primes contribute more to the
runtime. Moreover, these elements offer a low added value: knowing that
the norm of an element is divisible by a small prime is a smaller step toward
smoothness. To overcome these two drawbacks, one classical technique is to
remove from the sieve algorithm all elements of the smoothness basis below a
given bound.

4.2.1.2.3 Checking for smoothness. The easiest way to check for smoo-
thness is simply to compute the norm of a+ bα and then to factor this norm
using a fast algorithm. At this point, the cases of numbers and polynomials
are quite different. Indeed, as recalled in Chapter 2, factoring polynomials
can be done in polynomial time by efficient and practical algorithms, thus
this approach seems to be a good start in the case of polynomials. In the case
of numbers, among known algorithm, the better suited for factoring numbers
with many small factors is the elliptic curve factoring method (ECM, see
Chapter 14). As a consequence, in this case, checking smoothness seems to
be much more difficult and other methods need to be devised to remove this
practical obstruction. Note that from a complexity theoretic point-of-view,
using ECM is not a real problem and does not change the overall complexity.
However, in practice, getting rid of ECM, wherever it is possible, greatly
improves the efficiency. Interestingly, these methods can even be used in the
case of polynomials to speed up things a little.

The best approach is to view the problem of checking for smoothness as a
specific factoring task. We need to factor a list of candidates in order to keep
the smooth ones. As with ordinary factoring tasks, it is a good idea to start
by using trial division, thus checking for elements of the smoothness basis
associated to small primes, whether they divide each candidate. It is essential
to follow this approach for the very small primes that were omitted from
the initial sieving phase. When a candidate is divisible by such an element
we divide its (precomputed) norm by the corresponding prime, taking the
multiplicity into account. As a consequence, after going through all the very
small primes, we are left for each candidate with a reduced norm without very
small factors. Once this is done, some candidates have a large reduced norm
and others a smaller one. Clearly, candidates with a large reduced norm have
a smaller probability of being smooth. As a consequence, to speed up things,
it is possible to filter the candidates, removing those with a large norm. After
that, some additional trial division tests can be performed for slightly larger
primes. This idea of filtering, i.e., of aborting early for bad candidates was

© 2009 by Taylor and Francis Group, LLC

Sieve algorithms 141

analyzed precisely by Pomerance in [Pom82] for Dixon’s factoring algorithm
and allowed improvements of its asymptotic time complexity.

Once trial division is finished, we could move to other generic factoring al-
gorithms such as Pollard’s Rho or ECM to factor the reduced norms; however,
at this point, it is tempting to use the extra structure shared by our candi-
dates. All of them are of the form a+ bα with (a, b) in the sieve zone. A good
trick in order to find among the candidates those which are divisible by an
element of B is to sieve again. More precisely, we initialize the sieve zone to
zero except in locations corresponding to candidates, where we write a iden-
tifier for the candidate. During this second sieve, for each point encountered
during the lattice walk, we do nothing if the point’s location contains a zero
and otherwise we divide the reduced norm of the corresponding candidate,
taking multiplicity into account. This approach allows us to factor out all
elements of B corresponding to medium-sized primes.

Finally, after another filtering pass, where we keep small enough reduced
norms, we complete the factorization using primality tests and either Pollard’s
Rho (see Chapter 7) or ECM depending on our choice of factor base B.

Note that, while checking for smoothness, we obtained the factorization of
the norm of each candidate. In order to avoid redoing this job later, it is
preferable in most cases to store this factorization together with the smooth
candidate. This stored factorization is used in the subsequent phases of index
calculus method described in Chapter 15.

4.2.1.2.4 Working with smaller arrays. In order to reduce the re-
quired amount of memory, a natural approach is to mimic the idea behind
wheel factorization described in Section 4.1.2.1. The basic idea behind wheel
factorization is to remove from the memory representation all elements which
are known to be useless. With the current problem, we known in advance
that a pair (a, b) is useless whenever the GCD of a and b is not one. Thus a
good way to reduce the memory usage is to filter out such pairs. Of course,
the filtering should not be too complicated to avoid high runtime penalties.
The simplest approach is to remove all pairs where both a and b are even,
this reduces the amount of memory by 1/4 without involving any complicated
computation. In fact, it is similar to the removal of even integers in Eratos-
thenes’s sieve. Of course, one could push the approach further and remove all
pairs with 2, 3, 5, . . . as a common factor between a and b. However, this
is much less interesting than wheel factorization. Indeed, in Eratosthenes’s
sieve, the proportion of integers removed by adding p to the wheel is roughly
1/p, here it is 1/p2. This new ratio is not so good, since the sum of the series
formed of the squared inverses of primes is converging.

4.2.1.3 The case of polynomials over F2

Some index calculus algorithms need to sieve over pairs (a, b) where a and
b are univariate polynomials. In this section, we address the frequent special

© 2009 by Taylor and Francis Group, LLC

142 Algorithmic Cryptanalysis

case where these polynomials are defined over F2. Using polynomials implies
a slight rewriting of some of the mathematical objects involved, for example
we need to replace prime numbers by irreducible polynomials. However, these
changes are unessential where the sieving process is concerned. Here, we are
interested by the direct impact of using polynomials on the sieve algorithm.
Interestingly, using polynomials over F2 greatly simplifies the task of sieving.
This is the reason why we start with this case. The first remark concerns the
sieving zone. Since we are working over F2 any polynomial is its own opposite.
This additional symmetry leads us to reduce the sieve area to a square zone
a and b should both belong to the same set of small polynomials. Moreover,
it is extremely convenient to define this set by giving a upper bound on the
degrees of a and b. However, this greatly limits the flexibility of the memory
usage. Taking all polynomials of degree < D, we have 22D possible pairs (a, b).
Writing a and b as polynomials in x, it is easy to remove from the memory
representation pairs (a, b) where a and b are both multiples of x. Similarly, it
is easy to remove pairs (a, b) where a and b are both multiples of x + 1. As
soon as D ≥ 2 removing these pairs lowers the required amount of memory
to 9/16 of the initial amount 22D.

From a practical point-of-view, polynomials over F2 can be efficiently rep-
resented by numbers encoded in binary, as long as their degree is smaller than
the available number of bits. Assuming that the bits are numbered from right
to left starting with bit 0, we use bit i to represent the coefficient of xi in the
polynomial. For example, the low order bit (rightmost) is used to encode the
constant term. With this convention, the polynomial x3 + x + 1 is encoded
by the number 11. With this representation, polynomials can be added using
the XOR operation on numbers, they can be multiplied by x using a simple
left shift (multiplication by 2 of the corresponding number). Moreover, within
this representation, multiples of x and x+ 1 are easily recognized. A multiple
of x corresponds to an even number and a multiple of x + 1 corresponds to
a number whose Hamming weight is even, or equivalently to a number that
contains an even number of 1s in its representation.

Despite its drawback of limiting the choice in terms of used memory, choos-
ing a sieving zone comprising all polynomials of degree < D is extremely
convenient for sieving. First, when representing polynomials over F2 as an
integer, testing whether the degree is < D can be done by comparing the
polynomial’s representation with 2D. Since integer comparison is a native
operation on modern computers, this is extremely efficient. Second, when
sieving, we need to construct all multiples of a given polynomial up to degree
D. If we start with a polynomial of degree d, this is achieved by multiplying
it by all polynomials up to degree D−d. With another choice of sieving zone,
we cannot use the additivity of degrees during multiplication and thus need
to use a more complicated and less efficient approach. When constructing all
polynomials up to degree D, we can even speed up the construction of the
multiples by using a Gray code to enumerate them quickly.

To make this more precise, assume that we want to mark all pairs of

© 2009 by Taylor and Francis Group, LLC

Sieve algorithms 143

Binary Gray codes offer a way of
enumerating all vectors on n-bits,
while changing only a single bit be-
tween one vector and the next. For
example, on 4 bits, we have the fol-
lowing code:

0 0 0 0
0 0 0 1
0 0 1 1
0 0 1 0
0 1 1 0
0 1 1 1
0 1 0 1
0 1 0 0
1 1 0 0
1 1 0 1
1 1 1 1
1 1 1 0
1 0 1 0
1 0 1 1
1 0 0 1
1 0 0 0

which contains the sixteen possibil-
ities. Gray codes are useful when-
ever manipulating complex objects
where changes are costly. In this
case, reducing the total number of
changes is clearly worthy. In partic-
ular, it is possible to use Gray codes
to efficiently produce all multiples
of a binary polynomial a(x) by all
polynomial of degree at most n − 1
by using a Gray code on n bits. We
start from an initial multiple equal
to 0, i.e., 0 ·a(x), assuming that bits
are numbered from the right start-
ing at 0, a change on bit c in the
Gray code is converted into an ad-
dition of xca(x) to the current mul-
tiple.

Programming Gray codes on n is a
simple matter. It suffices to run an
arithmetic counter i from 1 to 2n−1
that contains the number of the cur-
rent change. The position of the bit
that needs to be changed during the
i-th is the position of the rightmost
bit equal to 1 in the binary repre-
sentation of i. The position of the
rightmost bit is easily obtained by
shifting a copy of i to the right, until
the resulting number becomes odd.
Note that Gray codes can easily be
generalized to vectors of n elements
in a small finite field Z/pZ. For ex-
ample, for vectors of 3 ternary dig-
its, we obtain the following Gray
code:

0 0 0 1 0 1
0 0 1 1 1 1
0 0 2 1 1 2
0 1 2 1 1 0
0 1 0 2 1 0
0 1 1 2 1 1
0 2 1 2 1 2
0 2 2 2 2 2
0 2 0 2 2 0
1 2 0 2 2 1
1 2 1 2 0 1
1 2 2 2 0 2
1 0 2 2 0 0
1 0 0

Ternary Gray codes are slightly less
suited to the architecture of present
computer, because to implement
them, it is preferable to know the
decomposition of the change counter
i in base 3. As a consequence, they
use many reductions modulo 3 and
division by 3.

Figure 4.4: Gray codes

© 2009 by Taylor and Francis Group, LLC

144 Algorithmic Cryptanalysis

polynomials (a(x), b(x)) divisible by some element of the smoothness basis:
(p(x), αp(x)), where p(x) is an irreducible polynomial. These pairs satisfy the
equation:

a(x) + b(x)αp(x) ≡ 0 (mod p(x)). (4.3)

Using a partial run of Euclid’s extended GCD Algorithm 2.2 on the pair of
polynomials (αp(x), p(x)), we can find two different small solutions, (a1, b1)
and (a2, b2), where the degrees of a1, a2, b1 and b2 are near the half-degree
of p(x). Moreover, any solution (a, b) can be written as a linear combination
of these two initial solutions, i.e., there exist two polynomials λ(x) and µ(x)
such that:

a(x) = λ(x)a1(x) + µ(x)a2(x) and (4.4)
b(x) = λ(x)b1(x) + µ(x)b2(x).

In order to exhibit all solutions, it suffices to consider all pairs (λ, µ) with small
enough degree. As a consequence, we simply need to nest two independent
Gray code enumerations to efficiently enumerate all the (a, b) pairs. This is
much simpler than the corresponding algorithm in the case of numbers, as can
be seen on Algorithm 4.4. This algorithm also tests whether both coordinates
in each pair are multiples of x or x+ 1 before marking the pair.

4.2.1.4 The case of numbers

Sieving with numbers is more complicated than sieving with polynomials
over F2; we must take into account the geometry of both the sieving zone and
the lattice to be sieved. Due to the variety of relative positions of the basis
vectors (~u,~v), many different cases are possible. Assuming that the lattice’s
basis is Gauss’s reduced as described in Chapter 10, we know that ~u is (one of)
the shortest in the lattice and that ~v is (one of) the shortest among the lattice’s
vectors linearly independent from ~u. Moreover, |(~u|~v)| is smaller than ‖~u‖/2.
Thus, ~u and ~v are both short and they are nearly orthogonal to each other.
This means that considering vectors of the form cu~u + cv~v for cu and cv in
given intervals allows us to cover an almost rectangular looking parallelogram.
However, the axes of these parallelogram have no reason whatsoever to be
aligned with the axis of the sieving zone. We describe one possible way of
marking the multiples in Algorithm 4.5. In this code, we denote by wa and
wb the coordinates of a vector ~w. A specific instance of the algorithm is
illustrated in Figure 4.5.

4.2.1.5 The case of polynomials in odd characteristic

Finally, the case of polynomials in odd characteristic is a mix of the two
previous cases. Either the characteristic is small and the degree of polynomials
quite large and we proceed as for polynomials over F2, with the small caveat
that it is no longer possible to represent polynomials simply as bit vectors. Or
the characteristic is larger and we consider only polynomials of small degree,

© 2009 by Taylor and Francis Group, LLC

Sieve algorithms 145

Algorithm 4.4 Walking the multiples with polynomials
Require: Element of B: (p(x), αp(x))
Require: Maximal degrees of a(x) and b(x) in the sieving zone, da and db

Create initial solutions (a1(x), b1(x)) and (a2(x), b2(x))
Let d1 ←− min(da − deg a1, db − deg b1)
Let d2 ←− min(da − deg a2, db − deg b2)
Let (α(x), β(x))←− (0, 0)
for i from 0 to 2d1 − 1 do

if i 6= 0 then
Let i′ ←− i
Let c←− 0
while i′ is even do

Let i′ ←− i′/2
Let c←− c+ 1

end while
Let α(x)←− α(x)⊕ xca1(x)
Let β(x)←− β(x)⊕ xcb1(x)

end if
for j from 0 to 2d2 − 1 do

if j 6= 0 then
Let j′ ←− j
Let c←− 0
while j′ is even do

Let j′ ←− j′/2
Let c←− c+ 1

end while
Let α(x)←− α(x)⊕ xca2(x)
Let β(x)←− β(x)⊕ xcb2(x)

end if
if α(0) 6= 0 or β(0) 6= 0 then

if α(1) 6= 0 or β(1) 6= 0 then
Mark (α(x), β(x))

end if
end if

end for
end for

© 2009 by Taylor and Francis Group, LLC

146 Algorithmic Cryptanalysis

Algorithm 4.5 Walking the multiples with numbers
Require: Element of B: (p, αp)
Require: Sieve limits Sa and Sb

Create reduced basis (~u,~v) for lattice
Modify basis to ensure 0 ≤ ua < va and ub · vb ≤ 0
Assume ub < 0 ≤ vb (otherwise adapt boundary condition in the sequel)

Let ~w ←−
(

0
0

)
repeat

Let ~z ←− ~w
Let ~w ←− ~w + ~u
if wa ≥ va then

Let ~w ←− ~w − ~v
end if

until wb ≤ −Sb
Let ~w ←− ~z {Here ~w is in lower left corner}
Let ~z ←− ~w
repeat

Let ~t←− ~z {Start first sieving zone}
repeat

if ta is odd or tb is odd then
Mark point corresponding to ~t

end if
Let ~t←− ~t+ ~u

until ta ≥ Sa or tb ≤ −Sb
Let ~z ←− ~z + ~v

until za ≥ Sa or zb ≥ Sb
Let ~w ←− ~w − ~u
if wa < 0 then

Let ~w ←− ~w + ~v
end if
repeat

Let ~z ←− ~w {Second sieving zone}
repeat

if za is odd or zb is odd then
Mark point corresponding to ~z

end if
Let ~z ←− ~z + ~v

until za ≥ Sa or zb ≥ Sb
Let ~w ←− ~w − ~u
if wa < 0 then

Let ~w ←− ~w + ~v
end if

until wb ≥ Sb

© 2009 by Taylor and Francis Group, LLC

Sieve algorithms 147

F
irst

S
ievin

g
Z

on
e

Second Sieving Zone

a

b

Figure 4.5: Illustration of Algorithm 4.5

© 2009 by Taylor and Francis Group, LLC

148 Algorithmic Cryptanalysis

sometimes linear polynomials. Since we are sieving over large coefficients, this
behaves more like the case of Section 4.2.1.4.

4.2.2 Advanced sieving approaches

The main drawback of the basic algorithm is its huge memory requirement.
Since it sieves the whole sieving zone at once, it needs enough memory to store
this zone, which is impractical in most cases. In order to lift this difficulty, the
natural answer is to cut the sieving zone in small fragments and address each
in turn. In the literature, two important ways of fragmenting the sieving zone
are considered. The simplest, called line sieving, cuts the sieving zone in lines,
each line corresponding to a fixed value of one coordinate in the pair (a, b).
The other frequent approach looks at two-dimensional fragments obtained by
considering points on sub-lattices within the sieving zone. This is called the
special-q approach. We now discuss both approaches in detail.

4.2.2.1 Line sieving

Line sieving is a simple and elegant solution to sieve large zones. In fact, it is
even conceptually easier than the basic lattice Algorithm 4.3. Indeed, it does
not even require a good lattice description of the linear equation a+ bα

(i)
p ≡

0 (mod p). Assume that we sieve by lines corresponding to a fixed value
of b. Since our choice of sieving zone has a ≥ 0, for each value of b and
for each element (p, α(i)

p) of the smoothness basis, we simply start with the
smallest non-negative representative of bα(i)

p mod p and tick every p-th integer
starting from that point. When sieving several consecutive lines on the same
machine, the performance can be greatly improved by remarking that given
the starting point of (p, α(i)

p) for b, the corresponding starting point for b+ 1
can be computed with a single modular addition which is more efficient than
a modular multiplication. This results in Algorithm 4.6 to sieve a set of
consecutive lines.

Of course, as with the basic lattice sieve, it is easy to derive variations of
this algorithm that simply count the number of divisors of each pair (a, b)
or that remove very small elements of B from the sieving loop. Once this is
done, we can observe that the innermost operation that adds to LogSum[a]
is the most important as running time goes. As a consequence, it is worth
optimizing this inner loop. The key fact is that in most cases, Sa is quite
large and thus the total amount of memory we use is larger than the cache
size. As a consequence, it is a good idea to take the cache structure into
account in order to sieve faster. Assuming that the memory structure is
simple, with a single level of cache, this can be done by further segmenting
the representation of the a values in memory into several blocks that fit in
the cache. For elements of B with a p value smaller than the blocks’ size, we
can sieve a given block while staying within the cache. For larger values of p,

© 2009 by Taylor and Francis Group, LLC

Sieve algorithms 149

Algorithm 4.6 Basic line sieve
Require: Smoothness basis B
Require: Sieve limit Sa
Require: Range for b: bmin · · · bmax
Require: Expected value LogV al for smooth candidates

Create single dimensional array LogSum indexed by [O · · ·Sa − 1]
Create single dimensional array StartPos indexed by B
for all P = (p, α(i)

p) in B do
StartPos[P]←− bminα(i)

p (mod p)
end for
for b from bmin to bmax do

Initialize LogSum to zero
for all P = (p, α(i)

p) in B do
a←− StartPos[P]
while a ≤ Sa do

Add blog pe to LogSum[a]
a←− a+ p

end while
end for
for a from 0 to Sa do

if LogSum[a] ≥ LogV al then
Check whether a+ bα is really smooth
If so Display((a, b),‘corresponds to a smooth value’)

end if
end for
for all P = (p, α(i)

p) in B do
StartPos[P]←− StartPos[P] + alpha

(i)
p (mod p)

end for
end for

© 2009 by Taylor and Francis Group, LLC

150 Algorithmic Cryptanalysis

unfortunately, we need to jump between blocks and do not gain. Luckily, the
small values of p require more operations than the small ones, which makes
this optimization very useful. We illustrate this idea with two levels of cache
by the C code given in Program 4.3.

4.2.2.2 Special-q lattice sieving

The other frequent way of splitting a sieve into smaller is more technically
involved than line sieving. However, it presents the very useful property
of guaranteeing that all the pairs being considered are already divisible by
a common element. This common element, called the special q is usually
chosen among the element B associated to a large prime value. Each piece of
the sieve corresponds to a different special-q. One technicality is the fact that
the various pieces are not necessarily disjoint. As a consequence, when using
this algorithm for sieving, some solutions are duplicated. These duplicates
should be removed using a filtering program. Given a special q written as
(q, αq), the special-q lattice sieving algorithm focuses on pairs (a, b) divisible
by the special and thus satisfying the linear condition a+bαq ≡ 0 (mod q). As
explained in the case of the basic lattice sieving, this corresponds to pairs (a, b)
on some integer lattice, which can be described by a reduced basis (~uq, ~vq).
In most cases, the largest coordinate of each vector in the reduced basis is
in absolute value not too far from

√
q. When this is not the case, the norm

of ~uq is much smaller than the norm ~vq and the basis is unbalanced. With
such an unbalanced basis, special q lattice sieving is much less convenient.
As a consequence, we omit special q’s with unbalanced basis and can assume
from now on that the reduced basis is balanced. More precisely, we fix some
constant Λ and keep a given special-q only when the coordinates of the two
basis vectors are bounded (in absolute value) by Λ

√
q. Using this choice

allows us to choose the sieving zone within the sublattice independently of the
corresponding special q. We consider pairs (a, b) written as cu ~uq + cv ~vq with
(cu, cv) in a fixed sieving zone [0 · · ·Su]× [−Sv · · ·Sv]. A direct consequence of
this choice is that sieving such a sublattice can be done using the basic lattice
sieve Algorithm 4.3. The only condition is that all elements of B should be
expressed in terms of the new coordinates (cu, cv).

In order to express an element (p, α(i)
p) of B in terms of the new coordinates,

let us recall that a + bα belongs to the corresponding lattice whenever the
linear condition a+ bα

(i)
p ≡ 0 (mod p) is satisfied. Replacing a and b by their

expression in cu and cv we find the condition:

(cuuaq + cvv
a
q) + (cuubq + cvv

b
q)α

(i)
p ≡ 0 (mod p) or (4.5)

cu(uaq + ubqα
(i)
p) + cv(vaq + vbqα

(i)
p). ≡ 0 (mod p)

This is a linear equation in cu and cv modulo p. As a consequence, we can
follow the same approach as in the case of the original equation in a and b

© 2009 by Taylor and Francis Group, LLC

Sieve algorithms 151

Program 4.3 Line sieving with two levels of cache
#define SIZE 510000 /* Max. Number of prime pairs */
#define ZONE 9000000 /* Size of each zone, mult of CACHE2 */
#define CACHE1 25000 /* Approximate size of L1 CACHE */
#define CACHE2 750000 /* Approximate size of L2 CACHE */
#define START_ZONE -500 /* Number of first sieve zone */
#define END_ZONE 500 /* Number of last sieve zone */
#define THRESHOLD 12 /* Num. of hits per smooth candidate */
#define START 30 /* Prime pairs below START not sieved */
int root[SIZE], mod[SIZE]; /* Arrays for prime pairs */
char Zone[ZONE]; /* Array for sieving */
int Size; /*True number of pairs */
int Size1, Size2; /*Limits to fit in CACHE1 and CACHE2 */

main()
{ int i,j,offset; int limit2,limit1;
Read();/*Get prime pairs, set Size1/2 to fit CACHE1/2*/
for(i=START;i<Size;i++) {
int r,q; /* Loop shifts primes pairs to first zone */
q=mod[i]; offset=MulMod(START_ZONE,ZONE,q);
r=root[i]-offset; if (r<0) r+=q; root[i]=r; }

for (j=START_ZONE;j<END_ZONE;j++){
for(i=0;i<ZONE;i++) Zone[i]=0; /*Reset sieve zone */
for(limit1=limit2=0;limit2<=ZONE;limit2+=CACHE2) {
for(;limit1<=limit2;limit1+=CACHE1) {
for(i=START;i<Size1;i++) { /* Sieve small*/
int r,m; r=root[i]; m=mod[i];
while (r<limit1) {Zone[r]++; r+=m;}
root[i]=r;}}

for(i=Size1;i<Size2;i++) { /* Sieve medium*/
int r,m; r=root[i]; m=mod[i];
while (r<limit2) { Zone[r]++; r+=m;}
root[i]=r;}}

for(i=START;i<Size2;i++) { /* Shift to next zone */
root[i]=root[i]-ZONE;}

for(i=Size2;i<Size;i++) { /* Sieve large */
int r,m; r=root[i]; m=mod[i];
while (r<ZONE) {Zone[r]++; r+=m;}
root[i]=r-ZONE;}

for(i=0;i<ZONE;i++){ /* Detect and print smooth candidates*/
if (Zone[i]>=THRESHOLD) {printf("F(%d*SZ+%d);\n",j,i);

fflush(stdout); }}}}

© 2009 by Taylor and Francis Group, LLC

152 Algorithmic Cryptanalysis

in order to write down a good representation of the lattice comprising all the
coordinates (cu, cv) of divisible elements.

Finally, we see that lattice sieving with special-q does not differ much from
basic lattice sieving. We need to reinitialize the representations of elements of
B for each special-q and change the accepting bound on the number of divisors
or on the sum of their logarithm to account for the additional special-q divisors
and their influence on the value of norms. Except for this minor change,
everything else is a verbatim copy of our previous approach. However, the
fact that we need to sieve on a relatively small zone for each special-q greatly
enhances the sieve performance.

4.2.3 Sieving without sieving

Before closing this chapter on sieving, it is important to mention an alterna-
tive algorithm proposed by D. Bernstein in [Ber00] that allows the implemen-
tation of index calculus algorithms without using sieving at all. Instead, his
algorithm addresses the problem of finding smooth enough numbers within
a long list of numbers. A nice property of this algorithm is that contrary
to sieve algorithms, it does not require additional structure2 on the numbers
themselves. This interesting property could be especially useful for some spe-
cific applications of index calculus such as Coppersmith factorization factory.
Note that this specific algorithm is almost dedicated to index calculus algo-
rithms that use numbers, when polynomials come in play, it is easier to use
a fast polynomial factorization algorithm. However, Bernstein notes in his
paper that a careful comparison is required in the case of polynomials.

The key ingredient in Bernstein’s algorithm is to consider a large set of
numbers at the same time, to identify the set of primes belonging to the
smoothness basis that occur in the decomposition of the product of these
numbers and using a divide and conquer approach to distribute these primes
to smaller and smaller sets until the decomposition of each number is known.

The main difficulty of the algorithm is the fact that it requires a two-way
divide and conquer approach, to find out which primes are occuring and in
which numbers. The algorithm proposed in [Ber00] nests two divide and
conquer approaches: the inner one is used to determine the set of primes
involved in a particular set of numbers and the outer one to focus on sets
on decreasing size. In order to make the inner loop efficient, the given set of
primes is preprocessed and represented as a product tree. The product tree is
a binary tree whose leaves are labelled by the given primes. Each inner node
of the tree is labelled by the product of the label of its two children. As a
consequence, the root of the product tree contains the product of all primes
in the given set.

2With sieve algorithms, the additional structure comes from the fact that the numbers are
all obtained by evaluating a fixed polynomial at many regularly spaced points.

© 2009 by Taylor and Francis Group, LLC

Sieve algorithms 153

Given a set of primes P and a set of numbers N , the outer divide and
conquer step needs to determine the subset P ′ of primes that occurs in the
decomposition of numbers in N . First, it computes the product ΠN of all
numbers in N and a product tree TP for P . Then it reduces ΠN modulo the
label of the root of the product tree TP . After that, it pushes this reduced
value down the product tree, computing ΠN modulo each label by reducing
the modular value of the father node in order to compute the reduced value
at each node. When the leaves are reached, it is easy to see that the prime
label of a leaf occurs in N if and only if the modular value of ΠN at this leaf
is zero. Thus, P ′ is simply the subset of P corresponding where the modular
value of ΠN vanishes.

In order to refine the decomposition, we simply need to split N in two
(or more) subsets and recursively apply the same algorithm on each subset
together with the prime set P ′. At the very end of the algorithm, we know
the list of primes for each numbers and can easily check for smoothness.

In order to improve the underlying number arithmetic, Bernstein proposes
a slightly different method of computing the modular values at each leaf of
TP . His approach assumes that 2 does not belong to the initial list of primes,
which is not a real constraint since trial dividing by 2 is so easy. Then, when
computing the reduced value of a node from the value of the father, instead
of doing an exact computation, he computes the modular value up to some
power of 2. This improves the arithmetic and of course does not change the
final criteria for odd prime: a prime p occurs in the decomposition of N if
and only if ΠN reduced modulo p is zero. Since 2 is invertible modulo the
odd prime p, multiplying the value ΠN by a power of 2 preserves the final
zero. This modification changes non-zero values but this is irrelevant for our
purpose.

A fair conclusion to this section is to remark that determining the impact of
Bernstein’s algorithm on index calculus methods is currently an open problem.
At the time being, no large index calculus publicly announced computation
has ever made use of this algorithm to improve running times. However,
studying its practical impact is an interesting research problem.

© 2009 by Taylor and Francis Group, LLC

154 Algorithmic Cryptanalysis

Exercises

1. Program a basic implementation of Eratosthenes’s sieve using a wheel
of perimeter 30.

2. Modify the implementation of Exercise 1 into a segmented sieve, similar
to Program 4.2.

3h. Using your answer to Exercise 4.2 as a template, write a program that
generates implementations of Eratosthenes’s sieve with larger wheels of
fixed perimeter. Adding the primes 7, 11 and 13, write a code for wheels
of perimeter 210, 2310 and 30030. Time these programs and compare
their respective performances.

4. Write a version of Eratosthenes’s sieve to deal with wheels of varying
perimeter.

5. Combine wheels of varying perimeter with a segmented sieve.

6h. Create a variant of Eratosthenes’s sieve for finding irreducible polyno-
mials over F2. Make sure that you are using Gray codes and write a
segmented version.

7. An amusing variation of sieving process aims at constructing “Lucky”
numbers. It starts with the list of odd integers, consider the second
number ‘3’ and cross every third number, i.e., 5, 11, . . . In this new list,
the third number is ‘7’, thus we cross every seventh number in the list,
starting with ‘19’. Write a basic sieve program for computing lucky
numbers. Which optimizations of Eratosthenes’s sieve can you adapt to
this case?

8h. Choose a prime p and a polynomial P of degree d. Compare the following
approaches to determine all the polynomials of the form P + a for a in
Fp that have d different roots.

(a) Sieving on a line.

(b) Individual factorization of each P + a.

(c) Adapted variant of Bernstein’s algorithm.

© 2009 by Taylor and Francis Group, LLC

Chapter 5

Brute force cryptanalysis

5.1 Introductory example: Dictionary attacks

Brute force is one of the less subtle1 ways of attacking cryptosystems; it
simply consists of trying all possible values for the secret to recover, until the
correct one is found. Yet, this approach is more tricky than it may seem.
To illustrate this point, we start this chapter by a special case of brute force
attacks: dictionary attacks. Typically, a dictionary attack is used to find out
the password that gives access to a user’s account on an information system.
Since passwords are used for a large number of purposes, dictionary attacks
can be used in a large variety of contexts.

At the first level of dictionary attacks, we find simple password guessing, as
often encountered in books and movies. The attacker simply sits at his target’s
desk, thinks deeply for a little while and, after a couple of unsuccessful trials,
comes up with the correct password.

A slightly more sophisticated version is to automate the process and have
a tool for submitting many passwords until the correct one is found. For
example, this can be easily done when trying to connect to a remote server.
This kind of dictionary attack is called an online dictionary attack. For each
new tested password, the attacker needs to try to open a new session. One
problem (or advantage, depending on the point-of-view) of online dictionary
attacks is that they can be easily detected. For example, smart cards are often
protected using a very short 4-digit password, also called PIN code2. Thus,
any attacker could easily discover the correct PIN code, simply by trying out
the 10,000 different possibilities. Assuming a slow rate of one trial per second,
this could be done in a couple of hours. To avoid this attack, smart cards are
programmed to detect sequences of consecutive failures. After three failures,
they usually stop accepting PIN codes and put themselves in a locked state.
To unlock the card, the user needs a different, much longer password.

Offline attacks are a much stronger form of dictionary attacks. In these
attacks, the attacker first recovers some side information and then using this

1Of course, pointing a gun at the legitimate user and asking for the secret is even less subtle.
2Where PIN stands for Personal Identification Number.

155

© 2009 by Taylor and Francis Group, LLC

156 Algorithmic Cryptanalysis

information is able to test on his own whether a given password is correct or
not. With offline attacks, the attacker is only limited by the raw computing
he has access to. The side information used by the attacker can be of several
different types: it can be the transcript of a protocol execution where the
password was used, it can be an entry from a password file, or even some
side-channel information obtained from the system during password testing.

For our illustration, we focus on the simple case of password files entries.
Password files are used by operating systems or applications that need to check
user passwords in order to store side information that can be used to verify
correctness of passwords. In their simplest form, password files simply store
plaintext copies of passwords. Of course, this is a bad idea, since in that case
passwords are directly accessible to an attacker that obtains the password
file, regardless of the passwords’ length. An equally bad idea is to store
encrypted passwords using a secret key algorithm, indeed, regardless of the
strength of the algorithm, the secret key needs to be stored somewhere to allow
password checking and if the attacker finds this secret key, he can decrypt all
passwords in the file. To avoid these straightforward attacks, the password
file can contain either passwords encrypted with a public key algorithm or
hashed passwords. It also needs to contain auxiliary information that allows
passwords to be tested against the password file. For instance, when using a
randomized public encryption, the random value used for encryption needs to
be stored. This allows at a later point to reencrypt a given password and to
check equality between this new encryption and the stored encryption.

The most common approach is to use hashed passwords, indeed, it is much
faster than using public key encryption. However, there is more to it than
simply running passwords through a standard hash function. Indeed, in that
case, attackers could prepare in advance a dictionary of hashed passwords and
store them in sorted form (see Chapter 6). This would allow using a simple
search to discover hashed passwords from the dictionary extremely quickly.
To avoid this, the hash function needs to be randomized. A simple approach
is to store a hash value of the string formed by concatenating a reasonable
short random string together with a user’s password. To allow verification,
the random string is stored together with the corresponding hash value in the
password file. When the random value is quite short and used as a side input
that modifies the computation of hash values, it is often called a salt. For
example, for decades, Unix-based operating systems used a salted variation
of the DES encryption algorithm to hash passwords. In order to avoid the
possibility of decryption, the password was used as key and served to encrypt
a fixed message. Even with a relatively short salt, storing hashed dictionaries
is highly impractical. Indeed, since you need enough dictionaries to cover
a noticeable fraction of all possible salts, the storage requirements quickly
become impractical.

More recently, passwords have been used, in conjunction with public key
mechanisms, in order to protect cryptographic protocols between users which
only share a short password (see [GL03]). In this context, the goal of the

© 2009 by Taylor and Francis Group, LLC

Brute force cryptanalysis 157

designers is to make make sure that the only efficient attacks need one online
attempt to test one possible password and that, under some security hypoth-
esis, no offline attack exists.

In addition to brute force, dictionary attacks may also rely on time-memory
tradeoffs. A typical example is Hellman’s time memory tradeoff, described in
Chapter 7. Where brute force attacks are concerned, the key ingredient is to
combine an efficient dictionary of potential passwords with a very fast imple-
mentation of the underlying cryptographic algorithm. In the next section, we
illustrate this issue of fast implementations using the famous DES algorithm.

5.2 Brute force and the DES algorithm

The DES, Data Encryption Algorithm [DES77], was the first modern block
cipher available to a wide audience. It was standardized by the NBS, National
Bureau of Standards, in 1977. This block cipher encrypts 64-bit blocks using
56-bit keys. At the time of DES standardization, this keysize was judged to
be too small and potentially vulnerable to brute force attacks. However, no
successful brute force attack against DES was publicly reported until 1997. At
that time, RSA Inc. launched three successive challenges, asking challengers
to decrypt cyphertexts encrypted with the DES. The final challenge in 1999
was broken in less than a day, using a mix of hardware and software.

When software brute force attacks against DES are considered, it is es-
sential to use DES implementations that are very efficient. However, using
implementations that have been written with fast message encryption in mind
are far from optimal when used for cryptanalytic purposes. The main reason
is that to optimize the encryption speed, it is often a good idea to assume that
keys change once in a while and that message blocks change rapidly. For brute
force cryptanalysis, it is exactly the contrary, the known plaintext/ciphertext
pairs (or the available ciphertext for ciphertext only attacks) are fixed, and
the test key changes extremely quickly. As a consequence, optimizing encryp-
tion algorithms with brute force in mind is a very specific task. In the rest of
this section, we describe in detail how this can be done in the case of DES.
For the sake of completeness, we start by recalling the description of the DES
algorithm.

5.2.1 The DES algorithm

DES is based on the Feistel construction and uses 16 consecutive rounds of
Feistel. Before applying these rounds, we find an unkeyed initial permutation
which moves bits around. After the Feistel rounds, we find an unkeyed final
permutation which is the inverse of the initial permutation. In the standard

© 2009 by Taylor and Francis Group, LLC

158 Algorithmic Cryptanalysis

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

Table 5.1: DES initial permutation

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

Table 5.2: DES final permutation

DES description, individual bits within blocks are numbered from left to right,
from 1 to 64 for full blocks, from 1 to 32 for half blocks or from 1 to t for
t-bit subblocks. Using this convention, the initial and final permutations of
DES are given in Tables 5.1 and 5.2. It says that the first bit of the permuted
input is bit 58 of the original input, that the second bit is bit 50, the ninth
bit is bit 52 and so on. It is worth noting that if the inputs are viewed as a
concatenation of eight bytes, then the fifth permuted byte is the concatenation
of the first bits of all original bytes, the first permuted byte the concatenation
of second bits and similarly for other bytes. Thus, implementing the input
permutation in hardware costs virtually nothing when data is entered on an
8-bit bus. It suffices to consider that each bit of the bus is a serial input and
to put together each series of incoming bits in a corresponding byte.

After the initial permutation, the 64 bits of plaintext are split into two
32-bit halves L0 and R0. The left half L0 is formed of bits 1 to 32 of the
permuted input. The right half R0 is formed of bits 33 to 64 of the permuted
input. For each round of Feistel numbered from 1 to 16, DES generates a
specific subkey: Ki for round i. At round i, the algorithm computes:

Li = Ri−1 and Ri = Li−1 ⊕ f(Ri−1,Ki), (5.1)

where f is the round function keyed by Ki. After round 16, the concatenation
of R16 and L16 is passed through the final permutation. Note that on output,

© 2009 by Taylor and Francis Group, LLC

Brute force cryptanalysis 159

16 7 20 21 29 12 28 17
1 15 23 26 5 18 31 10
2 8 24 14 32 27 3 9

19 13 30 6 22 11 4 25

Table 5.3: Permutation of the round function

the left and right halves are reversed. This is an important feature; thanks to
it DES (with round keys in inverse order) is its own inverse.

To make our description of DES complete, we now need to describe the
round function f and the key expansion process which is used to derive the
round keys from the DES 56-bit key. The round function can be written as:

f(x, k) = P ◦ S(E(x)⊕ k), (5.2)

where E is a linear expansion from 32 to 48 bits, S a non-linear transform
consisting of 8 S-boxes from 6 to 4 bits each and P is a bit permutation on 32
bits. The linear expansion E expands its 32 bits of input by duplicating some
of them. Using the same bit numbering convention as before, the expansion E
is described in Table 5.4. After expansion, the block is xored with the round
subkey, then split into 8 slices of 6 bits each. The first slice, consisting of bits 1
to 6, is used as input for the first S-box, usually called S1. Similarly, the other
slices are used as input to the other S-boxes, S2 to S8. The outputs of these
S-boxes are then concatenated back into a 32-bit word, starting by S1 and
ending with S8. The S-boxes S1 to S8 are described in Tables 5.5 to 5.12. The
reader unaccustomed to the description of DES, should take great care with
these tables. Indeed, they are presented in a way that emphasizes the presence
of four permutations on the set of integers from 0 to 15, embedded within each
S-box. However, they are not used in a straightforward manner. Each S-box
takes 6 bits of the expanded input xored with the round subkey. Due to the
structure of the expansion, the middle two bits in each set of six are only
used once, while the other four are also used in neighbour sets. The S-boxes
are used in a way that reflects this important fact. When computing Si on a
set of six bits b1b2b3b4b5b6, the number obtained from b1b6 (i.e., 2b1 + b6) is
used to determine the row number from 0 to 3 and the number obtained from
b2b3b4b5 is used to determine the column number from 0 to 15. The output
value of the S-box is then interpreted as a bitstring c1c2c3c4 corresponding
to the number 8c1 + 4c2 + 2c3 + c4. After concatenation, the output bits of
S1 are numbered from 1 to 4, while the output bits of S8 are numbered from
29 to 32. Using this way to read the S-boxes makes sure that bits duplicated
during the expansion are used once as row indices and once as column indices,
while non-duplicated bits are only used as column indices.

© 2009 by Taylor and Francis Group, LLC

160 Algorithmic Cryptanalysis

32 1 2 3 4 5 4 5 6 7 8 9 8 9 10 11
12 13 12 13 14 15 16 17 16 17 18 19 20 21 20 21
22 23 24 25 24 25 26 27 28 29 28 29 30 31 32 1

Table 5.4: Expansion of the round function

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

Table 5.5: S-box S1

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

Table 5.6: S-box S2

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

Table 5.7: S-box S3

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

Table 5.8: S-box S4

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

Table 5.9: S-box S5

© 2009 by Taylor and Francis Group, LLC

Brute force cryptanalysis 161

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

Table 5.10: S-box S6

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

Table 5.11: S-box S7

5.2.1.1 Round key expansion

In the DES algorithm, the 56-bit key is extracted from a 64-bit word with
bits numbered from 1 to 64, by ignoring the high order bit of each byte, i.e.,
ignoring bits 8, 16, . . . , 64. The remaining bits are split in two halves after
a permutation called PC-1 described in Table 5.13. The bits obtained from
the first part of the table are stored in a register C0 and the bits obtained
from the second part of the table in a register D0. At round i, registers Ci−1

and Di−1 are transformed into two new values Ci and Di using left rotations.
The 48-bit round key Ki is obtained by concatenating 24 bits from Ci and 24
bits from Di the selected bits are obtained using PC-2 from Table 5.14, under
the convention that bits from Ci are numbered from 1 to 28 and bits from Di

from 29 to 56. To obtain Ci and Di from Ci−1 and Di−1 the left rotations
rotate two bits to the left except when i is 1, 2, 9 or 16 where they are rotated
by a single bit. As a consequence, the accumulated amount of rotation during
the 16 rounds is 28 bits, thus C16 = C0 and D16 = D0.

5.2.2 Brute force on DES

First, we can note that during known plaintext brute force attacks, the ini-
tial and final permutations of DES can safely be ignored since the permuta-
tions can be applied beforehand to plaintext/ciphertext pairs. For ciphertext

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Table 5.12: S-box S8

© 2009 by Taylor and Francis Group, LLC

162 Algorithmic Cryptanalysis

57 49 41 33 25 17 9
1 58 50 42 34 26 18

10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22

14 6 61 53 45 37 29
21 13 5 28 20 12 4

Table 5.13: Permutation PC-1 of the key bits

14 17 11 24 1 5
3 28 15 6 21 10

23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

Table 5.14: Table PC-2 to extract Ki from Ci and Di

only attacks, the input permutation often allows us to express our knowledge
about the plaintext distribution in a more compact form. For example, if
we know that the plaintext consists of printable ASCII characters, we know
that all high order bits are zeros. After the initial permutation, this implies
that bits 25 to 32 form a block of eight consecutive zeros. As a consequence,
an implementation of DES dedicated to brute force attacks does not need to
implement the initial and final permutations. Similarly, several other minor
improvements are possible. For testing several keys that differ only on a few
bits, it is not necessary to recompute the first rounds of decryption completely.
It is also not necessary to decrypt the whole block of message for all keys. In-
deed, if we compute a few bits of the decrypted message and see that they
are wrong, the rest of the bits are useless.

The most efficient idea to attack DES by brute force is probably the bitslic-
ing technique proposed by Biham in [Bih97]. With this technique, we view the
available computer as a parallel computer that operates in parallel on many
single bit registers. At first, this approach may seem surprising; however, it
allows us to replace many slow operations such as bit permutations and S-
box accesses by much faster operation. Depending on the specific computer
used for the computation, we may obtain 32, 64 or even 128 bit operations in
parallel. This level of parallelism is used to try several keys simultaneously.
As a consequence, to get a fast bitslice implementation of DES, it essentially
suffices to express DES efficiently using bit operations. We now study in more

© 2009 by Taylor and Francis Group, LLC

Brute force cryptanalysis 163

details how the various basic operations of DES may be implemented using
bit operations:

• Bit permutations: Permuting bits on a single-bit computer essentially
comes for free. Instead of moving values around, it suffices to wait until
the time where the permuted values are used and to directly access the
corresponding non-permuted register.

• Expansion: Since the DES expansion is a simple copy of bits, instead
of doing the copy, we proceed as we explain above for bit permutations
and directly read the required bit when needed.

• Xor: Since xoring is a bit by bit operation, it can clearly be done
without any change at the bit level.

• S-boxes: In fact, S-boxes access are the only operations which are not
straightforward on a single bit computer. Each S-box is a function from
6 bits to 4 bits. Alternatively, it can be viewed as four functions from 6
bits to 1 bit. Moreover, it is well known that any bit valued function can
be written using only XOR and Logical-AND operations. Thus, S-boxes
can be computed on single bit computers without any real difficulty. To
optimize bitslice implementations of DES, it is important to express
each S-box, using as few bit operations as possible. Currently, the best
available expressions are those described by Matthew Kwan in [Kwa00].

In addition to this bitslicing technique, one should also remark that at
the very end of the computation the internal structure of the DES allows us
to stop almost two rounds early. On a total of 16 rounds, this permits to
save another 10% of the running time. First, the final round can be avoided
in most cases, indeed, once the penultimate round has been performed, half
of the ciphertext values for the set of keys being tested are already known.
Most of the time, these values do not match the expected ciphertext and the
computation can be aborted. Similarly, thanks to the S-box structure, this
penultimate round can be computed by small 4-bit chunk. As soon as one
chunk does not match the expected value, the corresponding key can safely
be forgotten. This approach is called an early abort strategy for the brute
force computation.

5.3 Brute force as a security mechanism

As most cryptanalysis tools, brute force can also be used to add security
features in computerized systems. The basic idea is to remark that in many
computer-assisted tasks, the amount of computation required from a legiti-
mate user is often extremely small or even negligible. For example, testing

© 2009 by Taylor and Francis Group, LLC

164 Algorithmic Cryptanalysis

the correctness of a password by hashing at in Section 5.1 takes an extremely
small amount of time. Especially when this amount of time is compared to the
inherent delay of the human-computer interface involved. Indeed, no user re-
ally cares whether the password verification can be done within a millisecond
or a tenth of a second. For practical purposes, this is as good as immediate.
Of course, longer delays of the order of the second might be perceived as un-
bearable. Similarly, when sending out emails, a small delay would be perfectly
acceptable. This simple practical remark is the key to the material in this sec-
tion. During the short delay induced by the user, the computer could perform
some real work instead of simply waiting. For password testing for example,
one can easily conceive a slow hash function that would take a full tenth of a
second to test a password. No user would see the difference. However, from
an attacker point-of-view any slow down in the password testing routine is
going to slow any attempt to dictionary attack by the same factor. Testing
a password in a tenth of a second instead of a millisecond is not an issue for
the legitimate user, but it costs the attacker a factor of a hundred, either in
terms of running time or of computing power.

However, implementing this simple idea is tricky. It is not enough to make
the password testing routine slow. For example, in the early days of computer
science, wait loops were added to the password testing routines. However,
since an attacker only need to remove the wait loops to make his code for
dictionary attacks faster, this approach is essentially useless. Similarly, using
unoptimized code for a password testing routine is not a solution. Any moti-
vated attacker can sit down and optimize the code on his own. Instead, one
should make sure to use a deeply optimized code implementing an inherently
slow function. These functions have been proposed in the literature under
the name of moderately hard-function. They were initially introduced
in [DN93], an interesting variation making use of memory accesses to slow the
computation even on fast computers was proposed in [ABW03].

5.4 Brute force steps in advanced cryptanalysis

Brute force is not necessarily a stand-alone cryptanalytic technique, it can
also occur as the final step of a larger cryptanalytic effort. To illustrate this,
we propose to look at the differential cryptanalysis of the hash function SHA-0
and its practical implementation. The hash function SHA-0 was proposed in
1993 by NIST, under the name SHA. It was modified in 1995 and the new
version is called SHA-1. We use the name SHA-0 to emphasize that we are
considering the early version of 1993. In this section, we describe SHA-0, show
how to devise a differential attack to find collisions in this hash function.
Finally, we show that the implementation of this differential attack amounts

© 2009 by Taylor and Francis Group, LLC

Brute force cryptanalysis 165

to sampling using brute force a large enough set of message pairs.

5.4.1 Description of the SHA hash function family

Since SHA-0 and SHA-1 are very similar, they can easily share a common
description. For this common description, we refer to both algorithms using
the generic name of SHA. The general architecture of SHA is very similar to
other existing hash functions. It consists of two parts, a low-level compression
function which underlies the hash function and a mode of operation which
turns it in a full-fledged hash function. The low level compression function
takes as input two values, one on 160 bits and one on 512 bits and outputs
a 160 bits value. It is built from an ad-hoc block cipher with 160-bit blocks
and 512-bit keys. The block cipher is transformed into a function, rather
than a permutation, using a variation of the Davies-Meyer transform. The
mode of operation used SHA is the Merkle-Damg̊ard construction with final
strengthening. The idea of the construction is to process the message to be
hashed iteratively by individual 512-bit blocks. Starting from a fixed initial
value IV on 160 bits and the first block of message, the compression function
produces a new 160-bit value. This value is compressed together with the
second block of message and so on . . .

To make the description more precise, let us see in details how a message
M is processed. The first step is to make sure that M is encoded into a
multiple of the block size in a non-ambiguous fashion. This requirement is
very important. Indeed, if two different messages M and M ′ can be encoded
into the same sequence of blocks, then they necessarily have the same hash
value and the hash function cannot be collision resistant. With SHA, a simple
encoding is used. The bitstring representation of M is padded with a single
bit set to 1, a sequence of bits set to 0 and finally a 64-bit representation
of the bitlength of the unpadded message M . The length of sequence of
zeros is the smallest possible number to have a multiple of 512 as length of
the padded message. Thus, the number of zeros is contained in the interval
between 0 and 511. It is worth noting that with this padding the length of the
unpadded message is encoded twice, once explicitly by the 64-bit number at
the end of the padding and once implicitly, since the original message can be
recovered by removing from the padded message the 64 final bits, all trailing
zeros and a single one. This double encoding of the length was introduced
as a strengthening of the Merkle-Damg̊ard construction. It is usually called
MD-strengthening.

After padding, the message can be divided into 512-bit blocks, numbered
M1, M2, . . . , M`, where ` is the number of blocks. Denoting by F the com-
pression function, the hash value of M is computed as follows:

h0 = IV (5.3)
hi = F (hi−1,Mi) for all i from 1 to `.

© 2009 by Taylor and Francis Group, LLC

166 Algorithmic Cryptanalysis

The last value h` is the hash value of M . The first value h0 is the fixed initial
value. For convenience, the other values hi are called intermediate hash values.
The compression function F of SHA is described in Section 5.4.1.2.

5.4.1.1 Security properties of the Merkle-Damg̊ard construction

As discussed in Chapter 1, when considering hash functions, we are inter-
ested by three security properties: collision resistance, preimage resistance
and second preimage resistance.

When considering the Merkle-Damg̊ard construction, it is possible to show
that the security of the hash function H can be derived from the security
of the compression function H. For example, given a collision for H, it is
easy to produce a collision for the compression function F . First, if M and
M ′ have different lengths, their final blocks M` and M ′`′ are different. If
H(M) = H(M ′), we necessarily have:

F (h`−1,M`) = F (h′`′−1,M
′
`′), (5.4)

which is a collision for F . Otherwise, M and M ′ are different messages of the
same length and we look at the largest block index i in the interval [1, `] such
that either Mi 6= M ′i or hi−1 6= h′i−1. Of course, hi = h′i and

F (hi−1,Mi) = F (h′i−1,M
′
i) (5.5)

is a collision for F . It is important to remark that in general we obtain
collisions for F with different values on the h component. As a consequence,
proving that F (h, ·) is collision resistant for all fixed values of h is not sufficient
to establish collision resistance of H. In relation to this comment, note that
some specific differential attacks, called multiblock attacks, require several
consecutive calls to F before producing a collision for H. From this multiblock
attack, one can derive a collision on F but usually not on F (h, ·).

Using a very similar analysis, we can prove that if F is preimage resistant
then H is preimage resistant. Indeed, if we can find a preimage M of a target
value h, we see that F (h`−1,M`) = h and obtain a preimage of h for the
compression function F .

However, where second preimage resistance is concerned, we obtain a slightly
weaker result. Any second preimage attack on H can be used to obtain a col-
lision attack on F , but not necessarily a second preimage attack on F .

5.4.1.2 Compression function of SHA

At the core of the compression function of SHA, we find a specific block
cipher that encrypts 160-bit blocks using a 512-bit key. In order to be ef-
ficient in software, this specific block cipher is mostly based on 32-bit un-
signed arithmetic. As a consequence, each 160-bit block is decomposed in five
32-bit values. The input to the block cipher is thus denoted by the vector〈
A(0), B(0), C(0), D(0), E(0)

〉
. The block cipher itself is a generalized Feistel

© 2009 by Taylor and Francis Group, LLC

Brute force cryptanalysis 167

Round i Function f (i)(x, y, z) Constant K(i)

Name Definition
0–19 IF (x ∧ y) ∨ (x̄ ∧ z) 0x5A827999
20–39 XOR (x⊕ y ⊕ z) 0x6ED9EBA1
40–59 MAJ (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) 0x8F1BBCDC
60–79 XOR (x⊕ y ⊕ z) 0xCA62C1D6

Table 5.15: Definition of the round functions and constants

scheme with 80 rounds. At round i, we denote the inner state of the en-
cryption algorithm by

〈
A(i), B(i), C(i), D(i), E(i)

〉
. To update the inner state

between round i and round i+1, a new value is computed for A(i+1) by mixing
together the previous values of A, B, C, D, E and some key material. At the
same time, B(i+1), C(i+1), D(i+1) and E(i+1) are obtained as (rotated) copies
of A(i), B(i), C(i) and D(i). More precisely, for each round, with i varying
from 0 to 79, the registers A, B, C, D and E are updated according to the
following formulas:

A(i+1) = ROL5

(
A(i)

)
+ f (i)(B(i), C(i), D(i)) + E(i) +W (i) +K(i),

B(i+1) = A(i),

C(i+1) = ROL30

(
B(i)

)
, (5.6)

D(i+1) = C(i) and
E(i+1) = D(i).

In these equations, addition is performed modulo 232 and ROLbX denotes the
value obtained by rotating b bits to the left the binary representation of the
32-bit unsigned integer X. Moreover, f (i) is a round function and K(i) a round
constant, they both depend on i. They are specified in Table 5.15. Finally,
W (i) is the contribution of the 512-bit key to round i. The 16 values from
W (0) to W (15) are simply obtained by decomposing the 512-bit input into 16
consecutive 32-bit words. The next 64 values W (16) to W (79) are obtained as
the result of an expansion process. In SHA-0 the expansion is defined by:

∀ i : 16 ≤ i < 80, W (i) = W (i−3) ⊕W (i−8) ⊕W (i−14) ⊕W (i−16). (5.7)

Note that this only difference between SHA-0 and SHA-1 concerns this expan-
sion. In SHA-1, the expansion becomes:

W (i) = ROL1

(
W (i−3) ⊕W (i−8) ⊕W (i−14) ⊕W (i−16)

)
. (5.8)

After 80 rounds, the block cipher output is
〈
A(80), B(80), C(80), D(80), E(80)

〉
.

However, despite the fact that SHA is based on the block cipher as mentioned at

© 2009 by Taylor and Francis Group, LLC

168 Algorithmic Cryptanalysis

the beginning of this section, using the Merkle-Damg̊ard construction directly
with a block cipher is not a good idea; see Exercise 5 in Chapter 6. Instead,
an additional step, similar to the Davies-Meyer construction, is used to trans-
form this block cipher into a function, rather than a permutation. Recall that
the Davies-Meyer construction is a very useful way to turn a cryptographic
permutation π into a cryptographic function x → π(x) ⊕ x. With SHA, a
variation based on 32-bit addition in place of the exclusive or is used. With
this transform, the final output of the compression function is:〈

A(80) +A(0), B(80) +B(0), C(80) + C(0), D(80) +D(0), E(80) +D(0)
〉
.

5.4.2 A linear model of SHA-0

In order to study the propagation of differences in SHA-0 and to learn how
to control this propagation well enough to construct collisions, it is very useful
to start by looking at a fully linearized variation of SHA-0. First, remark that
in SHA-0, there are two sources of non-linearity: the f (i) functions in rounds
0 to 19 and in rounds 40 to 59 (respectively IF and MAJ) and the addition
modulo 232. Indeed, addition modulo 232 may involve propagation of carries,
and as a consequence it is not linear over F2. The linear model of SHA-0 is
obtained by replacing the additions by XOR operations on 32-bit words and
by using the XOR function as round function in every round. We also replace
addition by XOR in the final Davies-Meyer transform.

With this change, we obtained a completely linear compression function.
As a consequence, finding collisions becomes a straightforward task. It suffices
using linear algebra algorithms to construct an element of the kernel of this
function. However, this approach does not shed any light on SHA-0 itself.
Instead, we are now going to write this linear algebra attack using a specific
sparse approach. The advantage is that this approach can then be transformed
into a probabilistic attack of SHA-0. The specific approach splits the problem
of collision finding into two easier tasks. The first task concentrates on a
small number of consecutive rounds ignoring the expansion of the vector W ,
yielding local collisions. The second task is to merge together several local
collisions while remaining consistent with the expansion.

5.4.2.1 Local collisions in linearized SHA-0

In order to construct local collisions in the linearized version of SHA-0, it
suffices to introduce a change on a single bit of W , to follow the propagation
of this change in the subsequent rounds and using adequate corrections to pre-
vent the initial change from impacting too many bits. More precisely, starting
from a common inner state

〈
A(i), B(i), C(i), D(i), E(i)

〉
, assume that we per-

form in parallel two partial hash computations. In the first computation, we
input a message block W

(i)
1 and in the second computation a message block

© 2009 by Taylor and Francis Group, LLC

Brute force cryptanalysis 169

W
(i)
2 . We call δ = W

(i)
1 ⊕W (i)

2 the difference3 of the two message blocks. To
make the analysis simpler, it is useful to assume that the difference δ is on a
single bit.

Clearly, by linearity, the difference δ directly propagates in the computation
of A(i+1) and we find that A(i+1)

1 ⊕ A(i+1)
2 = δ. In the subsequent steps, this

initial difference on A(i+1) moves to B(i+2), C(i+3), D(i+4) and E(i+5). How-
ever, if we do not make any other changes in the message blocks, secondary
changes also occur in A(i+2), A(i+3), . . . To control the propagation of the
differences, the key idea is to make other changes in W in order to prevent
any secondary change in A. We refer to these additional changes as correc-
tions. The first correction is to prevent the difference in A(i+1) to propagate to
A(i+2). The reader can easily check that, by linearity, this is effected by choos-
ing W (i+1)

1 ⊕W (i+1)
2 = ROL5(δ). The second correction prevents the difference

in B(i+2) to affect A(i+3), it consists of choosing W (i+2)
1 ⊕W (i+2)

2 = δ. The
third correction prevents the difference in C(i+3) to affect A(i+4), since C(i+3)

is a rotated copy ofB(i+2), the correction requiresW (i+3)
1 ⊕W (i+3)

2 = ROL30(δ).
Finally, the fourth and fifth corrections account for D(i+4) and E(i+5) using
W

(i+4)
1 ⊕W (i+4)

2 = ROL30(δ) and W
(i+5)
1 ⊕W (i+5)

2 = ROL30(δ).
After that fifth correction, we see that the initial difference vanishes and

thus the two parallel computations yield the same inner state〈
A(i+6), B(i+6), C(i+6), D(i+6), E(i+6)

〉
.

This propagation of differences is summarized in Figure 5.1. In this figure,
A(i)[j] denotes the j-th bit of A(i).

5.4.2.2 Combining local collisions with the message expansion

In order to combine local collisions with the message expansion, it suffices to
remark that thanks to linearity, xoring together the changes and corrections of
several local collisions yields a possible pattern of collision. As a consequence,
it suffices to put together several local collisions in a way that guarantees
that the XOR of all involved changes and corrections is a valid output of
the message expansion. With SHA-0, the fact that the expansion is not only
linear but also applies in parallel to individual bits of the words W is quite
helpful. Indeed, any valid expanded sequences of words W0, . . . , W79 can
be constructed by pasting together 32 expanded sequences of bits. Since the
expansion computes 80 expanded bits from 16 initial bits, it is even easy to
exhaustively compute the 216 different expanded sequences on a single bit
position.

The key idea is to insert several local collisions in a way that follows such
an expanded sequence of bits. In particular, this means that all changes of

3This is a standard name in differential cryptanalysis, reminiscent from the fact that in F2,
a− b is the same thing as a⊕ b.

© 2009 by Taylor and Francis Group, LLC

170 Algorithmic Cryptanalysis

Initial
state

Perturbation Corrections
on bit 1

W (i)[1] W (i+1)[6] W (i+2)[1] W (i+3)[31] W (i+4)[31] W (i+5)[31]

A(i)

B(i)

C(i)

D(i)

E(i)

A(i)[1]

B(i+1)[1]

C(i+1)[31]

D(i+1)[31]

E(i+1)[31]

A(i+1) A(i+2) A(i+3) A(i+4) A(i+5)

Figure 5.1: Propagation of differences in a local collision of SHA

these local collisions act on the same bit position with the words W . Let j
denote this bit position. Clearly, according to our previous description of the
local collisions, all in all, three bit positions are involved in the changes and
correction, namely j, j+5 and j−2, where bit positions are numbered from 0
to 31 and considered modulo 32. Due to the parallel nature of the expansion,
an expanded bit sequence can be moved around from one bit position to an-
other without any difficulty. However, the construction of local collisions does
not only require to move bit sequence between bit position but also to shift
them between word position. For example, a change on W (i) leads to a first
correction on W (i+1). Here, we encounter a possible difficulty. Indeed, noth-
ing guarantees that an expanded sequence of bits remains a valid expanded
sequence if we shift it in this way. For example, the sequence:

0000000000000001
0010010110010010
0110110000110001
1101011111011010
0001000010110100

cannot be shifted in that way. Indeed, in order to obey the expansion formula,
it would need to become:

1000000000000000
1001001011001001
0011011000011000
1110101111101101
0000100001011010

© 2009 by Taylor and Francis Group, LLC

Brute force cryptanalysis 171

with a one at the beginning. However, half of the possible sequences can
be shifted without problems. In fact, in order to perform the five necessary
corrections, the chosen sequence of changes needs to be shifted 5 times. This
is possible for a fraction 1/32 of expanded bit sequences. An easy way to
formalize this is to run the expansion backward and to require that the five
bits in the negative position are zeros. Equivalently, this adds five linear
conditions on the 16 input bits of the expansion.

For any such sequence of bits, putting together the corresponding local col-
lisions gives an interesting differential pattern for linearized SHA-0. However,
this pattern need not be a collision. Indeed, if a local collision starts in one of
the 5 last rounds, it cannot be canceled in time. In that case, we only obtain
a pseudo-collision. To get a collision for linearized SHA-0, an additional
constraint is needed. There should be no local collision remaining active in
the final round, thus we need to choose the local collision positions according
to a sequence of bits with five zeros in the five last positions. To satisfy this,
we need to add five more linear conditions.

When we enforce the conditions of having five zeros in the negative positions
and five in the final positions, there remain 63 non-zero bit sequences that
can be used to introduce local collisions in a way that is consistent with
the message expansion. Some of these possible sequences are described in
Table 5.16; the complete table is available on the book’s website.

Let δ be any sequence on 80 bits from Table 5.16. Denote by δ(i) the i-th
bit of δ, with the convention that the sequence in the table are numbered from
0 to 79. In addition, when i is a negative integer from −5 to −1, let δ(i) = 0.
Given δ together with a bit position j, we can construct an 16-word vector ∆
in the kernel of the linearized SHA-0 by letting:

∆(i) = ROLj(δ(i))⊕ ROLj+5(δ(i−1))⊕ ROLj(δ(i−2))⊕ ROLj−2(δ(i−3))⊕
ROLj−2(δ(i−4))⊕ ROLj−2(δ(i−5)), for all 0 ≤ i ≤ 15. (5.9)

Due to the care we took to construct ∆, Equation 5.9 also holds after expan-
sion for ∆(i) with 16 ≤ i ≤ 79. It is clear that for any 16-word message W ,
the linearized SHA-0 hashes of W and W ⊕∆ form a collision.

5.4.3 Adding non-linearity

Once the linear algebra collision attack on linearized SHA-0 is written in the
sparse form of Section 5.4.2, we can try to use it as a probabilistic collision
attack on the real SHA-0 hash algorithm. As before, given a sequence of 80
bits δ from Table 5.16 and a bit position j, we construct a vector ∆ and then
consider pairs of messages (W,W⊕∆). For such a pair, a collision may occur in
two different ways. It may occur by wild chance after two extremely different
computations or it may result from a nice case where the two computations
follow essentially the same relationship as in the linearized case. The first
type of collision is not interesting for us because we do not get any control

© 2009 by Taylor and Francis Group, LLC

172 Algorithmic Cryptanalysis

00010000000100100000001000011011011111101101001000010101001010100010111001100000
00100010000000101111011000111000000101000100010010010011101100110000111110000000
00110010000100001111010000100011011010101001011010000110100110010010000111100000
10100101000001111100111100110001111111011011110000110001010101110100101000000000
10110101000101011100110100101010100000110110111000100100011111010110010001100000
10000111000001010011100100001001111010011111100010100010111001000100010110000000
10010111000101110011101100010010100101110010101010110111110011100110101111100000
01100000100100110001001110111011100101000100100010011110001100101000010011100000
01110000100000010001000110100000111010101001101010001011000110001010101010000000
01000010100100011110010110000011100000000000110000001101100000011000101101100000
01010010100000111110011110011000111111101101111000011000101010111010010100000000
11000101100101001101110010001010011010011111010010101111011001011100111011100000
11010101100001101101111010010001000101110010011010111010010011111110000010000000
11100111100101100010101010110010011111011011000000111100110101101100000101100000
11110111100001000010100010101001000000110110001000101001111111001110111100000000
10001100010001100011110011111101100000101101001100111101000000101001100010000000
10011100010101000011111011100110111111000000000100101000001010001011011011100000
10101110010001001100101011000101100101101001011110101110101100011001011100000000
10111110010101101100100011011110111010000100010110111011100110111011100101100000
00101001010000011111001111001100011111110110111100001100010101011101001010000000
00111001010100111111000111010111000000011011110100011001011111111111110011100000
00001011010000110000010111110100011010110010101110011111111001101101110100000000
00011011010100010000011111101111000101011111100110001010110011001111001101100000
11101100110101010010111101000110000101101001101110100011001100000001110001100000
11111100110001110010110101011101011010000100100110110110000110100011001000000000
11001110110101111101100101111110000000101101111100110000100000110001001111100000
11011110110001011101101101100101011111000000110100100101101010010011110110000000
01001001110100101110000001110111111010110010011110010010011001110101011001100000
01011001110000001110001001101100100101011111010110000111010011010111100000000000
01101011110100000001011001001111111111110110001100000001110101000101100111100000
01111011110000100001010001010100100000011011000100010100111111100111011110000000
01100100001000011110100001000110110101010010110100001101001100100100001111000000
01110100001100111110101001011101101010111111111100011000000110000110110110100000
01000110001000110001111001111110110000010110100110011110100000010100110001000000
01010110001100010001110001100101101111111011101110001011101010110110001000100000
11000001001001100010011101110111001010001001000100111100011001010000100111000000
11010001001101000010010101101100010101100100001100101001010011110010011110100000
11100011001001001101000101001111001111001101010110101111110101100000011001000000
11110011001101101101001101010100010000100000011110111010111111000010100000100000
00000100101100101111101111111101010000010110010110010011000000001100011100100000
00010100101000001111100111100110001111111011011110000110001010101110100101000000
00100110101100000000110111000101010101010010000100000000101100111100100010100000
00110110101000100000111111011110001010111111001100010101100110011110011011000000

...

00011111111000111111110000010010010101001001110000011001110011000011010001000000

Table 5.16: Possible expanded bit sequences for local collisions

© 2009 by Taylor and Francis Group, LLC

Brute force cryptanalysis 173

compared to a random independent message pair. The second type of collision
is much nicer and we now want to study this case.

In order to find a colliding pair (W,W ⊕ ∆), we proceed in two phases.
First, we choose a good value for the difference ∆ in order to maximize the
probability of success. After that, we search for a good value of W . In
order to choose a good difference ∆, we need to analyze the sources of non-
linearity in SHA-0 and consider how to minimize their impact. There are two
sources of non-linearity in SHA-0, additions modulo 232 and the functions from
Table 5.15. Clearly, the impact of the functions does not depend on the bit
position j, since they operate in parallel on the bit positions. On the contrary,
for the modular addition, not all bit positions are equivalent. Indeed, when
adding two numbers X and Y , it is easy to see that changes on the high order
bits of both numbers never affect the value of the sum X + Y (mod 232) in
a non-linear manner. On the other hand, when changing the value of some
lower order bits of X and Y , the corresponding bit of X + Y (mod 232) is
affected in a linear way, but the next bits of the sum may be modified non-
linearly. To give an example, when we modify the low order bit of X, we
either add or subtract 1 from X. When changing this bit both in X and Y , if
one change corresponds to an addition and the other to a subtraction, X +Y
does not change. Otherwise, the value of X + Y changes by either 2 or −2.
This carry to the next bit value is a non-linear change. If in addition the
carry propagates, other bits may also be affected in the binary representation
of X + Y .

As a consequence, to build a good value for the difference ∆, we roughly
need to minimize the total number of individual bit changes occurring during
the computation, in order to limit the risk of encountering carries. We also
need to have a large fraction of the differences located on the high order bit in
order to take advantage of the linearity of the high order bit in additions. To
satisfy these two conditions, the basic idea is to choose a low weight element
in Table 5.16 and use it as a locator to insert local collisions on bit position 1.
Indeed, we know that such local collisions are going to involve changes on bit
positions 1, 6 and 31. Moreover, bit position 31, which corresponds to high
order bits occurs more frequently than the others. Indeed, a change on bit
position 1 at round i requires one correction on each of the bit positions 1
and 6, but three corrections on bit 31. Note the weight of the elements in
Table 5.16 is only a rough indicator. In order to choose the best possible
locations to insert the local collisions, it is necessary to analyze the propaga-
tion of changes within SHA-0 computations in more details. We now give this
detailed analysis.

5.4.3.1 Propagation of changes in SHA-0

In order to study the propagation of changes throughout SHA-0, we are
going to analyze each of the non-linear functions that occur here. There
are three such functions to consider: addition modulo 232 on a bit position

© 2009 by Taylor and Francis Group, LLC

174 Algorithmic Cryptanalysis

< 31 and the IF and MAJ functions. Indeed, addition on the high order
bit and the XOR function both behave linearly. For each function, we not
only need to consider the presence or not of a change on each input bit but
also the direction of the change. In the tables given in this section, we use
the following notations, 0 represents a bit equal to 0 that does not change,
1 represents a bit equal to 1 that does not change, ↑ represents of bit that
changes from 0 to 1 and ↓ represents of bit that changes from 1 to 0.

With this notation, describing the case by case behavior for each function on
three bits is quite simple. They are given in Tables 5.17, 5.19 and 5.20. In the
case of addition, we only give the details for an addition of three summands
but we also indicate the behavior of the carry bit. It is, of course, possible to
perform the same analysis for more summands. However, in the case of SHA-0,
this simplified analysis is sufficient to understand the probabilistic behavior
of local collisions.

With these three tables in mind, it is easy to understand the behavior of
a single, stand-alone local collision. The first action of this local collision is
to insert a difference on bit 1 of W (i). To simplify the analysis, it is useful
to assume that we know the direction of the bit change. For example, let
us assume that the changing bit goes from 0 to 1. Following the notation
of Tables 5.17 to 5.20, it is a ↑ transition. As in the linear case described
in Section 5.4.2.1, this change directly affects bit 1 of A(i+1). Looking at
Table 5.20, we see that two main cases are possible. If there are no unwanted
carries, then bit 1 of A(i+1) is also a ↑ and all other bits of A(i+1) are constants.
Otherwise, bit 1 of A(i+1) is a ↓ and bit 2 no longer is a constant. Note that
the carry effect may propagate further and affect more bits. Assuming that
the inputs of the addition are random values, we can see that the nice case
where no bad carry occurs happens with probability 1/2. Once the ↑ change
is in A(i+1), it is involved (after rotation) in the computation of A(i+2). Since
we are considering a local collision, another change is also present on bit 6
of W (i+2). Looking again at the table, we see that when both changes are ↑,
they never cancel each other. Thus, we need to make sure that the correction
present on bit 6 of W (i+2) is a ↓, in which case it always correctly performs
the correction. In the next round, the ↑ change is on bit 1 B(i+2) and involved
in the computation of A(i+3), together with the correction located on bit 1 of
W (i+2). This change undergoes two non-linear processes; first it goes through
one of the three functions IF, XOR or MAJ, then it enters the addition.
Looking at the three functions, we see that a total of three different behaviors
may occur. The change may vanish, it may remain unchanged or it may be
reversed into a ↓. Note that with XOR, the change never vanishes. With MAJ,
it is never reversed. With IF, all three behaviors are possible. If the change
vanishes, then the correction never occurs correctly and the local collision
fails. With IF or MAJ, this occurs with probability 1/2. Concerning the
direction of the change, we need to consider two cases. When going through
MAJ, the ↑ is never reversed, thus if we make sure that the correction on
bit 1 of W (i+2) is a ↓, the addition also behaves nicely, assuming that the

© 2009 by Taylor and Francis Group, LLC

Brute force cryptanalysis 175

x = 0 y = 0 y = 1 y =↑ y =↓ x = 1 y = 0 y = 1 y =↑ y =↓
z = 0 0 0 0 0 z = 0 0 1 ↑ ↓
z = 1 0 1 ↑ ↓ z = 1 1 1 1 1
z =↑ 0 ↑ ↑ 0 z =↑ ↑ 1 ↑ 1
z =↓ 0 ↓ 0 ↓ z =↓ ↓ 1 1 ↓
x =↑ y = 0 y = 1 y =↑ y =↓ x =↓ y = 0 y = 1 y =↑ y =↓
z = 0 0 ↑ ↑ 0 z = 0 0 ↓ 0 ↓
z = 1 ↑ 1 ↑ 1 z = 1 ↓ 1 1 ↓
z =↑ ↑ ↑ ↑ ↑ z =↑ 0 1 ↑ ↓
z =↓ 0 1 ↑ ↓ z =↓ ↓ ↓ ↓ ↓

Table 5.17: Case by case behavior of MAJ(x, y, z)

x = 0 y = 0 y = 1 y =↑ y =↓ x = 1 y = 0 y = 1 y =↑ y =↓
z = 0 0 1 ↑ ↓ z = 0 1 0 ↓ ↑
z = 1 1 0 ↑ ↓ z = 1 0 1 ↓ ↑
z =↑ ↑ ↓ 0 1 z =↑ ↓ ↑ 1 0
z =↓ ↓ ↑ 1 0 z =↓ ↑ ↓ 0 1
x =↑ y = 0 y = 1 y =↑ y =↓ x =↓ y = 0 y = 1 y =↑ y =↓
z = 0 ↑ ↓ 0 1 z = 0 ↓ ↑ 1 0
z = 1 ↓ ↑ 1 0 z = 1 ↑ ↓ 0 1
z =↑ 0 1 ↑ ↓ z =↑ 1 0 ↓ ↑
z =↓ 1 0 ↓ ↑ z =↓ 0 1 ↑ ↓

Table 5.18: Case by case behavior of XOR(x, y, z)

x = 0 y = 0 y = 1 y =↑ y =↓ x = 1 y = 0 y = 1 y =↑ y =↓
z = 0 0 0 0 0 z = 0 0 1 ↑ ↓
z = 1 1 1 1 1 z = 1 0 1 ↑ ↓
z =↑ ↑ ↑ ↑ ↑ z =↑ 0 1 ↑ ↓
z =↓ ↓ ↓ ↓ ↓ z =↓ 0 1 ↑ ↓
x =↑ y = 0 y = 1 y =↑ y =↓ x =↓ y = 0 y = 1 y =↑ y =↓
z = 0 0 ↑ ↑ 0 z = 0 0 ↓ 0 ↓
z = 1 ↓ 1 1 ↓ z = 1 ↑ 1 ↑ 1
z =↑ 0 ↑ ↑ 0 z =↑ ↑ 1 ↑ 1
z =↓ ↓ 1 1 ↓ z =↓ 0 ↓ 0 ↓

Table 5.19: Case by case behavior of IF(x, y, z)

© 2009 by Taylor and Francis Group, LLC

176 Algorithmic Cryptanalysis

x = 0 y = 0 y = 1 y =↑ y =↓ x = 1 y = 0 y = 1 y =↑ y =↓
z = 0 00 01 0 ↑ 0 ↓ z = 0 01 10 ↑↓ ↓↑
z = 1 01 10 ↑↓ ↓↑ z = 1 10 11 1 ↑ 1 ↓
z =↑ 0 ↑ ↑↓ ↑ 0 01 z =↑ ↑↓ 1 ↑ ↑ 1 10
z =↓ 0 ↓ ↓↑ 01 ↓ 0 z =↓ ↓↑ 1 ↓ 10 ↓ 1
x =↑ y = 0 y = 1 y =↑ y =↓ x =↓ y = 0 y = 1 y =↑ y =↓
z = 0 0 ↑ ↑↓ ↑ 0 01 z = 0 ↓ ↓↑ 01 ↓ 0
z = 1 ↑↓ 1 ↑ ↑ 1 10 z = 1 ↓↑ 1 ↓ 10 ↓ 1
z =↑ 0 ↑ 0 ↑ 1 ↑↑ ↑↓ z =↑ 01 10 ↑↓ ↓↑
z =↓ 01 10 ↑↓ ↓↑ z =↓ ↓ 0 ↓ 1 ↓↑ ↓↓

Table 5.20: Case by case behavior of ADD(x, y, z) (carry bit on left)

change does not vanish. With IF or XOR, we do not know in advance if the
change remains a ↑ or becomes a ↓, thus we do not care about the direction of
the change on bit 1 of W (i+2), the addition cancels the two with probability
1/2. Summing up, we see that the computation of A(i+3) works out correctly
with probability 1/4 when the function is an IF, with probability 1/2 due to
the possibility of vanishing changes when it is a MAJ and with probability
1/2 due to the possibility of reversing changes when it is a XOR. The next
correction concerns bit 31 of A(i+4). Since it involves the high order bit of
addition, no carry propagation is possible. Thus, at this point, we do not care
whether the change is preserved or reversed, as long as it does not vanish.
Thus, there is a probability of good correction of 1/2 with IF and MAJ, while
the correction is always correct with XOR. The fourth correction on bit 31 of
A(i+5) behaves exactly in the same way. Finally, the final correction on bit
31 of A(i+6) is always correctly cancelled by the correction bit present on bit
31 of W (i+5).

Thanks to this analysis, it is possible to compute for any given round po-
sition i, the probability of successfully applying a single local collision at this
round. However, this calls for several comments. First, we need to make sure
in advance that where needed the correction bits are indeed of type ↓ to com-
pensate for the initial change ↑. Second, this probability is correct when the
computation of the local collision is uncontrolled, i.e., when all values that
enter the computation, with the exception of the correction bits, are consid-
ered to be random. As we will see later, when it is possible to choose (some
of) the input values, then it is possible to greatly improve this probability.

5.4.3.1.1 Superposing several local collisions The above analysis is
not complete because it only considers isolated local collisions that do not
interfere with each other. However, looking at Table 5.16, we see that none
of the candidates for placing the local collisions can guarantee that they are
always isolated from each other. As a consequence, we need to understand
the interaction between interleaved local collisions. Two cases need to be

© 2009 by Taylor and Francis Group, LLC

Brute force cryptanalysis 177

considered. On one hand, when two such local collisions only act on different
bits, it is safe to assume that the individual probability of success are preserved
and simply need to be multiplied together to obtain the total probability. On
the other hand, when two local collisions impact the same bit of some word
in A, the exact behavior is quite complicated and each of the functions IF,
XOR and MAJ is a specific case.

To analyze these interactions, let us determine the relative positions of
interfering pairs of local collisions. Assume we are superposing two local
collisions respectively starting on A(i1) and A(i2), with i1 < i2. Note that
when i2 > i1 + 5, the local collisions are clearly not overlapping. Thus, there
are five cases to consider. For each case, there is an interaction for each
round where the two local collisions act on the same bit. For example, when
i2 = i1 + 1, we see that at round i1 + 1 the first collision acts on bit 6,
the second on bit 1 and that they do not interfere. At round i1 + 2, they
respectively act on bits 1 and 6. At round i1 + 3, they act on bits 31 and 1.
At rounds i1 + 4 and i1 + 5, they both act on bits 31 and do interfere. We
summarize all the possible interactions in Table 5.21. We see in this table
that there are only four possible cases of interaction:

• When i2 = i1 + 2, there is an interaction on bit 1 in round i2. On mes-
sage word W (i2), we see that the two local collisions both modify bit 1,
as a consequence, their interaction leaves this bit fixed. Thus, we need
to consider the consequence of a single difference on bit 1 of B(i2). If this
difference does not propagate through the function f (i2), then the second
local collision is not correctly inserted in round i2 and the corresponding
corrections in later rounds fail. When f (i2) is a MAJ function, the direc-
tion ↑ or ↓ of the change is preserved. This information should be used
when determining the direction of the corrections for the second local
collision. With IF or XOR, the direction may change and we can choose
between two sets of possibilities for the corrections. Of course, once we
have chosen to consider that the direction is preserved (or changed), any
message pair that behaves differently encounters miscorrection at some
later round.

We can now compare the probability of success with two interacting
local collisions and the probability of two independent local collisions
one in round i1 and one in round i2. With two independent collisions,
the first succeeds when the perturbation correctly goes through f , i.e.,
with probability 1/2 with XOR or MAJ and 1/4 with IF; the second
succeeds if there is no carry, i.e., with probability 1/2. With two inter-
acting collisions, the probabilities are allocated slightly differently, but
the overall contribution is left unchanged. Thus, this type of interaction
does not deeply affect the construction of a collision path.

• When i2 = i1+1, there is an interaction on bit 31 in round i1+4 = i2+3.
On message word W (i1+4), the corrections cancel each other. Thus,

© 2009 by Taylor and Francis Group, LLC

178 Algorithmic Cryptanalysis

Round number
i2 − i1 i1 + 1 i1 + 2 i1 + 3 i1 + 4 i1 + 5

1 6 6= 1 1 6= 6 31 6= 1 31 31
2 — 1 31 6= 6 31 6= 1 31
3 — — 31 6= 1 31 6= 6 31 6= 1
4 — — — 31 6= 1 31 6= 6
5 — — — — 31 6= 1

Table 5.21: Interferences of overlapping local collisions

we have two changes on bit 31, one in D(i1+4), the other in C(i2+3).
Note that the two exponents are equal; they are written differently to
emphasize that the first change corresponds to the first collision and the
second to the second one. With the XOR function, these two changes
cancel each other, which is the desired behavior. With MAJ, the two
changes cancel if and only if one is a ↑ and the other a ↓. Since this
can be controlled in advance when choosing the direction of changes in
the collision path, this improves the probability of success compared to
independent collisions. With IF, since bit 31 of B cannot belong to any
local collision, it should be seen as a constant. This constant controls
which of the two changes is going through the IF function, but in any
case, one change always goes through. Thus, with two adjacent local
collisions that share an IF function, it is never possible to construct a
correct collision path that follows our linear model. This imposes a new
constraint on the construction of collision paths.

• When i2 = i1 + 1, there is a possibility of interaction on bit 31 in round
i1+5 = i2+4. In fact, this is not a real interaction, because the function
f is only applied to one of the two changes and the changes are then
linearly combined by addition on the high order bit. Once again, the
global cost of the interacting collisions is the same as the cost of two
independent local collisions.

• When i2 = i1+2, there is an interaction on bit 31 in round i1+5 = i2+3.
As in the previous case, this interaction does not modify the probability
of success. Note that this case may be combined with the second case to
yield an interaction of three consecutive local collisions with i2 = i1 + 1
and i3 = i1 + 2 on bit 31 of round i1 + 5. In that case, the probability of
success is modified as in the second case where the interaction between
the second and third cases is concerned, while the first local collision is
essentially independent of the other two at this round. Remember that
with such a triple, the first two local collisions also interact at round
i1 + 4.

Taking all these considerations into account, we find that two differential

© 2009 by Taylor and Francis Group, LLC

Brute force cryptanalysis 179

paths for SHA-0 which are almost equally good, these two paths are described
by the following disturbance vectors:

0001000000010010000000100001101101111110
1101001000010101001010100010111001100000

and

0010001000000010111101100011100000010100
0100010010010011101100110000111110000000

In order to compute the exact cost of the cryptanalytic attack associated
with these disturbance vectors and to determine which of these two vectors
is the best one, it is necessary to explain with more details how these vectors
are used in practical attacks. This is the goal of the next section.

5.4.4 Searching for collision instances

The above analysis shows that there exists a large number of message block
pairs that collide after following our differential path. However, this does not
suffice to build a collision search attack. In addition, we need to find an effi-
cient way to construct such message pairs. This is done using a guided brute
force approach. This approach is a kind of brute force, because we try message
pairs again and again until a collision is found, it is guided because we use
the known properties of the collision path to make the search more efficient
and faster. Several techniques are used for this purpose. Two basic tech-
niques were described in [CJ98], others were introduced later in [WYY05a],
[WYY05b], [BC04] and [BCJ+05].

5.4.4.1 Early abort

In a basic implementation of the attack, a possible approach would be for
each message pair to compute the compression function completely for both
messages. Of course, this would work but requires two complete evaluations of
the compression function for each message pair. To improve this, we can use
our extensive knowledge of the differential path. For each intermediate step
in the computation of the compression function, the differential path essen-
tially specifies the value of the XOR of the computed A(i) for each message.
In this context, an early abort strategy consists of checking at each step of
the computation that the effective value of the XOR is compatible with the
differential path. If this is not the case, it does not mean that the two message
blocks cannot collide, only that if they collide, they do so in a non-controllable
manner. As a consequence, the probability of collision for the pair is very low
and it is not worth pursuing the computation. Thus, as soon as the message
blocks stray from their intended path, we abort the computation.

© 2009 by Taylor and Francis Group, LLC

180 Algorithmic Cryptanalysis

5.4.4.2 Partial backtrack

One of the most important optimizations to search for a differential colli-
sion in the SHA-0 family is to remark that constructing messages conformant
with the differential path during the first 16 rounds essentially comes for free.
Indeed, during these rounds, if the current message pair is incompatible with
the differential path, instead of restarting from scratch, we can instead back-
track for a few rounds in order to modify the register whose value prevents
the conditions of the differential path to be satisfied. Using this approach,
it is easy to find message pairs which conform to the differential up to the
start of round 15. In fact, remarking that both disturbance vectors given at
the end of Section 5.4.3 have a difference inserted in round 14, we can make
the analysis more precise. For this difference to be corrected properly, the
following conditions need to be satisfied:

• The difference in round 14 should be inserted without carry. This can
be easily satisfied by backtracking by a single round.

• The second correction in round 16 should be performed correctly. Since
the non-linear function in round 16 is an IF, this implies that the bits in
position 1 of C(16) and D(16) should be opposite, to make sure that the
difference propagates through the IF function. Moreover, we can make
sure that it propagates in the right direction by enforcing specific values
for these bits. Note that C(16) and D(16) are rotated copies of A(14) and
A(13). As a consequence, the condition can be ensured before choosing
W (14).

• To perform the third correction in round 17, we need to make sure that
bit 31 of B(17) is a 1. This can be ensured by a correct choice of the
high order bit of W (15).

• With this basic analysis, the fourth correction in round 18 is the first
one that cannot be simply enforced in advanced. Indeed this condition
is controlled by bit 31 of B(18), i.e., of A(17). As a consequence, the
probability associated with the difference in round 14 is only 1/2. Using
a slightly more complicated analysis, we see that, with high probability4,
this bit can be changed to the correct value by modifying bit 26 of W (15),
thus affecting A(16) and, indirectly, A(17).

The second disturbance vector also has differences inserted in rounds 16 to 19.
It is clear that an analysis similar to the one we performed for the difference of
round 14 allows us to prearrange a fraction of these conditions. Due to these
prearranged conditions, the second disturbance vector becomes more efficient
than the first one for the differential attack on SHA-0.

4This may fail when changing bit 26 induces a carry which propagates up to round 31.

© 2009 by Taylor and Francis Group, LLC

Brute force cryptanalysis 181

5.4.4.3 Neutral bits and message modifications

Looking at the difference paths induced by a disturbance vector in SHA-0
and at the conditions that are necessary for these paths, we see that most
bits of the inner state, i.e., most bits of A, are not directly involved in these
conditions. For example, if we modify a single bit in the middle of register A
at some round, this change is not going to affect the differential path immedi-
ately. Of course, after enough rounds, the change propagates throughout the
registers and affects the path. The basic idea of neutral bits [BCJ+05] is, given
a message pair compatible with a fixed differential path up to some round, to
identify bit positions where A can be modified without immediately affecting
the differential path. Since A can be modified by changing the corresponding
message word, it is possible to perform this change by flipping a bit at the
same position in the message word. Such bit positions are called neutral bits
for the message pair. We speak of a neutral bit up to round r when we want
to emphasize the range of rounds we are considering. There are two kinds
of neutral bits that can be encountered, simple neutral bits and composite
neutral bits. A simple neutral bit corresponds to a single bit position, usually
located in one of the final rounds, say between round 12 and round 15. A
composite neutral bit consists of several bit positions which need to be flipped
together in order to preserve conformance. A more careful analysis shows that
a composite neutral bit behaves like a kind of local collision, inserts a change
and corrects it, often in a non-linear way, for a limited number of rounds.

Another important property of neutral bits is obtained when considering
several neutral bits at the same time. Two neutral bits, either simple or
composite, are said to be pairwise independent when the four pairs of messages
consisting of an original pair, the pair with one neutral bit flipped, the pair
with the other bit flipped and the pair with both neutral bit flipped all conform
to the differential path up to round r. This property of pairwise independence
reflects the fact that the changes effected by flipping the two neutral bits
involve bit position which can only interact through rare long range carries.
An important heuristic fact is that given n neutral bits, such that each pair
of these neutral bits are pairwise independent up to round r, a large fraction
of the 2n pairs of messages obtained by flipping an arbitrary subset of the
neutral bits also conform to the differential path up to round r. In practice,
this works very well up to r around 22.

To summarize, the raw effect of large set of pairwise independent neutral
bits is to give a shortcut during the search for a valid message pair. Thanks
to this shortcut, the number of message pairs to be tested can be estimated
by counting the probability of success from round 22–24 instead of round 19.

Boomerang attacks

Neutral bits, as defined above, occur naturally in message pairs. From
time to time, some composite neutral bits with a very long range are encoun-
tered. However, this event is unfrequent and we cannot count on the natural

© 2009 by Taylor and Francis Group, LLC

182 Algorithmic Cryptanalysis

occurrence of these long range neutral bits. The idea of the boomerang5 at-
tack [JP07] for hash functions is to construct specific differential paths that
embed a few of these long range neutral bits. This idea requires the use of
sophisticated differential paths relying on non-linear behavior during the IF
rounds, as introduced in [WYY05a, WYY05b]. It was used in [MP08] to
derive the fastest known differential attack against SHA-0.

Message modifications

Another approach to bypass the probabilistic cost of a few rounds after
round 16 when searching for a message pair is the use of message modifica-
tion and advanced message modification techniques introduced in [WYY05a,
WYY05b]. The basic idea is given a message pair to identify the first un-
satisfied condition which prevents the message pair from conforming to the
differential path. Once this condition is found, the message modification tech-
nique consists of flipping a few bits of messages. These bits are chosen to make
sure that, with high probability, flipping them preserves conformance up to
the first failure and reverse the value of the first non-conforming bit. Very
roughly, it can be seen as a kind of neutral bit, whose first non-neutral effect
is used as a correction.

5.5 Brute force and parallel computers

Brute force attacks can be very easily implemented using parallel comput-
ers. Indeed, they are of the embarrassingly parallel kind: it suffices to launch
n copies of the same program, each searching in a fraction of the space of
possible keys (or message pairs for the differential attack on SHA) to speed up
the computation by a factor of n. Despite its extreme simplicity, this basic
remark should never be forgotten when evaluating the security of a cryptosys-
tem. A brute force attack whose computational cost is at the boundary of
feasible computations is much easier to implement and run than a sophisti-
cated computation with roughly the same cost.

A new trend in parallel computation is the use of powerful graphic pro-
cessor units for general purpose computations. It is interesting to note that
brute force computations can easily be implemented on such cards. As a con-
sequence, reports of practical brute force attacks on graphic processors should
be expected in the near future. In the same vein, people are also considering
the use of video game consoles, since they offer very good performance/price
ratios.

5This name is due to similarity with the boomerang attack for block ciphers introduced by
Wagner [Wag99].

© 2009 by Taylor and Francis Group, LLC

Brute force cryptanalysis 183

Exercises

1. To better understand the figures involved in brute force cryptanalysis,
compute, assuming that trying one key costs one CPU cycle, the total
number of keys that can be tried during a year using your personal
computer, using all computers in a university or company, and using all
computers on earth.

2. Using the Moebius transform of Chapter 9, compute expressions for each
bit of each S-box of DES as polynomials over F2. Count the number of
operations (XOR and AND) needed to compute each S-box. Compare
with the number of operations given in [Kwa00].

3. Historically, monoalphabetic substitution ciphers have frequently been
encounted. Assuming an alphabet with 26 letters, count the number of
keys. Is a monoalphabetic substitution cipher vulnerable to a simple
minded brute force attack which simply tries all possible keys.

4h. When considering brute force attacks, the rapid increase of computing
power through time needs to be taken into account. Assume that you
are given five years to attack through brute force an instance of a cryp-
tosystem on 64 bits. How you would proceed to minimize the cost?
Assume that the cost of computing power follows a geometric evolution
which divides the cost of trying a single key by two during a one-year
period.

5h. One important difficulty with automated brute force attacks is the need
for a stopping condition, i.e., for a criterion which can be used to distin-
guish the correct key. Find a possible stopping condition to decrypt a
DES ciphertext, assuming an english plaintext written using the ASCII
code.

6h. Assume that you need to write an encryption program but are, for
external reasons, limited to small encryption keys, say on 40 bits. How
would you proceed to build a system with as much security as possible?
Do not forget that the key limit only applies to keys, not to any auxiliary
data used during the encryption, as long as this data can be recovered
from the ciphertext.

7. Write an exhaustive search algorithm for placing n tokens on a n × n
grid and make sure that there never are two tokens on the same row,
column or diagonal. What is the cost of your approach as a function of
n? What values are achievable?

• Improve your algorithm to make sure before placing a new token
that it does not conflict with previous tokens.

© 2009 by Taylor and Francis Group, LLC

184 Algorithmic Cryptanalysis

This chapter can also be a source for projects, a few examples are:

i. Program a bitslice implementation of DES, dedicated to brute force.
Compare the speed of your implementation with available libraries that
contain fast implementations of DES encryption. Port this program to
a graphic processor unit.

ii. Write an implementation of the basic SHA-0 attack described in this
chapter. Improve your implementation using advanced attacks available
in the literature.

iii. Write a toolkit for brute force cryptanalysis against historical cryptosys-
tem.

© 2009 by Taylor and Francis Group, LLC

Chapter 6

The birthday paradox: Sorting or
not?

The birthday paradox is a ubiquitous paradigm in cryptography. In some
sense, it can be seen as an efficient probabilistic variation on the pigeonhole
principle. Recall that the pigeonhole principle is a very general rule, that says
that, given n disjoint classes of objects and a set of N objects, if N > n then
there is at least one class containing two or more objects. In this context, we
say that the two objects collide in the same class or simply that we have a
collision. Using this terminology, the pigeonhole principle simply states that
given n classes, with at least n + 1 objects, a collision always occurs. In
a probabilistic context, assuming that objects are equiprobably distributed
among classes, it is natural to ask: How many objects do we need to have a
collision with probability greater than one half?

The answer to this question is the core of the birthday paradox, it is a
paradox in the sense that it does not fit the common sense answer. With n
classes, it is not necessary to have n/2 objects, much less are needed. May be
surprisingly, the correct answer is of the order of

√
n.

The consequences of the birthday paradox in cryptography are uncountable;
they are encountered in public and secret key cryptography, in cryptanalysis
and provable security and impacts all subtopics of cryptography from the
study of stream ciphers to number theory. For this reason, we devote this
chapter and the next two to the study of the birthday paradox. The three
chapters differ by the amount of memory used by their respective algorithms.
In the present chapter, we consider algorithms that use a lot of memory,
of the same order as their running time. In the next chapter, we focus on
algorithms that use a small amount of memory. The third chapter on birthday
paradox techniques describes the intermediate case and presents algorithms
with medium memory requirements.

185

© 2009 by Taylor and Francis Group, LLC

186 Algorithmic Cryptanalysis

6.1 Introductory example: Birthday attacks on modes
of operation

To illustrate the importance of the birthday paradox in cryptography and
show that it is the key to understanding the security of many cryptographic
protocols, we study the case of modes of operations for block ciphers. As
explained in Chapter 1, a mode of operation for a block cipher is a way to
extend the domain of the block cipher and allow it to encrypt and/or authen-
ticate messages of varying length instead of blocks of fixed length. Another
essential feature of modes of operation is that they use block ciphers as black
boxes. Thus, a given mode can be used with many different block ciphers.
As a consequence, it is useful to study the security of the mode of operation
independently of the underlying block cipher. The standard proof technique
used to perform this study is to consider the mode of operation when used
in conjunction with a truly random permutation. With this idealization, two
types of results can be derived. On the one hand, given a mode of operation,
we can describe attacks which work with all block ciphers. They are called
generic attacks and give an upper bound on the security of the mode of op-
eration. On the other hand, it is also possible to give lower bounds by writing
security proofs which show that when used in conjunction with a secure block
cipher the mode of operation is secure. The study of security proof is out-
side of the scope of this book. The interested reader can refer to one of the
numerous research papers on this topic such as [BR06].

In this section, we are going to consider attacks on two basic modes of
operation, Cipher Block Chaining (CBC) including its authentication version
called CBC-MAC and Counter mode (CTR). More precisely, we are going
to study the security of these modes by describing generic chosen message
distinguishing attacks, as described in Chapter 1.

6.1.1 Security of CBC encryption and CBC-MAC

In order to start the study of the security of CBC encryption and CBC-
MAC, we first address the motivation behind the slight differences between
the two modes and explain why these differences are essential to the security.
For this purpose, we need to use the notion of forgery recalled in Chapter 1.

Initial value. First, recall that one of the essential differences between CBC
encryption and CBC-MAC is the fact that the former needs an IV , while the
latter needs no IV . We already know that without an IV , CBC encryp-
tion becomes deterministic and thus cannot be secure against chosen message
distinguishers. It is thus natural to ask what happens to CBC-MAC, when
used with an IV . Clearly, in order to allow the message recipient to verify
the MAC tag, the IV used when creating the authentication tag needs to be

© 2009 by Taylor and Francis Group, LLC

The birthday paradox: Sorting or not? 187

transmitted along with the message. Thus, the attacker knows the chosen
IV value. Assume that this IV value is used as the starting intermediate
ciphertext block C(0). Then, the intermediate block C(1) is obtained from the
plaintext block P (1) by encrypting C(0) ⊕ P (1). Since both values C(0) and
P (1) are known to the attacker, he can easily create a different message with
the same authentication tag by xoring any value of his choice with both C(0)

and P (1). This allows him to change the first message block to any value of
his choice.

If the IV is used as a plaintext block, this attack does not work; how-
ever, this simply corresponds to authenticating using the ordinary CBC-MAC
without IV , a message extended by adding a random first block. As a conse-
quence, this is more costly than CBC-MAC without an IV and does not add
any security.

Intermediate values. Releasing intermediate values during the MAC com-
putation would be both costly and insecure. The cost part is obvious since this
modification would make the authentication tag much longer. The insecurity
part can be seen using variations on the above attack on initial values.

Final block. In order to see that CBC-MAC is insecure if the final block
is not reencrypted, let us consider the following simple attack. The adversary
first queries the CBC-MAC of a single block message. Clearly, in that case,
assuming that the underlying block cipher is modeled by the random permu-
tation Π, the authentication tag is t = Π(P (1)). Given this tag, the adversary
can immediately assert that the authentication tag of the two-block message
P (1)‖(P (1)⊕ t) is also t. We let the reader verify this fact in Exercise 2. This
attack and variations on it can be performed only if messages of varying length
are accepted by the MAC computations/verifications algorithms. When con-
sidering messages of a fixed length, CBC-MAC without a final block becomes
secure1.

6.1.1.1 Birthday attacks on CBC encryption and CBC-MAC

After seeing the simple attacks that explain the differences between CBC
encryption and CBC-MAC, we are now ready to consider the security of these
modes and its relation with the birthday paradox. For simplicity, it is easier
to start with the security of CBC-MAC because this mode is deterministic
and the attack is thus easier to follow. Assuming that we play the attacker’s
role, in order to build a forgery on CBC-MAC, we first ask authentication
tag for many (different) two-block messages. Each message Mi is formed of
the blocks M (1)

i and M (2)
i , the corresponding authentication tag is ti. Assume

1Up to the birthday paradox bound.

© 2009 by Taylor and Francis Group, LLC

188 Algorithmic Cryptanalysis

that making these queries, we find that the tags ti and tj of two different mes-
sages are equal. At this point we make an additional query, by asking for the
authentication tag t of a message obtained by completing Mi by an arbitrary
sequel S. We then assert that the authentication tag of Mj completed by the
same sequel S is also t. This comes from the fact that CBC-MAC computa-
tions propagate equalities between intermediate ciphertext blocks as long as
the message blocks are also equal. As a consequence, as soon as two authen-
tication tags are seen to be equal, forgery becomes an easy matter. Since this
is exactly the definition of a collision between authentication tags, it shows
that the (non) existence of collisions is crucial to the security of CBC-MAC
authentication. Such an attack which relies on the existence of collisions is
often called a birthday attack, by reference to the birthday paradox.

Similarly, CBC encryption is also vulnerable to birthday attacks. More
precisely, if an attacker observes a collision between two encrypted blocks, he
gains some partial information about the corresponding plaintext blocks. For
simplicity of exposition, let us consider a single message M , with blocks M (i).
If we have equality between the two blocks of ciphertext C(i) and C(j) we
also have equality between the corresponding inputs to the block cipher, i.e.,
between M (i) ⊕ C(i−1) and M (j) ⊕ C(j−1). As the consequence, the attacker
learns the value of M (i) ⊕ M (j). This remark is easily transformed into a
chosen message distinguishing attack (see Exercise 3).

6.1.1.2 Birthday attacks and the counter mode

The security of the counter mode is also an interesting example. At first,
it seems completely immune to birthday attacks. Indeed, since the pseudo-
random sequence is obtained by encrypting different values, no collision may
occur. More precisely, starting from an initial value and incrementing it, we
may not loop back to the initial value until all possible values of the b-bit
block have been considered. Since there are 2b different values2, this is well
beyond the birthday paradox bound.

However, when considering the encryption of multiple messages, matters
become more complicated. Indeed, we should avoid reusing the same counter
values between messages. A simple solution is to memorize the current value
after encrypting a message and to restart from here for the next message.
However, in some practical scenarios, this solution which requires an encrypt-
ing device with memory is not possible. In that case, a frequently encountered
alternative is to choose a random initial value for each message. Of course,
with this solution, collisions between initial values lead to attacks and the
birthday paradox comes back into play.

More surprisingly, as distinguishing attacks go, even memorizing the counter
value is not enough to avoid the birthday paradox. Again playing the at-

2For completeness, note that if the incrementation is done using a LFSR, the all zero block
should be excluded and there are “only” 2b − 1 values to be considered.

© 2009 by Taylor and Francis Group, LLC

The birthday paradox: Sorting or not? 189

tacker’s role, we go directly to the challenge step and submit two long random
messages M0 and M1 of the same length L (measured in blocks). We obtain
the encryption C of either M0 and M1. By xoring C with M0 we get a first
candidate for the pseudo-random stream used during encryption. By xoring
C with M1 we get a second candidate. By construction, there can be no colli-
sion between blocks within the correct candidate. However, nothing prevents
random collisions to occur in the incorrect one. As a consequence, if the ad-
versary observes a collision in one of the two pseudo-random candidates, he
knows for sure which of M0 and M1 was encrypted and he can announce it.
Otherwise, he tosses a random coin and announces the corresponding guess.
Clearly, if the probability of collision in the incorrect pseudo-random candi-
date is non-negligible, the adversary gains a non-negligible advantage. It is
interesting to note that this distinguisher is not really based on a property of
the counter mode itself but rather on the fact that the mode is constructed
on a permutation. If the block cipher or random permutation is replaced by
a (pseudo) random function the distinguisher vanishes. However, this would
not remove the need to memorize counter values. Moreover, in practice, a
counter mode based on a pseudo-random function is a rarely seen construc-
tion in cryptography. The main reason probably being that block ciphers are
standardized and thus more readily available to developers.

6.2 Analysis of birthday paradox bounds

Since the mere existence of collisions can be essential to the security of
cryptographic algorithms and protocols, it is important to estimate the prob-
ability of having collisions within sets3 of random objects, before considering
the algorithmic issue of effectively and efficiently finding such collisions. Of
course, the exact probability depends on the distribution of these random ob-
jects. If they are generated from distinct values by application of a random
permutation or equivalently if they are randomly drawn without replacement
from a set, no collision may occur and the probability of having a collision is
zero. On the other hand, the probability for twins to have the same birthday
is almost one (see Exercise 4).

The easiest case to analyze is the case of objects taken uniformly at random
from a given set (with replacement). In this context, two parameters need
to be considered, the number of randomly drawn objects N and the size
of the set N . In order to determine the probability of collision, we may
first consider a simple heuristic method. Among N objects, we can build

3Or more precisely multisets: by definition a set may only contain a single copy of a given
object. This abuse of language is frequently encountered and we simply follow the tradition.

© 2009 by Taylor and Francis Group, LLC

190 Algorithmic Cryptanalysis

N(N − 1)/2 pairs. Moreover, for any pair, the probability of collision is N−1.
Assuming independence between pairs, we have an average estimated number
of collisions equal to:

N(N − 1)
2N

.

This simple heuristic analysis already points to a threshold for collisions
around N ≈

√
N . However, this analysis is not satisfying for several rea-

sons. First, it incorrectly assumes independence between pairs of objects in
the random set. Second, it does not give a probability of collision but instead
estimates the expected number of collisions within a multiset.

Our goal in the sequel is to make the analysis more precise. In this analysis,
we denote the probability of having at least one collision in a randomly chosen
set of N elements among N by CollNN . Let us first start by giving an upper
bound. For convenience, we assume that the drawing order of elements in the
random set has been kept. In that case, we have a random list and can access
each element by its rank from 1 to N . Element i is denoted by Xi. For any
pair (i, j), the probability of having Xi = Xj is N−1. If any pair collides,
then of course, there is a collision in the set. Since the probability of a union
of events is always upper bounded by the sum of the probability of individual
events, regardless of independence we find that:

CollNN ≤
∑

Pairs(i,j)

1
N

=
N · (N − 1)

2N
. (6.1)

This directly implies that when N �
√
N the probability of collision is low.

This fact is routinely used in security proofs, when showing that no birthday
attack is applicable.

Should the reader want more than an upper bound, the easiest approach is
to compute the probability of the reverse event, i.e., the probability to get no
collisions when drawing N elements among N . This probability is exactly:

N−1∏
i=0

N − i
N

=
N !

NN · (N −N)!
. (6.2)

Then, using Stirling formula or even better upper and lower bounds derived
from the Stirling series, we can get a very precise estimate for the desired
probability.

6.2.1 Generalizations

In some cryptographic contexts, it is interesting to generalize the analy-
sis. One important generalization is the existence of collisions between two
different sets. Another frequently encountered issue is the existence of mul-
ticollisions, i.e., the existence of 3, 4 or more random elements sharing a

© 2009 by Taylor and Francis Group, LLC

The birthday paradox: Sorting or not? 191

common value. For these generalizations, we only make a simplified heuristic
analysis based on the expected number of (multi)collisions assuming indepen-
dence. This simplified analysis can be refined to give upper and lower bounds
as in the case of collisions. However, in most cases, this is not necessary and
the simple estimate suffices.

Collisions between two sets. In this generalization, we are given two
subsets, each obtained by drawing at random without replacement from a
large set. We denote by N1 and N2 the respective cardinality of the subset
and by N the cardinality of the set. By construction, there is no collision
within any single subset and we are interested by collisions between elements
of the first set and elements of the second one. Since N1 ·N2 pairs of elements
can be constructed, the expected number of collisions is:

N1 ·N2

N
.

When the two subsets are of the same size N1 = N2 = N , this expected
number of collisions lies between the expectation we had for a single subset of
N elements and the expectation for a subset of size 2N . Note that considering
a subset of size 2N is quite natural, since it is the size of the union of the two
considered subsets.

Multicollisions. For multicollisions, as for collisions, two subcases may be
considered. Either we have a single subset and search for ` different elements
with the same value. Or we have ` different subsets and want an element
common to all. In short, a multicollision involving ` elements is called a `-
multicollision. Making our usual heuristic analysis under an independence
hypothesis, we find that the expected number of `-multicollisions in a subset
of size N chosen among N elements is:∏`

i=1N + 1− i
` ! · N `−1

≈ N `

` ! · N `−1
. (6.3)

For a `-multicollisions between subset of respective sizes N1 · · ·N` we find
an expected number equal to: ∏`

i=1Ni
N `−1

From these expected numbers, assuming that ` remains small enough to
neglect the ` ! factor, we find that for N � N (`−1)/` the probability of `-
multicollisions within a subset remains small.

Non-uniform statistical distributions. Up to this point, when looking
for collisions, we assumed a uniform random distribution for the would-be

© 2009 by Taylor and Francis Group, LLC

192 Algorithmic Cryptanalysis

colliding objects. In practice, this is not always the case and we may in some
cases be looking for collisions under other statistical distributions. Assuming
that the random objects remain independent from each other, the probability
of collisions is always larger with a non-uniform distribution. This comes
from the higher probability of collision within a single pair of randomly drawn
objects. Indeed, assume that we draw at random among N values and that
value i is taken with probability pi then the probability of collision is:

N∑
i=1

p2
i . (6.4)

Under the additional condition
∑N
i=1 pi = 1 this probability is maximized

when all pi values are equal to 1/N . A more precise analysis of collisions in
hash functions is presented for the unbalanced case in [BK04].

Finally, when the objects are not drawn independently from each other, we
cannot say much about collisions. Depending on the precise details, collisions
may either be more frequent or vanish completely. In the non-independent
case, a specific analysis is required for each specific problem.

6.3 Finding collisions

A natural algorithm question given a list of elements is to check whether
this list contains a collision or not. The first idea that comes to mind is to
consider all pairs of elements in the list and to test for equality. This approach
involves two intricated loops and requires N ·(N−1)/2 tests. For cryptanalytic
purposes, this algorithm is dreadful, because it takes back the edge that the
existence of collisions gave us. As a consequence, we need better algorithms
for this purpose. Ideally, we would like to obtain a linear time algorithm.
However, unless non-standard assumptions are made about the computing
device, it is not known how to solve this problem.

Still, there are several algorithmic techniques that allow us to find collisions
in quasi-linear time, i.e., with O(N logN) operations for a list of N elements.
These techniques involve sorting, hashing, balanced trees or a mix of those.

Before delving into the algorithmic details, let us discuss why these tech-
niques are helpful to find collisions.

Collisions finding by sorting. If we can sort efficiently, then the problem
of finding collisions or multi-collisions is reduced to the easier problem of
finding collisions within a sorted list. Of course, sorting first requires a total
order on the values we are considering. However, for the purpose of collision
finding, the precise choice of this order is irrelevant, the only property we need

© 2009 by Taylor and Francis Group, LLC

The birthday paradox: Sorting or not? 193

is shared by all orders: equal elements are necessarily neighbors in a sorted
list. As a consequence, finding a collision in a sorted list is very simple, it
suffices to read the list in order and compare each element with its immediate
successor. If there are collisions in the list, we necessarily find some. However,
as stated the algorithm may miss some collisions. Assume that we have a triple
of equal elements. After sorting, they can be found in positions i, i + 1 and
i+2. The method described above locates the collision in the pair (i, i+1), it
also detects the collision (i+1, i+2). However, it misses the collision (i, i+2).
Fixing this problem is easy: when a first collision is detected for some value,
say in (i, i+ 1), it suffices to scan the list forward until a different element is
detected. After this scanning, we know that all elements in the range [i, i+ δ]
are equal. Generating the corresponding δ · (δ+ 1)/2 collisions is easily done.
Algorithm 6.1 fully describes the way to generate all collisions in a sorted list.

Algorithm 6.1 Generating all collisions in a sorted list
Require: Input a sorted array X of N elements

for i from 1 to n− 1 do
if X[i] = X[i+ 1] then

Assert: First collision detected for the value X[i]
Let δ = 1
while i+ δ < n and X[i] = X[i+ δ + 1] do

Increment δ
end while
for j from 0 to δ − 1 do

for k from j + 1 to δ do
Print ‘Collision between positions i+ j and i+ k’

end for
end for
Let i←− i+ δ (to skip over the values equal to X[i])

end if
end for

Since the order chosen for sorting does not affect this collision finding al-
gorithm, it is not necessary to have a naturally ordered set to find collisions.
If the set is not naturally ordered, a simple way to go is to view the binary
representation of the elements in the set as the number encoded by the same
binary string and then to sort these numbers. This order is meaningless, in
the sense that it is not in any way related to the semantics of the elements.
However, it suffices to find collisions.

Collisions finding by sorting one of two lists. When looking for colli-
sions between two lists, i.e., for common elements, several methods are pos-

© 2009 by Taylor and Francis Group, LLC

194 Algorithmic Cryptanalysis

sible. The first idea is to re-use the technique we used in the single list case.
Simply merge both lists, while associating to each value a tag that remembers
its original list. Then sort and look for collisions in the merge lists. Only
keep the collisions involving one element from each original list. Of course,
this approach is not optimal and has several drawbacks. In particular, the
fact that an additional bit of memory is required to keep track of the original
list is extremely cumbersome. Instead, it is much better to devise a specific
method. The next idea probably is to sort both lists and then to look for
collisions in the sorted lists. To illustrate the technique used to look up the
collisions, imagine that the sorted lists are written on two sheets of paper. Put
your left index at the top of one list and your right index at the top of the
other. At each step of the comparison, move down by one position the finger
corresponding to the smallest of the two elements. If at any time the elements
below both fingers are equal, this detects a collision. This basic procedure is
going to be used as part of the merge sort Algorithm 6.7, so we do not write
down for now. Finally, the best way to proceed is to break the symmetry
between the two lists, just sorting one of then, preferably the shortest one.
Once this is done, take elements of the other lists one by one and try to locate
them in the sorted list. If we find any one of them, we have a collision. The
advantage of this approach is that we only need to store the shortest list in
main memory, the other one can be read from disk during the collision search.
The method can even be used when the second list is not available at the
start of the computation but produced online after that. In a cryptanalytic
setting, this can be extremely useful, for example, the second list could be
obtained by observing ciphertext blocks during an encrypted communication.
The key fact which makes this technique efficient is that finding an element
in a sorted list can be done efficiently using a dichotomy search, given as
Algorithm 6.2. This way of searching needs about log2N operations to find
an element within a sorted list of N elements. Moreover, if the element is
not present in the sorted list, the algorithm can return the position where it
would fit: at the start, at the end or at some place between two consecutive
elements.

Collisions finding without sorting. In order to better understand why
it is possible to detect collisions without sorting, let us perform a thought
experiment, using a non-standard computer architecture. This non-standard
computer has access to a very large amount of direct access memory, initialized
for free to a special value⊥ upon start-up. With such a computer, it is possible
to have a memory size not bounded by the running time. Note that with
Turing machines this is not possible because they do not offer direct access to
the memory but only sequential access. With a conventional computer, it is
not possible either since the memory initialization never comes for free. On our
hypothetical computer, finding collisions is very simple. For each element Xi

in the list, interpret Xi as a number, view this number as a memory address,

© 2009 by Taylor and Francis Group, LLC

The birthday paradox: Sorting or not? 195

Algorithm 6.2 Dichotomy search
Require: Input an array X of N elements and a value Y

Let start←− 1
Let end←− N
if Y < X[1] then

Output ‘Y not in list, its place is at the start’
end if
if Y > X[N] then

Output ‘Y not in list, its place is at the end’
end if
if Y = X[N] then

Output ‘Y is in list, in position N ’
end if
while start+ 1 < end do

Assert: We have X[start] ≤ Y < X[end]
Let mid←−

⌊
start+end

2

⌋
if Y < X[mid] then
end←− mid

else
start←− mid

end if
end while
if Y = X[start] then

Output ‘Y is in list, in position start’
else

Output ‘Y not in list, its place is right after position start’
end if

© 2009 by Taylor and Francis Group, LLC

196 Algorithmic Cryptanalysis

check that the address is non-initialized and then write i at this address. If
an already initialized address is encountered, then we have found a collision
between Xi and Xj (assuming that the address contained the value j). Of
course, this approach is not feasible; however, sorting through hashing can
be seen as a practical way of implementing it. Also, finding collisions with a
balanced tree can depending on the point-of-view be considered either as a
hidden sort or as another implementation of the large memory machine.

6.3.1 Sort algorithms

Sorting is widely encountered in computer science. In particular, it is one of
the favorite problems of computer science teachers. The main reason proba-
bly is that good sorting algorithms are more efficient than would be expected
by the uninitiated, very elegant and tough to understand. They are also
optimal at least when considered as generic algorithms. In this section, we
first present an overview of some sort algorithms before considering imple-
mentation issues. The overview is further divided into two parts. The first
part contains quadratic, asymptotically unefficient, algorithms. The second
describes asymptotically fast algorithms. The selection of sort algorithms
presented here is somewhat arbitrary and based on simplicity and usefulness
criteria. Many more sort algorithms do exist, such as comb sort, or smooth
sort. They are not included in this selection.

6.3.1.1 Quadratic algorithms for sorting

6.3.1.1.1 Bubble sort. Bubble sort is probably the conceptually simpler
of all sort algorithms. It starts from an unsorted list of elements, looks at
the current list to see if any pair of consecutive elements is in an incorrect
order and repeats this step until no badly ordered pair can be found. To
find out badly ordered pair, the bubble sort simply scans the list of elements
starting at the beginning and going straight to the end of the list. This is
called a pass on the list. It then performs successive passes, until a full pass
without a swap occurs, at which point the algorithm stops. It is easy to check
that if a pass has nothing to do, then each element is smaller than the next,
thus by transitivity the list is fully ordered. In order to bound the running
time of the bubble sort, it is useful to remark that after the first pass, the
largest element in the list has been moved into place at the end of the list.
After two passes, the largest two elements are in place and so on . . . As a
consequence, there is a growing tail in each pass that never performs any swap.
We can take advantage of this fact and write a slightly improved bubble sort
as Algorithm 6.3. The running time of this algorithm measured in number of
comparisons is at most 1 + 2 + · · ·+ (n− 1) = n(n− 1)/2.

6.3.1.1.2 Selection sort. Selection sort is a way of sorting which is built
on a simpler procedure: finding a minimal element in a list. From this simple

© 2009 by Taylor and Francis Group, LLC

The birthday paradox: Sorting or not? 197

Algorithm 6.3 Bubble sort
Require: Input an array X of N elements

for pass from 1 to N − 1 do
Let Active←− false
for i from 1 to N − pass do

if X[i] > X[i+ 1] then
Assert: Incorrectly order pair found
Let Active←− true
Exchange X[i] and X[i+ 1]

end if
end for
if Active = false then

Abort loop
end if

end for
Output sorted array X

Algorithm 6.4 Find minimal element
Require: Input an array X[start · · · end]

Let mini←− start
for i from start+ 1 to end do

if X[i] < X[mini] then
Let mini←− i

end if
end for
Output position of smallest element, i.e., mini

© 2009 by Taylor and Francis Group, LLC

198 Algorithmic Cryptanalysis

procedure, sorting is easy: the first element in the sorted list is the minimal
element and sorting the remaining elements can be done by repeating the same
idea. Of course, by symmetry, it is also possible to find a maximal element
and sort by placing the largest element at the end of the list. Since the time to
find an element is linear in the size of the list N , selection sort, which requires
N such passes, is a quadratic algorithm. The search for a minimal element is
given as Algorithm 6.4 and the selection sort as Algorithm 6.5.

Algorithm 6.5 Selection sort
Require: Input an array X of N elements

for pass from 1 to n− 1 do
Find the position i of the minimum element in X[pass · · ·n].
Swap X[i] and X[pass]

end for
Output sorted array X

6.3.1.1.3 Insertion sort. A well-known sort algorithm in the real life is
the way we proceed to sort cards. The basic idea is simple: put the unsorted
cards in a stack, draw one card at a time from the stack and place it in
your hand. Each time a card is to be placed, locate the correct position
among the already sorted cards in your hand and insert it there. In computer
science, this is called insertion sort. In order to perform this algorithm, we
need to efficiently locate the right position in the already sorted list using the
dichotomy search of Algorithm 6.2. We also need to be able to insert the new
element in the correct position quickly. Surprisingly, this apparently simple
step is the catch which makes insertion sort unefficient. The reason is that in
general a new element needs to be inserted somewhere in the middle of the
list. Since there is no room at that place, we need to make some, without
disordering the list. With cards, it is easy, when you insert one, the others
move to let it fit in. With elements in an array, we need to move them one
by one to make room. On average, for each insertion, half the elements in
the list need to be displaced. Thus each insertion requires linear time and the
insertion sort, given by Algorithm 6.6, is quadratic.

6.3.1.2 Fast algorithms for sorting

Beyond their purpose, all fast sort algorithms that we present here but one
have a common point. Except heap sort, all of them are recursive algorithms
based on the divide and conquer approach. Using a linear time transforma-
tion called a stage, they reduce the problem of sorting a list to the problem
of sorting two smaller lists of roughly half-size. Of course, once we reach

© 2009 by Taylor and Francis Group, LLC

The birthday paradox: Sorting or not? 199

Algorithm 6.6 Insertion sort
Require: Input an array X of N elements

for i from 2 to N do
Assert: List from 1 to i− 1 is sorted
Let Y ←− X[i]
Using dichotomy, find the correct place k for Y in X[1 · · · i− 1] (The end
position is encoded by i).
for j from i down to k + 1 do

Let X[j]←− X[j − 1]
end for
Let X[k]←− Y

end for
Output sorted array X

extremely small lists of zero or one element we stop. As a consequence, the
number of stages is limited by the number of integer divisions by two that
can be performed, i.e., log2N . Since the stages take linear time, this yields
algorithms with complexity O(N logN).

6.3.1.2.1 Merge sort. Our first fast algorithm for sorting, called merge
sort, is a straight implementation of the divide and conquer idea. It works by
dividing the list in two sublists of half-size, sorting the sublists and merging
the two sorted sublists into a single sorted list. The basic idea for merging
is already described in Section 6.3 as a way of finding collisions between two
sorted lists. Writing down the merge sort algorithm from this description
is a simple matter. The main difficulty comes from merging. Indeed, when
merging two sorted lists into a single one, it is essential to have some place to
store the merged list. Indeed, it is very hard to do the merge in place, reusing
the storage of the two sublists. As a consequence, merge sort requires extra
memory in addition to the memory used by the input array. With a little
care, a single auxiliary array of the same size as the input array suffices. One
approach is to copy the original array into the auxiliary array, to sort both
halves of the auxiliary array and to merge them back into the original. When
sorting the halves of the auxiliary array, the role of original and auxiliary
arrays are reversed. Moreover, most of the copy operations can be removed,
indeed at each stage after the first one, we may see that copying the current
original arrays to the auxiliary ones simply rewrite the same data over and over
again. In fact, if the array’s size is a power of two, it is even better to avoid
the copying altogether and directly start by merging. First merge small lists
and proceed upward until the final merging is done. With luck, if the number
of stages is even, the sorted list already is in the correct array. Otherwise,
copy it once from the auxiliary to the main array. However, when the size of
the array is not a power of two, the depth of the computation’s tree is not

© 2009 by Taylor and Francis Group, LLC

200 Algorithmic Cryptanalysis

uniform and making an initial copy is a great simplification. To distinguish
between the top level where the allocation of an auxiliary array and the initial
copy is done from the other levels, we split the algorithm into two parts: a
wrapper (Algorithm 6.8) and the main procedure (Algorithm 6.7).

Algorithm 6.7 Merge sort main procedure
Require: Input an array X[start · · · end] of end− start+ 1 elements
Require: Input an auxiliary array Y [start · · · end]

If start ≥ end, the array is already sorted, return
Let mid←−

⌊
start+end

2

⌋
Recursively merge sort Y [start · · ·mid] with auxiliary array X
Recursively merge sort Y [mid+ 1 · · · end] with auxiliary array X
(Note the reversal of main and auxiliary array in the calls)
Let start1 ←− start
Let start2 ←− mid+ 1
Let merge←− start
while start1 ≤ mid and start2 ≤ end do

if Y [start1] ≤ Y [start2] then
Let X[merge]←− Y [start1]
Increment start1

else
Let X[merge]←− Y [start2]
Increment start2

end if
Increment merge

end while
while start1 ≤ mid do

Let X[merge]←− Y [start1]
Increment start1
Increment merge

end while
while start2 ≤ end do

Let X[merge]←− Y [start2]
Increment start2
Increment merge

end while
Return sorted array X[start · · · end]

Merge sort is a very efficient algorithm, however, since it requires additional
memory, it cannot be used when the array to be sorted fills the computer’s
main memory. In that case, it is better to use a different sorting algorithm.
Note that using a more complicated merging method, it is also possible to

© 2009 by Taylor and Francis Group, LLC

The birthday paradox: Sorting or not? 201

Algorithm 6.8 Merge sort wrapper
Require: Input an array X[start · · · end] of end− start+ 1 elements

If start ≥ end, the array is already sorted, return
Create an auxiliary array Y [start · · · end]
Copy X into Y
Call merge sort procedure on X[start · · · end] with auxiliary array Y
Free the memory occupied by Y
Return sorted array X[start · · · end]

devise an in-place variation of the merge sort algorithm, e.g., see [KPT96].

6.3.1.2.2 Quicksort sort. In order to largely reduce the need for addi-
tional memory, quicksort implements the divide and conquer idea in a different
way. At each stage, it randomly chooses an element in the list and uses this
element called the pivot to divide the list into two sublists. The first sublist
contains all elements smaller than the pivot and the second sublist the other
elements. During the stage, elements are moved around to put the list in a
new order, with the first sublist at the beginning, the pivot in the middle
and the second sublist at the end. This can be done in linear time, without
requiring extra memory. If the two sublists are then independently sorted,
it is clear that the list itself becomes sorted. Despite the simplicity of the
basic idea, this algorithm presents several complex issues. First of all, the
need to choose the pivot at random is essential. If the pivot is chosen in a
deterministic way, then it is possible to conceive examples of adversary lists
which would require quadratic time to be sorted. Second, making the com-
plexity analysis precise is a difficult matter because the running time depends
on the random choices made by the algorithm and making the bad choice at
each stage leads to a quadratic running time. However, with overwhelming
probability, the size of the sublists decreases quickly between stages and the
running time stays in the range O(N logN). Finally, to avoid bad lists lead-
ing to quadratic running time, it is also necessary to specify more precisely
what happens when we encounter an element which is equal to the pivot. If
we decide that all such elements go to the first (or second) sublist, we are in
trouble. Indeed, in that case, sorting a list containing N copies of the same
element takes quadratic time! To avoid this, the simplest approach is to put
elements in the first sublist if they occur before the pivot in the original list
and to put them in the second sublist otherwise.

Despite these difficulties, quicksort is a very useful practical algorithm.
Moreover, it is quite easy to detect bugs which lead to quadratic running time.
Indeed, due to the recursive nature of the algorithm, each time the program
enters a deeper stage, it adds some elements on the recursivity stack. When a
bug leads to quadratic behavior, the size of the stack needs to become linear
in N , which quickly leads to an overflow. When such an overflow occurs,

© 2009 by Taylor and Francis Group, LLC

202 Algorithmic Cryptanalysis

the program aborts and reports an error. This misbehavior usually suffices to
find the bug. Note that the recursive nature of the algorithm also implies that
quicksort still requires more than a constant amount of memory in addition
to the original array. The additional memory needed is proportional to the
depth of the computation tree, i.e., it is of the form O(logN).

Algorithm 6.9 Quicksort
Require: Input an array X[start · · · end] of end− start+ 1 elements

If start ≥ end, the array is already sorted, return
Choose a random position pos in [start · · · end]
Copy start to start0
Copy end to end0

Let Y ←− X[pos]
Let X[pos]←− X[start]
Let i←− start+ 1
while i ≤ end do

if (X[i] < Y) or (X[i] = Y and i < pos) then
Let X[start]←− X[i]
Increment start
Increment i

else
Exchange X[end] and X[i]
Decrement end

end if
end while
Let X[start]←− Y
Recursively apply quicksort to X[start0..start− 1]
Recursively apply quicksort to X[end..end0]
Return sorted array X[start0 · · · end0]

6.3.1.2.3 Radix sort. From the descriptions of merge sort and quicksort,
it is natural to ponder whether it is possible to devise a sort algorithm that
requires neither additional memory nor randomness. Radix sort neatly solves
this problem. However, this algorithm is not generic and it requires addi-
tional knowledge about the order used for sorting. For many cryptographic
applications, this is not a problem at all, but it makes index sort badly suited
in other cases, especially when sorting complex objects, such as, for example,
database entries. In fact, there are two different version of radix sort, which
sort by considering bits either from left to right or from right to left. Here, we
only consider the left to right version. To explain this version of radix sort,
let us assume that we want to sort an array of N unsigned n-bit numbers. We

© 2009 by Taylor and Francis Group, LLC

The birthday paradox: Sorting or not? 203

know that in the sorted array, the numbers with a high order bit set to 0 occur
before the numbers with a high order bit of 1. Similarly, with each of these
subarrays, the numbers should be sorted according to the value of the second
high order bit. And so on, until the low order bit is reached. The complexity
analysis is simple, each stage which consists of moving numbers with some bit
equal to 0 before numbers with the bit equal to 1 can be performed in linear
time. Since there is one stage per bit, the complexity is O(nN). With very
large numbers, when n � logN , this is worse than merge sort or quicksort.
However, it is not a very frequent case. Moreover, if the numbers are (or
look) random, the complexity can be improved with a very simple change:
simply abort the recursion when a list of zero or one element is to be sorted.
With random numbers, this cuts off the depth of the computation tree around
log2N , thus improving the complexity as required.

Radix sort can also be used with signed numbers. In that case, we should
remember that the high order bit is the sign bit. As a consequence, numbers
with a high bit set to 1 need to be at the beginning because they are neg-
ative. Thus reversing the role of the first and second sublists for this bit is
the only change to deal with signed numbers. For all other bits, we should
proceed as we did with unsigned numbers (assuming that negative numbers
are represented using the two-complement convention).

Algorithm 6.10 Radix sort
Require: Input an array X[start · · · end] of end−start+1 unsigned integers
Require: Bit position b to consider in the integers

If start ≥ end, the array is already sorted, return
Copy start to start0
Copy end to end0

while start ≤ end do
if Bit b of X[i] is 0 then

Increment start
else

Exchange X[end] and X[start]
Decrement end

end if
end while
Recursively radix sort X[start0..start− 1] on bit b− 1
Recursively radix sort X[end+ 1..end0] on bit b− 1
Return sorted array X[start0 · · · end0]

6.3.1.2.4 Heap sort. From a theoretical point-of-view, heap sort is very
interesting. First, it is a non-recursive algorithm and thus it can truly achieve

© 2009 by Taylor and Francis Group, LLC

204 Algorithmic Cryptanalysis

in-place sorting: in addition to the array being sorted, it only requires a
constant amount of memory. Second, it uses a very nice implicit tree structure
as the basis of the algorithm. This tree structure is called a heap, it is a binary
tree where the value of each node is larger4 than or equal to the values of all
nodes in the subtree attached to it. The tree structure is implicit, because it
does not use any pointers but instead works with the convention the left and
right children of the element in position i are respectively stored5 in positions
2i + 1 and 2i + 2. Whenever the position of a child is beyond the end of
the array, it simply means that the child does not exist. For example, when
position 2i + 1 is not in the array, then node i is a leaf. When 2i + 1 is the
last position in the array, then node i has a single child (on the left).

Using this structure, heap sort works in two phases. During the first phase,
it takes the input array with the implicit tree structure and reorder it to satisfy
the heap property. This is done by making sure that each element is larger
than its children. During the second phase, it progressively reduces the size
of the tree by taking out the largest element and placing it where it belongs
in the sorted array. During this second phase, one part of the array is used
to store a heap tree and the other part to store an already sorted part of the
array. At the end of the second phase, the tree part is empty and the array
is fully sorted.

To write down the heap sort algorithm, we first need a heap insertion pro-
cedure which allows us to correctly add elements to an existing heap. This
insertion works as follows: assuming that the subtrees starting in position
2i+ 1 and 2i+ 2 are correct heap trees, it inserts an element in position i and
if necessary moves it down the tree to create a correct heap tree in position i.
During the first phase, this procedure is used iteratively on all positions, start-
ing from the end of the original array. Of course, remarking that subtrees with
a single node are always heap trees, there is nothing to be done for the second
half of the array and we may start in the middle. During the second phase, we
take the element at the root of the heap tree, i.e., the largest element in the
tree and put it at the beginning of the sorted part. Since this partially breaks
the heap structure, we use the insertion procedure again. More precisely, we
move the last element of the previous heap at the root and apply the insertion
to guarantee the heap property on a new tree, with one fewer element. Both
phases of the heap sort algorithm require N calls to the insertion procedure,
whose complexity is bounded by the tree depth. As a consequence, the total
runtime is O(N logN) as with the other fast sort algorithms.

Despite its good complexity analysis, in practice, heap sort does not perform
very well, especially on large arrays, because it causes many cache misses when
moving elements around during the heap insertion.

4There is, of course, a variation of the heap tree where each node is smaller than its
successors, but this is not the version we use here.
5This assumes that the array starts at position 0, for arrays starting with position 1, we
should use positions 2i and 2i+ 1 instead.

© 2009 by Taylor and Francis Group, LLC

The birthday paradox: Sorting or not? 205

Algorithm 6.11 Heap sort
Require: Input an array X[0 · · · end− 1] of end elements

First Phase: Heap creation
for i from

⌊
end−2

2

⌋
down to 0 do

(Note: Subtrees at positions 2i+ 1 and 2i+ 2 are already correct)
Call heap insertion on position i with tree size end

end for
Second phase: Sorting
while end > 1 do

Put largest element at the end: Exchange X[0] and X[end− 1]
Decrement end
Call heap insertion on position 0 with (reduced) tree size end

end while
Return sorted array X

Algorithm 6.12 Insertion in heap procedure
Require: Input an array X[0 · · · end− 1] of end elements
Require: Input a position pos where the heap property must be enforced

while 2 · pos+ 1 ≤ end− 1 do
Let val←− X[pos]
Let dest←− pos
if X[2 · pos+ 1] > val then

Let val←− X[2 · pos+ 1]
Let dest←− 2 · pos+ 1

end if
if 2 · pos+ 2 ≤ end− 1 and X[2 · pos+ 2] > val then

Let dest←− 2 · pos+ 2
end if
if dest 6= pos then

Exchange X[pos] and X[dest]
Let pos←− dest {loop continues at lower level of the tree}

else
Break from loop {The tree is now a heap}

end if
end while

© 2009 by Taylor and Francis Group, LLC

206 Algorithmic Cryptanalysis

6.3.1.3 Optimality of sort algorithms and beating the bound

Fast algorithms are able to sort N elements in O(N logN) time and there is
a trivial lower bound of O(N) on this running time, since sorting an array at
least requires reading the N elements in the array and writing the sorted array
as output. A natural question is to ask whether it is possible to outperform
O(N logN). In fact, it can be shown that in a generic sense, this is impossible.
However, in some special cases, where additional information is known about
the array and the elements it contains, it is possible to beat this bound and
come up with linear time special purpose sort algorithms.

Let us first explain why O(N logN) is optimal. For that, assume that we
need to sort an array of N distinct elements. We also assume that the array
is accessed only in a limited way. Elements can be compared and moved
around, nothing else. For our array of N elements, N ! different orders are
possible. Moreover, given the sorted array that the algorithm outputs and the
computation trail, it is possible to reconstruct the initial order of elements.
As a consequence, the algorithm has to learn enough information to be able to
fully reconstruct the input order. The number of bits necessary to encode this
order is log2(N !) ≈ N log2N . Since any comparison reveals at most one bit of
information, the algorithm requires on average at least N log2N comparisons.
This yields the desired lower bound on the running time.

To show that this bound can be beaten in some special cases, assume that
we want to sort an array of N integers in [1 · · · bλNc] for some constant λ.
Consider Algorithm 6.13. The initialization of the algorithm costs O(λN), the
first loop costs O(N), the second loop costs O(λN) for the control and O(N)
for the printing. All in all, since λ is a constant, this algorithm running time
is O(N). Clearly, the algorithm outputs numbers in increasing order, since it
only writes down the loop variable i. Moreover, it writes i as many times as i
appears in X. Thus, the algorithm outputs a sorted copy of array X. It beats
the lower bound on sort algorithms, because it is able to obtain information
about X through an additional channel. This algorithms does not restrict
itself to comparisons; in fact, it does not perform any comparisons at all, only
(implicit) equality tests.

Algorithm 6.13 Count sort: Beating the sort lower bound
Require: Input a sorted array X of N elements in [1 · · · bλNc]

Allocate an array M of bλNc elements initialized to zero
for i from 1 to N do

Increment M [X[i]]
end for
for i from 1 to bλNc do

Print M [i] times the number i
end for

© 2009 by Taylor and Francis Group, LLC

The birthday paradox: Sorting or not? 207

6.3.1.4 Sort algorithms and stability

When using sort algorithms with duplicate elements, we can ask what hap-
pens to equal elements: Do they remain in the same relative order or can
they be moved around? If a sort algorithm always preserves the relative or-
ders of copies of the same element, it is called a stable sort algorithm. Since
this can sometimes be an important property, it is useful to know which sort
algorithms are stable and which are not. Of course, any sort algorithm can
be made stable by simplify adding the original position to any element, using
this value to break ties between identical entries. The problem with this ap-
proach is that it requires a potential large amount of extra memory to store
the initial positions. As a consequence, when needed an intrinsically stable
sort is preferable. Among our sort algorithms with quadratic running time it
is easy to check that bubble sort and selection sort are stable. For insertion
sort, the sort is stable if and only if the dichomoty search we use always return
the last position where an element can be inserted. We leave this verification
as an exercise.

Of course, it would be interesting to use an algorithm which is both fast and
stable. Among our selection of sort algorithms, only merge sort has this extra
property. Quicksort and radix sort can reasonably easily be made stable 9 if
the sorted elements are written in a copy of the initial array. However, the
versions that do not need such a copy move elements around too much to
satisfy this property.

6.3.2 Hash tables

In a book about cryptography, when hash functions are discussed, the reader
is usually expected to think about cryptographically strong hash functions,
without collisions, preimages or other strong properties. This section is an
exception to this general rule, here we consider algorithmic hash functions
and only require that for ordinary inputs (not selected by an adversary) to
these functions, the outputs of the hash functions are well distributed. When
looking for collisions, such a non-cryptographic hash function can be used to
filter out most non-colliding pairs of elements. The key requirement is that
for given two distinct elements, their hash values are rarely equal. Of course,
given two equal elements, their hash values are always equal, so using a hash
function to filter pairs cannot miss collisions. In practice, depending on the
set of inputs, the hash functions we use can be extremely simple. The most
extreme case is encountered with random numbers, say on n bits. There,
it suffices to truncate the numbers, keeping b bits only to get a useful hash
function. For this purpose, we can use the low order bits, the high order bits
or anything else that fits well with the particular problem being considered.
It is clear that this process cannot qualify as a strong cryptographic hash
function, for example, finding collisions in this function is straightforward.

To find collisions among n-bit numbers using a non-cryptographic hash

© 2009 by Taylor and Francis Group, LLC

208 Algorithmic Cryptanalysis

function h, we proceed as follow. Assuming that the hash values are b-bit
numbers, we create a large hash table of 2b numbers, which can be indexed
by hash values. This table is initialized to some special value ⊥. Then we
take numbers of the list one by one, and process number x by writing x in
the hash table T at position h(x) when the position still contains the special
value ⊥. Otherwise, we test whether x = T [h(x)], if so, since T [h(x)] is
a previous element, we have found a collision. A very important remark
is that this approach may miss some collisions. For example, assume that
the list of elements contains in this order three elements, x, y and z with
h(x) = h(y) = h(z), y = z and x 6= y. We also assume that no other element
in the list has the same hash value h(x). Then during the execution of the
algorithm, x is written in T [h(x)] since the position h(x) in table T is empty
when x is processed. When we encounter y, we see that T [h(y)] is not empty
and that y 6= T [h(y)](= x), so no collision is detected. Similarly, for z we see
that z 6= T [h(z)](= x), and do not detect a collision. All in all, we missed
the collision between y and z. In order to solve this problem, we should
make sure that when a false collision is detected, the corresponding element
is not dismissed but stored somewhere. In fact, this is a classical problem
when using hash table for other purposes such as database indexing. In these
alternative contexts, collision problems between hash values must be solved
and specific collision resolution techniques have been devised. However, in
our context, it is often easier to choose the parameter b in order to avoid this
problem altogether or, at least, with high probability.

In order to use hash tables for collision finding as in Algorithm 6.14, it is
important to choose the size of indexes correctly. Assume that we want to
find collisions in a list of L elements using a table indexed by b-bits. To avoid
collision resolution, we should take care to avoid multicollisions involving 3
or more elements. From the analysis of Section 6.2.1, assuming that the hash
values behave as random numbers, such multicollisions appear when:

L3/6 ≈ 22b. (6.5)

Forgetting the constant divisor 6, we find that we need to choose b ≈ 1.5 log2 L.
Assuming that we search a collision between n-bit numbers and that we have
the usual case L ≈ 2n/2, this yields b ≈ 3n/4.

Since this value of b is quite large, it is important to refine the analysis,
assuming that we are ready to accept some probability of failure. Clearly, if
we lower b, 3-multicollisions between hash values are going to occur. These
multicollisions make us fail when they hide a real collision on the original
numbers as in the x, y, z example we described earlier. Note that we miss
the collision if only if the bad element occurs first. Since the numbers es-
sentially appear in a random order, we miss the collision with probability
1/3. Thus, preventing 3-multicollisions is not essential, it suffices to prevent

© 2009 by Taylor and Francis Group, LLC

The birthday paradox: Sorting or not? 209

4-multicollisions6. Redoing the analysis we start with:

L4/24 ≈ 23b, (6.6)

and we find b ≈ 2n/3. Since b is still quite large compared to n, this approach
is mostly useful when n is not too large. A typical example is to consider
40-bit numbers and to take b = 26 or maybe 27. With these parameters, the
hash table can fit in memory, even if we use a wasteful representation and
take 64 bits to represent 40-bit number. Indeed, the memory requirements
are either 512 Mbytes or 1 Gbyte. A noticeable property of using hash tables
compared to sort algorithms is the fact that the list of numbers does not need
to be completely available at the start of the algorithm, it can be generated
online.

Algorithm 6.14 Collision search using hash tables
Require: Input (potentially one by one) a list X of N numbers on n bits

Choose b near 2n/3
Allocate a hash table T [0 · · · 2b − 1] initialized to ⊥
for i from 1 to N do

if T [h(Xi)] =⊥ then
Let T [h(Xi)] = Xi

else
if T [h(Xi)] = Xi then

Output ‘Collision found for value Xi’
end if

end if
end for

6.3.2.1 Hash tables and cache misses

Using hash tables to search for collisions yields a very simple algorithm
which is easily implemented. However, in terms of memory accesses, it has
a very bad behavior. Indeed, it reads and writes in a large table in memory
at essentially random positions. As we already know, with current memory
architecture, this behavior causes many cache misses and slows the program a
lot. It would be nice to be able to change the hash table algorithm in order to
minimize this difficulty. We now show how this can be done. For this purpose,
let us first define b0 as the largest possible bit size such that a hash table with
2b0 entries fits into the memory cache. Of course, if b ≤ b0, Algorithm 6.14

6We could even go further if we lower again the probability of success, but this particular
choice achieves a nice balance.

© 2009 by Taylor and Francis Group, LLC

210 Algorithmic Cryptanalysis

does not encounter cache misses and we need no improvement. Thus the
interesting case happens for b > b0. Since the main memory is usually not
arbitrarily larger than the cache memory, it is safe to also assume that b ≤ 2b0.
For example, with b0 = 16, i.e., a 64-Kbyte cache, this means that the main
memory is smaller than 4 Gbytes. Under this assumption, we divide each
b-bit hash values into two parts, say the b0 low order bits on one side and the
b1 = b − b0 other bits on the other side. For simplicity, we decompose the
hash function h in the same way and get two smaller hash functions, h0 on b0
bits and h1 on b1 bits. Then, we proceed as follow: in a first phase, for each
incoming value X, we simply throw it on one among 2b1 stacks, more precisely
on the stack numbered h1(X). Once this first phase is finished, the initial list
of numbers has been divided into 2b1 stacks. Within each stack, all numbers
share the same value for h1, i.e., they share the top b1 bits of their h values. If
the inputs are random numbers, the stacks are roughly of the same size. In a
second phase, we simply run Algorithm 6.14 independently on the content of
each stack in order to find collisions within these stacks. Of course, this yields
the same result as a direct application of Algorithm 6.14 on the original list of
numbers. This approach is described in pseudo-code as Algorithm 6.15. Due
to our hypothesis on b0, we know that no (or few) cache misses occur during
this second phase. Of course, we also need to check for cache misses during
the first phase. If we represent each stack as an array and write each new
element at the end of the corresponding array, we are simply writing elements
in memory in an ordered fashion within each array. If the number of arrays
is small enough, this does not cause too many cache misses. To estimate the
number of arrays, note that we need to store in cache, the current starting
position within each stack array, together with a few positions at the current
start of each stack. Thus to be safe, the numbers of stacks 2b1 should remain
below some fraction of the cache size. In practice, this means that b1 should
be smaller than b0 − 5 or something similar. Since we only assumed b1 ≤ b0,
there is a remaining gap. If required, this gap can be filled by using the same
idea twice: split the original list into stacks, split each stack into substacks
and then search for collisions.

6.3.3 Binary trees

Another interesting method to find collisions is the use of binary search
trees. A binary search tree, is a binary tree that satisfies an important addi-
tional property: for any node in the tree, all the nodes in its left subtree have
smaller (or equal) values and all the nodes in its right subtree have greater
values. Binary search trees are represented explicitly, by storing for each node,
its value and a pointer to each of its children. Due to this representation, they
are quite costly in terms of memory usage. From a runtime point-of-view, all
operations are fairly quick. Inserting, removing or searching for an element
in the tree costs at most the depth of the tree. Since a tree of depth k may
hold 2k+1−1 entries, the elementary cost is logarithmic in the size of the tree,

© 2009 by Taylor and Francis Group, LLC

The birthday paradox: Sorting or not? 211

Algorithm 6.15 Avoiding cache misses with hash tables
Require: Input a list X of N numbers on n-bits

Choose b near 2n/3
Split b as b0 + b1
Create 2b1 stacks of numbers represented by arrays of size

⌈
1.1N × 2−b1

⌉
{with a memory margin of 10 percent}
Allocate a hash table T [0 · · · 2b0 − 1]
for i from 1 to N do

Add X[i] to stack number h1(X[i])
end for
for k from 0 to 2b1 − 1 do

If stack k overflowed, Abort
Reinitialize hash table T [0 · · · 2b − 1] to ⊥
for all x in stack k do

if T [h0(x)] =⊥ then
Let T [h0(x)] = x

else
if T [h0(x)] = x then

Output ‘Collision found for value x’
end if

end if
end for

end for

© 2009 by Taylor and Francis Group, LLC

212 Algorithmic Cryptanalysis

assuming that the tree is reasonably full. As a consequence, the main issue
when working with binary trees is to control their depths and to check that
they do not grow too much.

The favorable case is when a tree is built by inserting randomly selected
elements. In that case, the resulting tree is well balanced, all subtrees are
similar and the resulting depth is quite small, i.e, it remains within a factor
of the logarithm of the size. The worst case occurs when a sorted sequence
of elements is inserted one at a time to build the tree. In this case, the tree
degenerates into a list and its depth is equal to its size. As a consequence,
searching for an element takes linear time in the size of the tree.

Because of these extreme behaviors, binary search trees are not suited to
all applications. For a given application, it is prudent to test the trees by
monitoring their depths to see if problems do occur. Thankfully, there exits a
nice solution to fix the depth problem with binary search trees, this solution
uses AVL trees, named after their inventors Adelson-Velsky and Landis. These
trees are also called self-balancing trees. The key idea of AVL trees is for each
operation that modifies the tree, insertion or deletion, to check that the tree
does not become too unbalanced and if necessary to take corrective action.
Note that AVL trees do not try to minimize the tree depth, this would be too
costly, instead they simply keep the tree depth within a factor of the optimal
value by using a simple criteria. The criteria used by self-balancing trees works
by memorizing for each node the difference between the depth of its left and
right subtrees. Differences of either 0, 1 or −1 are allowed. Whenever a larger
difference appears, the tree is modified to reduce it to an acceptable value.
The transformations used to modify the tree are called rotations. Two basic
rotations are possible, left and right rotations, they are inverse of each other.
Applying the correct rotation maintains the binary search property of the tree
while rebalancing the left and right subtrees of the rotated node. Depending
on the detailed structures of the subtree, rebalancing steps requires either a
single or a double rotation.

Use of binary search trees in cryptography. Because of their memory
costs, direct application of binary trees to collision search is not a good idea.
These structures are better suited to maintain collections of data that are
modified as time goes. An interesting example that may be encountered is
the case where after an initial construction the tree evolves in the following
way: at each time remove a tree element, say the smallest one and add in a
new element. Such an example is given in Chapter 8 in order to construct an
improved birthday paradox attack against knapsack cryptosystems.

6.3.3.1 Detailed description of basic binary search trees

Using a binary search tree requires the application of several algorithms.
Each algorithm starts from a correctly constructed tree and modifies into a
new, also correct, tree. At the very beginning, the tree is initialized at empty.

© 2009 by Taylor and Francis Group, LLC

The birthday paradox: Sorting or not? 213

To encode a tree, we maintain a pointer which points to the root node of the
tree. When the tree is empty, the pointer to the root node is the nil pointer.
Each node in the tree is a structure which contains the value stored in the
node and two pointers, one to the left child and one to the right child. When a
pointer to a child is the nil pointer, there is no child on the corresponding side.
A node without children is called a leaf, any other node is called an internal
node. Optionally, a node may also contain an additional field to memorize
the size of the left subtree connected to this node. With this additional field,
it becomes possible to recover the i-th element in the binary search tree in
logarithmic time. We describe all algorithms for binary search trees with
this optional field in place. In some algorithms, it is necessary to be able to
backtrack from an element to its father. This can be done in two different
ways, the first one is to maintain for each node an additional pointer that
memorizes its father, the second one is when passing an internal node to a
tree manipulation algorithm to pass it along with the full path from the root
to this node. The first method is simpler to implement but requires even
more memory to encode the trees. An alternative method is never to pass an
internal node directly, but to let the manipulation algorithm search for it, thus
determining the access pass itself. This alternative method may sometimes
require the program to perform the same search twice.

Given a binary search tree, the most important algorithm is probably the
search algorithm that tries to locate a given value in the tree. This algorithm
is quite simple, starting from the root, it compares the reference value to the
value stored in the current node. If they are equal, the search is successful,
if the reference value is smaller, the algorithm moves to the left child and
continues the search, if it is greater, it moves to the right child. Another
very important algorithm is the insertion algorithm. Insertion works in two
phases, first it searches for the value to be inserted, if the value is already
present in the tree, it adds a copy either right after or right before the existing
copy. Otherwise, it adds it at the position where the search ended. Since the
insertion algorithm contains a search part, we do not describe the search in
pseudo-code by itself but include it as part of the insertion Algorithm 6.16.
An important part of the insertion algorithm is the ability to find an empty
position right before or after an internal node. For an empty position right
before a node, move once to the left and then as many times to the right as
needed to get to a nil pointer. The nil pointer is the place we looked for. To
find the position right after a node, move once right, and continue with left
moves until an empty position is reached. While locating the place where the
insertion itself is going to happen, each time we move to the left, the field
representing the size of the left subtree needs to be incremented in order to
remain at the correct value.

Thanks to the optional field that counts the size of the left subtree, we
may also search for the i-th element in the tree (we assume as usual that
elements are counted from zero). Once again we start at the root and proceed
by moving down the tree. If the size of the left subtree for the current node is

© 2009 by Taylor and Francis Group, LLC

214 Algorithmic Cryptanalysis

Algorithm 6.16 Insertion in a binary search tree
Require: Input tree root R, free node N and value to insert X

Set the value of N to X
Set the children of N to nil
Set the left subtree size of N to 0
if R is the nil pointer then

Replace R by N and return
end if
Set Current←− R {First search for insertion position}
while true do

if Value of Current node < X then
if Current node has no right child then

Set right child of Current node to N
Return

else
Let Right be the right child of Current node
Set Current←− Right

end if
else

Increment the left subtree size field within Current
if Current node has no left child then

Set left child of Current node to N
Return

else
Let Left be the left child of Current node
Set Current←− Left

end if
end if

end while

© 2009 by Taylor and Francis Group, LLC

The birthday paradox: Sorting or not? 215

s, three cases are possible, if i < s then we need to look for the i-th element
in the left subtree, if i = s then the current node is the right one, if i > s then
look for element i− s− 1 in the right subtree.

Finally, we may also delete a given tree node. If the node to delete is a
leaf, it is quite easy, it suffices to remove it by replacing the pointer to it
in its father node by the nil pointer. After that, we need to backtrack the
access path to this node all the way up to the root to correct the size of each
left subtree where needed. Similarly, to delete a node with a single child, it
suffices to remove the node and link its child directly to its father. If the node
to delete has two children, deletion is more tricky. First, we need to locate
the immediate predecessor (or successor). Then, we swap the values stored
in the node to delete and in its successor. Finally, we delete the successor.
Since this successor has at most one child, it can be deleted using the simple
approach. Note that during the deletion algorithm, the binary search tree
is temporarily invalid. The value to be deleted may be stored in incorrect
order compared to the rest of the tree. However, when the value is finally
removed, the tree becomes correct once again. The deletion algorithm is
given as Algorithm 6.17.

Algorithm 6.17 Deletion in a binary search tree
Require: Input node N to delete, with path P of ancestors to the root

if N is a leaf or has at most one child C then
Replace pointer to N in its father by a pointer to C or to nil
for all Ancestors A in path P do

if N is in the left subtree of A then
Decrement the left subtree size field within A

end if
end for
Return

else
Let M be the left child of N
Let path Q←− (P‖N)
while M has a right child do

Let path Q←− (Q‖M)
Replace M by its right child

end while
Exchange the value fields of M and N
Call deletion algorithm on M with path Q {M has at most one child}

end if

© 2009 by Taylor and Francis Group, LLC

216 Algorithmic Cryptanalysis

6.4 Application to discrete logarithms in generic groups

Collisions can be used to computed discrete logarithms in arbitrary groups,
using the baby-step, giant-step method. Before presenting this method, it
is useful to first show that computing discrete logarithms in a group whose
cardinality is known is, assuming that the factorization of the cardinality is
given, no harder than computing discrete logarithms in all subgroups of prime
order. The Pohlig-Hellman algorithm is a constructive method to compute
discrete logarithm in the whole group from a small number of calls to discrete
logarithms computations in the subgroups of prime order.

6.4.1 Pohlig-Hellman algorithm

First, let us recall the definition of discrete logarithm. Given a group G,
denoted multiplicatively and two elements of G, say g and h, computing the
discrete logarithm of h in basis g amounts to finding, if it exists, an integer
a, such that h = ga in G. For discrete logarithms computations are not
necessarily possible for all elements h of G. However, if G is a cyclic group
generated by g, then the discrete logarithm is defined for all elements of G.
In the sequel, we make this assumption.

Note that, if N denotes the cardinality of G, the discrete logarithm of h in
basis g is only determined modulo N , since gN = 1 the identity element in
G. An interesting consequence is that any algorithm able to compute discrete
logarithm can be used to obtain N . For simplicity, assume that we know the
order of magnitude of N and, more precisely, assume that N lies in the range
[N0 + 1, 2N0]. If the discrete logarithm algorithm outputs a normalized value
between 0 and N − 1, it suffices to ask for the discrete logarithm of g2N0 , say
a. Then we know that N divides 2N0 − a and even that N = 2N0 − a. If
the discrete logarithm is allowed to output any of the multiple possible values
for the discrete logarithm, choose a random integer b between 0 and some
multiple of N0, say 10N0. Then ask for a discrete logarithm of gb and let
a denote the resulting value. Since ga = gb, |b − a| is a small multiple of
N , possibly 0. If a 6= b, it is a non-zero multiple. Since there are not many
divisors of this multiple in the range [N0 + 1, 2N0], we can easily recover N .
However, we need to make sure that the discrete logarithm algorithm does not
systematically output a = b. This comes from the fact that we are choosing b
at random in a large range. With this strategy, even an adversarial discrete
logarithm algorithm cannot systematically determine b and, at some point, it
outputs some other value for the discrete logarithm. Finally, even if we do
not know a precise range, it is usually possible to find N by computing the
GCD of a few multiples obtained as above.

As a consequence, in the context of discrete logarithm computations, it is
reasonable to ask for the group cardinality N in advance. We also assume that

© 2009 by Taylor and Francis Group, LLC

The birthday paradox: Sorting or not? 217

the factorization of N into prime is known7, i.e., we have the decomposition:

N =
n∏
i=1

peii . (6.7)

In the cyclic group G, generated by g, there are subgroups Gi of order pi
for 1 ≤ i ≤ n. Moreover, each subgroup Gi is generated by Gi = gN/pi .
In addition, G also contains subgroups G′i of order peii generated by G′i =
gN/p

ei
i . Pohlig-Hellman algorithm works in two steps. First, it uses ei calls to

the discrete logarithm algorithm in Gi to compute discrete logarithms in G′i.
Second, it pastes these values together to obtain a discrete logarithm in G.

Starting with the second step of the algorithm, recall that we are given g
and h in G and want to find a number a, determined modulo N , such that
h = ga. If we raise this equality to the power N/peii and let H ′i = hN/p

ei
i ,

we obtain a discrete logarithm problem in G′i, namely H ′i = (G′i)
a. Since G′i

is a group of order peii , this yields the value of a modulo peii . Since the peii
are pairwise coprime, we can use the Chinese remainder theorem and obtain
a modulo N .

It remains to see how discrete logarithms in G′i can be computed from
ei calls to the discrete logarithm algorithm in Gi. Of course, it is clear for
ei = 1. To treat the general case, it is useful to introduce a family of groups:
(G(j)

i) with 1 ≤ j ≤ ei. Each group G(j)
i has cardinality pji and is generated

by g
(j)
i = gN/p

j
i . We have G(1)

i = Gi and G(ei)
i = G′i. In order to prove our

result, it suffices to show by induction on j that discrete logarithms in each
group G(j)

i can be computed using j calls to discrete logarithms in Gi. It is
clear for j = 1. To compute a discrete logarithm in G(j+1)

i , or equivalently,
given z in this group to compute x such that z = (g(j+1)

i)x, we proceed as
follows:

• Raise the equation to the power pi and remark that

zpi = (g(j+1)
i)pix = (g(j)

i)x

is a discrete logarithm problem in G(j)
i . By induction hypothesis, we

learn x0 the value of x modulo pji in j calls to discrete logarithms in Gi.

• Write x = x0 + pjix1, with 0 ≤ x1 < pi and remark that:

z

(g(j+1)
i)x0

= (g(j+1)
i)x−x0 = (g(j+1)

i)p
j
ix1 = (g(1)

i)x1 .

Thus x1 can be obtained by an additional discrete logarithm computa-
tion in Gi.

7This is not a real limitation either, because in most practical cases, factoring N is no
harder than computing the discrete logarithm.

© 2009 by Taylor and Francis Group, LLC

218 Algorithmic Cryptanalysis

This concludes the proof. An iterative version of Pohlig-Hellman method is
given as Algorithm 6.18.

Algorithm 6.18 Pohlig-Hellman discrete logarithm algorithm
Require: A group G of cardinality N =

∏n
i=1 p

ei
i .

Require: A group generator g and a group element h
for i for 1 to n do

Let a0 ←− 0
Let g0 ←− gN/pi
for j from 1 to ei do

Let h0 ←− (hg−a0)N/p
j
i

Call discrete logarithm algorithm in subgroup of order pi generated by
g0 for element h0. Let a denote the result.
Let a0 ←− a0 + pj−1

i a
end for
if i = 1 then

Let A←− a0 and M ←− pe11 .
else

Compute the Chinese remainder of A modulo M and a0 modulo peii
Put the result in A.
Let M ←−Mpeii .

end if
end for

6.4.2 Baby-step, giant-step algorithm

Thanks to Pohlig-Hellman algorithm, we only need to compute discrete
logarithms in a group G of prime order p, generated by g. We are given h and
search for an integer a in the range [0, p − 1] such that h = ga. Let r be the
integer obtained by rounding up the square root of p. It is clearly possible
to write a as a0 + ra1, with 0 ≤ a0 < r and 0 ≤ a1 < r. As a consequence,
we have an equality between hg−a0 and gra1 in the group G. Conversely, any
equality of this form yields the discrete logarithm of h.

From an algorithmic point-of-view, this means that we can find the discrete
logarithm we seek by searching for a collision between two lists of r elements
each. The first list contains all group elements of the form hg−a0 . The second
list contains all group elements of the form gra1 . The name of the algorithm,
comes from the fact that elements of the first list are separated by small
steps (or baby steps), corresponding to multiplication by g and elements of
the second list by large steps (or giant steps), corresponding to multiplication
by gr.

© 2009 by Taylor and Francis Group, LLC

The birthday paradox: Sorting or not? 219

Algorithm 6.19 Baby-step, giant-step discrete logarithm algorithm
Require: A group G of prime order p.
Require: A group generator g and a group element h

Let r = d√pe
Create T an array of r group elements
Create I an array of r integers
Let k ←− h
for i for 0 to r − 1 do

Let T [i]←− k and I[i]←− i
Let k ←− k/g

end for
Sort T and perform all exchanges simultaneously on I.
Let k ←− 1 (neutral element in G)
Let G←− gr in G
for i from 0 to r − 1 do

Lookup k in T (using a binary search)
If k is found at position j, return ri+ I[j] as discrete logarithm.
Let k ←− k ·G in G

end for

© 2009 by Taylor and Francis Group, LLC

220 Algorithmic Cryptanalysis

Exercises

1. Neglecting skip years and seasonal birthrate irregularities, compute for
sets of ten to thirty individuals, possibly writing a program, the proba-
bilities of birthday collisions.

2. Check that CBC-MAC without final reencryption is insecure by showing
that if a message containing a single block M (1) has authentication tag t,
then the two-block message M (1)‖M (1)⊕ t has the same authentication
tag.

3h. Write down an explicit chosen message distinguishing attack on CBC
encryption, when used beyond the birthday paradox limit, using the
technique described in Section 6.1.1.1.

4. Why is the probability for twins to have the same birthday not equal to
one?

5h. Consider a hash function obtained by directly applying the Merkle-
Damg̊ard construction (Chapter 5, Section 5.4.1) to a permutation fam-
ily π. The goal of this exercise is to show a weakness of this hash
function with respect to the preimage resistance property. This means
that starting from an intermediate hash value h and a message block m,
the next hash value is h′ = πm(h).

(a) Show that when π−1 is available (for example, when considering
a block cipher), the hashing process can be reversed, i.e., given a
intermediate hash value h′ and a message block m, the previous
hash value h can be recovered.

(b) Let h0 be the initial value of the hash function. Choose a large
set containing short sequences of message blocks. For each such
sequence Mi, starting from h0 and considering each block of Mi in
turn, we can compute an intermediate hash value which we denote
by hi.

(c) Let hF be a target value for the hash function. Similarly choose
another large set containing short sequences of message blocks.
For each such sequence M ′i , starting from hF and considering each
block of M ′i in turn, we can backward compute an intermediate
hash value which we denote by h′i.

6h. Again considering a Merkle-Damg̊ard based hash function H, we now
turn to multicollisions. Let A(1) and A(2) be two single-block messages
such that H(A(1)) = H(A(2)). Let B(1) and B(2) be two message blocks
such that H(A(1)‖B(1)) = H(A(2)‖B(2)), construct a 4-collision.

© 2009 by Taylor and Francis Group, LLC

The birthday paradox: Sorting or not? 221

(a) More generally, construct a 2t-collision on messages of t-blocks.

(b) How secure against collision resistance is the hash function ob-
tained by concatenating two Merkle-Damg̊ard hash functions, where
each function is on n bits.

7. Check that the dichotomy search given as Algorithm 6.2 always returns
the position of the last occurrence of an element. Deduce that the
insertion sort Algorithm 6.6 is stable.

8. Any sorting algorithm can be made stable by a generic technique, based
on storing pairs containing elements and their initial position. Give the
order relation that should be used to achieve this effect.

9h. At first, it may seem that in quicksort and radix sort, the basic par-
titioning preserves the relative order of elements stored in the stack of
small element and reverses the order of elements in the stack of large
elements. Explain why it is not the case. Show how to do this with an
auxiliary array of N elements. Conclude by writing a stable version of
quicksort and radix sort.

© 2009 by Taylor and Francis Group, LLC

Chapter 7

Birthday-based algorithms for
functions

In Chapter 6, we introduced several algorithmic techniques, that allow us to
apply the birthday paradox to arbitrary lists of randomly distributed objects.
These techniques do not take into account the specific details of how these
objects are generated. In this chapter, we are going to focus on a more specific
problem and look for collisions among objects which are generated by iterating
some fixed function. In this specific case, many improvements are possible.
This is quite important for cryptanalysis, because there are many applications
where this improved setting can be exploited. In particular, there are some
very important number theoretic algorithms due to Pollard that use these
techniques to factor integers or compute discrete logarithms.

In the most general setting, we are given a set S and a function F from S to
itself. Then starting from a point X0 in S, we generate the sequence defined
by:

Xi+1 = F (Xi). (7.1)

Our main goal is to find a collision within this sequence, say Xi = Xj . Note
that due to the deterministic nature of the above computation, from any such
collision, we may generate many. Indeed, whenever Xi = Xj , we find that
Xi+1 = F (Xi) = F (Xj) = Xj+1 and obtain a new collision. Of course,
iterating this remark, we also have Xi+2 = Xj+2 and so on.

In order to study this algorithmic problem, it is important to assume that
F behaves more or less randomly. Without this assumption, the birthday
paradox has no reason to hold. Furthermore, when omitting the assumption,
it is easy to build counterexamples. Take the set S = [0 · · · 2n − 1] of integers
modulo 2n and define F (X) = X + 1 (mod 2n). Then, for any choice of X0,
we cannot find a collision in the sequence Xi, unless we have considered the
full set of 2n elements. In this case, the birthday paradox would predict a
collision after 2n/2 elements. Thus, we see that it does not apply to this coun-
terexample. In order to theoretically analyze the behavior of such sequences,
F is usually modeled as a random function. This model and the correspond-
ing analysis are presented in Section 7.2 below. For now, we simply assume
that after some time the sequence X loops back on one of its previous values.
Note that since F is a function, not a permutation, nothing guarantees that
X loops back on X0. On the contrary, it usually restarts at a later position
in the sequence. A traditional way of describing this fact is to draw a picture

223

© 2009 by Taylor and Francis Group, LLC

224 Algorithmic Cryptanalysis

X0

Cycle

Tail

Figure 7.1: Rho shape while iterating a random function

that represents the sequence X by making sure that consecutive elements of
the sequence are neighbors on the picture. On the resulting Figure 7.1, we see
a shape similar to the letter ρ. This gave its name to Pollard’s Rho factoring
algorithm. In this figure, we see that the sequence has two distinct parts: a
cycle and a tail. If the first collision in X is a collision between Xs and Xs+`,
then the tail contains elements of the sequence from X0 up to Xs−1 and the
cycle starts from Xs and its length is `, the period of X.

7.1 Algorithmic aspects

The key question in this chapter is to find collisions in the sequence X or
even better to determine the respective lengths of the cycle and tail of the
sequence. A first solution to this problem is to use classical birthday-based
algorithms. For example, we can use a binary search tree to store the elements
of the sequence X one at a time as long as there is no duplicate in the tree.
The first duplicate occurs when Xs+` is inserted in the tree and we find that
this value is already present due to Xs. This method has a running time
O((s+`) log(s+`)) and needs to store O(s+`) elements. The running time is
essentially optimal, since, unless the function F has very specific properties,
we need to generate the sequence up to Xs+` to detect its cycle. Moreover,
this algorithm directly generates both the length of the cycle ` and the length
of the tail s. However, its storage costs are high. The good news is that
there exist alternative algorithms that do not require such a large amount of
memory. These algorithms do not directly output s and ` but instead find a
collision somewhat later in the cycle. However, with a reasonable additional
computational cost, it is possible to recover s and ` from this late collision.

We start by presenting two simple algorithms that obey an additional re-
strictive condition. More precisely, these two algorithms access values of the
sequence X in a restrictive way, either as inputs to F or in equality tests,
but in no other manner. This restrictive use of the sequence’s values can be
very important because it allows the cycle finding algorithms to be used in

© 2009 by Taylor and Francis Group, LLC

Birthday-based algorithms for functions 225

a black-box context where the sequence X can only be accessed indirectly.
In particular, this restriction is essential to Pollard’s Rho factoring algorithm
(see Section 7.3.2). Indeed, in Pollard’s Rho factoring, equality tests can only
be performed indirectly through GCD computations.

7.1.1 Floyd’s cycle finding algorithm

In this first algorithm, we start by defining a new sequence Y which is
related to X by the equation:

Yi = X2i. (7.2)

Alternatively, the sequence Y can be defined directly by the formulas:

Y0 = X0 and Yi+1 = F (F (Yi)). (7.3)

Algorithm 7.1 Floyd’s cycle detection algorithm
Require: Input initial sequence value X0, max. iterations M

Let x←− X0

Let y ←− X0

for i from 1 to M do
Let x←− F (x)
Let y ←− F (f(y))
if x = y then

Output ‘Collision between i and 2i’
Exit

end if
end for
Output Failed

Once Y is defined, Floyd’s algorithm looks for the first index t such that
Yt = Xt. Clearly, this can be done in time O(t) using a very small amount
of memory, as shown by the pseudo-code in Algorithm 7.1. Indeed, it suffices
to compute the two sequences in parallel until they collide. To analyze the
behavior of this algorithm, we need to better understand the relation between
the position t of this first collision between X and Y and the parameters s
and ` of the sequence X.

First, since X2t = Xt, we find that t is a period of X and thus a multiple
of the period `. Second, since Xt is in the cycle of X, t ≥ s. In fact, t is the
smallest multiple of ` greater than (or equal to) s:

t =
⌈s
`

⌉
`. (7.4)

© 2009 by Taylor and Francis Group, LLC

226 Algorithmic Cryptanalysis

Moreover, once t is known, recovering ` is easy, it suffices to compute the
sequence Xt+i until we loop back to Xt. This happens after exactly ` steps.

7.1.2 Brent’s cycle finding algorithm

The main drawback of Floyd’s algorithm is the fact that each step requires
three applications of the function F in order to advance both sequences X
and Y . Brent’s algorithm is an alternative that only requires the computation
of a single copy of the original sequence. The starting point of the method is
to remark that once we are given a point Xk inside the cycle, we can find the
cycle’s length in exactly ` steps, using the same method as when recovering `
after Floyd’s algorithm. The difficulty is to find a start-point in the cycle. In
Brent’s algorithm, this is done by trying several start-points until an adequate
one is found. In order to minimize the overall cost, the computation steps used
to find a potential cycle are shared and also used to compute the next start-
point to be tested. More precisely, we consider the sequence of start-points
X1, X2, X4, . . . , X2i , . . . indexed by powers of two. For each start-point,
X2i , we compute the sequence of successors X2i+j until we either find a cycle
or reach X2i+1

. In the former case, we are done, in the latter, we change
to the next start-point X2i+1

. This approach is described in pseudo-code as
Algorithm 7.2.

Algorithm 7.2 Brent’s cycle detection algorithm
Require: Input initial sequence value X0, max. iterations M

Let x←− X0

Let y ←− x
Let trap←− 0
Let nexttrap←− 1
for i from 1 to M do

Let x←− F (x)
if x = y then

Output ‘Collision between trap and i’
Exit

end if
if i = nexttrap then

Let trap←− nexttrap
Let nexttrap←− 2 · trap
Let y ←− x

end if
end for
Output Failed

© 2009 by Taylor and Francis Group, LLC

Birthday-based algorithms for functions 227

As before, given the parameters s and ` of the sequence X, we can analyze
the behavior of Brent’s method. It succeeds with starting point X2k , if and
only if, 2k ≥ max(s, `). Indeed, to find the cycle with this start-point, the
point should be in the cycle, i.e., 2k ≥ s, and the cycle’s length ` should be
at most 2k. Clearly, Brent’s method finds ` with complexity O(s+ `).

Finally, note that our choice of putting traps in positions of the form 2k is
not the only option. Depending on the specific problem at hand, we could con-
sider another quickly increasing sequence. This could be either a (rounded)
geometric progression bαke or something different such as a Fibonacci se-
quence.

7.1.3 Finding the cycle’s start

We have seen that both Floyd’s and Brent’s algorithms can be used to find
` the length of the cycle in sequence X. However, neither produces the length
of the tail s or equivalently the position where the cycle starts. From the
point-of-view of collision finding, this position is quite important. Indeed, we
have:

F (Xs−1) = Xs = Xs+` = F (Xs+`−1) and Xs−1 6= Xs+`−1. (7.5)

Thus, finding the entrance of the cycle yields a true collision in F and this is
the only place in the sequence X where such a true collision can be found.

After either Floyd’s or Brent’s algorithm, we know a number t ≤ 2(s + `)
such that Xt is in the cycle of X. Thus, the start of the cycle is an integer
s in the interval [0 · · · t]. From this information, it is possible to obtain s in
several different ways. We now present two different approaches to solve this
problem.

7.1.3.1 Dichotomy search

Once ` is known, it is possible for any number σ in the interval from 0 to
t, whether s ≤ σ by testing if Xσ = Xσ+`. Indeed, if the condition holds, Xσ

is in the cycle and σ ≥ s, otherwise, σ < s. This test can be performed by
computing the sequence X up to σ+`, which requires O(s+`) steps. Thus we
can find s using a dichotomy search with complexity O ((s+ `) log(s+ `)). It
is interesting to remark that this approach has the same runtime complexity
as a generic birthday method that relies on a fast sort algorithm.

7.1.3.2 Direct search

The main problem with the above method is that we need to compute sev-
eral overlapping parts of the same sequence, thus recomputing the same infor-
mation many times. To avoid this drawback, we can proceed differently. First
compute X`. Then, from X0 and X` compute in parallel the two sequences Xi

and X`+i, testing for equality at each step. When the two sequences collide,

© 2009 by Taylor and Francis Group, LLC

228 Algorithmic Cryptanalysis

we have s = i. This allows us to recover s and obtain a true collision1 in time
O(s+ `). This is described as Algorithm 7.3.

Algorithm 7.3 Algorithm for recovering a cycle’s start
Require: Start-point X0, cycle length `, max. iterations M

Let x←− X0

Let y ←− x
for i from 1 to ` do

Let y ←− F (y)
end for
if x = y then

Output ‘Cyclic sequence, no real collision’
Exit

end if
for i from 1 to M do

Let x′ ←− F (x)
Let y′ ←− F (y)
if x′ = y′ then

Output ‘Collision between images of x and y’
Exit

end if
Let x←− x′
Let y ←− y′

end for
Output Failed

As a consequence, we see that finding collisions in recursively defined se-
quences of this type is much more practical than finding collisions in lists of
random objects.

7.1.4 Value-dependent cycle finding

As explained above, both Floyd’s and Brent’s algorithms detect a cycle in
a sequence X, while using X only in a restrictive way, either through F or in
equality tests on the values taken by the sequence. We know that this addi-
tional property is extremely useful in some cases. However, in other cases, the
sequence X is directly available. Thus, it is natural to ask whether cycle find-
ing algorithms can be improved using more value-dependent computations.
The surprising answer is that it is indeed possible. A first step in this di-
rection can be achieved using a distinguished point method, as proposed for

1Unless s = 0.

© 2009 by Taylor and Francis Group, LLC

Birthday-based algorithms for functions 229

example in [QD90]. This consists of memorizing values that satisfy a specific
property, called distinguished points, and waiting until they come back. The
main difficulty here is to choose the right probability of occurrence for distin-
guished points. If they are too frequent, then we need to store a huge number
of values and the algorithm is inefficient. If they are too rare, then the cycle
may not contain any distinguished point at all and the technique fails. We
discuss the use of distinguished points in more detail in Section 7.5.2.

A stronger way of using the values taken by the sequence in a cycle detection
algorithm was proposed, in 2004, by Nivasch in [Niv04]. The main advantage
of his algorithm is that it is guaranteed to stop somewhere between Xs+`

and Xs+2`−1, i.e., during the second iteration of the sequence cycle. This is
particularly useful for sequences where ` is small compared to s. The key idea
is to maintain a (hopefully) short stack of already encountered values in a way
that guarantees cycle detection. To build this stack, Nivasch’s algorithm relies
on the existence of a total ordering on the set of sequence values and focuses
on keeping small values taken by the sequence on the stack. The ultimate goal
is to make sure that the smallest value occuring in the cycle is always stored
on the stack and is always present for detection during the second iteration
around the cycle. In order to achieve that, at any point in time, the stack
memorizes the minimum value, say m1, encountered up to that time while
computing X, followed by the minimum value (say m2) encountered after m1

in the computation, followed by the minimum value (say m3) encountered
after m2, . . . Clearly, the minimum value of the cycle is one of those, say
mk. Indeed, any value of the sequence X smaller that mk is out of the cycle
and thus part of the pre-cycle. Since mk occurs after these possibly smaller
elements, by definition of our stack, it gets to be stored on the stack and
remains there afterward.

From an algorithmic point-of-view, building such a stack is an easy matter.
Whenever, we compute a new value Xi of the sequence X, we remove all
values larger than Xi from the stack and add Xi to the stack. Moreover, it is
easy to see that if Xi we add at the end of the stack, then this stack is always
sorted in increasing order. Thus, erasing larger values can be done very easily
by using a dichotomy search on the pre-existing stack and by truncating the
stack after the point where Xi needs to be inserted. It is shown in [Niv04] that
the expected size of the stack at time i is log i and that the size of the stack
remains below O(log i) almost surely. Thus, except in extremely rare cases,
the memory requirements of Nivasch’s algorithm are small. When considering
the time complexity of this algorithm, we need to consider two different kinds
of operations: evaluations of the function F and other operations. Indeed,
in almost all cases, the computation of values of F dominates the running
time. Clearly, since X is computed once for all considered positions, up to at
most position s + 2` − 1, this bounds the number of evaluations of F . The
dichotomy search within the stack dominates the other operations, and the
cost of each search is logarithmic in the size of the stack. Thus, the time
complexity of other operations is bounded by O((s + 2`) log log(s+ 2`)). At

© 2009 by Taylor and Francis Group, LLC

230 Algorithmic Cryptanalysis

first, this complexity may appear worse than the complexity of the evaluation
of F . However, remember that F operates on numbers of at leastO(log(s+2`))
bits, otherwise the cycle would be shorter. Thus, each evaluation of F costs at
least O(log(s+ 2`)) and, when accounting for this unit cost, evaluations of F
dominates the complexity. Thus, where applicable, Nivasch’s algorithm gives
a nice improvement of cycle finding algorithms. We give a full description of
it in Algorithm 7.4.

Algorithm 7.4 Nivasch’s cycle detection algorithm
Require: Input initial sequence value X0, max. iterations M

Create empty stack S
Let x←− X0

Add pair (x, 0) to the stack
for i from 1 to M do

Let x←− F (x)
Search x by dichotomy in the (sorted) first component
if (x, j) is found then

Output ‘Collision between i and j’
Exit

else
We know that Sk < x < Sk+1

Truncate S after Sk
Add pair (x, i) at the end of S

end if
end for
Output Failed

Another advantage of Nivasch’s algorithm compared to Floyd’s or Brent’s
algorithms is that it is guaranteed to directly output the cycle length `, rather
than a multiple thereof. Thus, for applications where the exact cycle’s length
is needed, we can obtain an additional gain of ` function’s evaluations.

7.1.4.1 Nivasch and the cycle’s start

After using Nivasch’s algorithm, we may still want to find the entrance of
the cycle and obtain a real collision. In that case, we can of course use Algo-
rithm 7.3; however, this algorithm can be improved by using the information
already collected by Nivasch’s algorithm. Indeed, let us consider the state of
the stack in Algorithm 7.4 at the point where the collision is detected. At
that point in time i, we know that the current value x is equal to a value on
the stack Sk = (x, j). Clearly, thanks to the principle of Nivasch’s algorithm,
x is the minimal value of the whole cycle. As a consequence, unless k = 0, we
know that Sk−1 corresponds to a value outside of the cycle. If Sk−1 = (Xt, t),

© 2009 by Taylor and Francis Group, LLC

Birthday-based algorithms for functions 231

this value Xt can be used as a replacement for the start-point X0 in Algo-
rithm 7.3. When k = 0, we use the original start-point X0. On average, this
allows us to recover the start of the cycle a bit faster.

7.2 Analysis of random functions

The good behavior of Floyd’s algorithm and Brent’s algorithm depends on
the specific properties of the function F used to define the considered recur-
sive sequences. We already known that some functions such as F (X) = X+1
(mod 2n) exhibit extremely bad behaviors. In this section, we present back-
ground information about the case of random functions, also called random
mappings. A very nice survey about this topic is Random Mapping Statis-
tics [FO90] by Flajolet and Odlyzko. It derives a large number of useful facts
and statistics about random mappings and their cryptographic applications.

All the facts stated in this section are extracted from [FO90] and apply to
the graph of a random function on a set of N elements. They are asymptotic
results and give asymptotic equivalents for the various parameters as N tends
to infinity.

Each random function F on the set SN of N elements is also viewed as a
directed graph GF whose vertices are the points of SN and whose directed
edges are of the form (v, F (v)), for all vertices v in SN . Each vertex in the
graph has out-degree 1, the in-degree is variable, it can be zero or possibly
a large number. Of course, the average in-degree is equal to the average
out-degree and thus to 1.

7.2.1 Global properties

Connected components. Asymptotically, the number of connected com-
ponents in the graph GF , is logN/2.

We recall that each connected component is obtained by grouping together
all the points that can be reached from a start-point by following the edges
of GF , either in the forward or the backward direction.

Terminal nodes. A terminal node in GF is a vertex v of in-degree 0. Equiv-
alently, it is an element v of SN not in the image of the function F . Asymp-
totically, the number of terminal nodes is N/e, where e = exp(1) is the basis
of natural logarithms.

Image points. An image point is a point in the image of F , asymptotically,
there are (1− 1/e)N image points in GF .

© 2009 by Taylor and Francis Group, LLC

232 Algorithmic Cryptanalysis

Iterate image points. A point v of SN is a k-th iterate image point, if and
only if, there exists an element x of SN such that v = F (k)(x), where F (k)

denotes k consecutive applications of F . Note that a k-th iterate image point
also is a (k − 1)-th iterate image point. Asymptotically, the number of k-th
iterate image points is (1− τk)N, where τk is defined by the recursion law:

τ0 = 0 and τk+1 = eτk−1. (7.6)

Cyclic nodes. A cycle node v of GF is a node that belongs to some cycle of
GF , i.e., v can be obtained as a k-th iterate image of itself for some value of k.
Asymptotically the average number of cyclic nodes in a random mapping is√
πN/2.

7.2.2 Local properties

By opposition to global properties which only depend on the graph GF
itself, we now consider local properties obtained when looking at GF from
some random start-point. These local properties are extremely important for
us, since they mostly dictate the behavior of cycle finding algorithms.

Tail and cycle lengths. As before, the tail length is the distance from
the start-point to the cycle obtained when iterating F . Asymptotically, for a
random mapping and a random start-point, the average tail length is

√
πN/8.

In the same conditions, the average cycle length is equal to the average tail
length and also is

√
πN/8. This implies that on average, the total length on

the sequence obtained by recursively applying F to the start-point up to its
first repetition is

√
πN/2.

Component size and tree size. On average the size of the connected
component containing the starting point is 2N/3. Similarly, if we restrict
ourselves to the non-cyclic part of this component and take the tree containing
all points which enter, in the same place, the same cycle as our start-point,
then the average size of this tree is N/3.

Note that these results imply that a large fraction of the points in the graph
GF are grouped in a single connected component. This component is often
called the giant component of the random mapping.

Predecessor size. Another question we can ask is the number of points
which are iterated preimages of our chosen start-point. On average, the num-
ber of such predecessors is

√
πN/8.

7.2.3 Extremal properties

Another important class of properties within the graph of random mappings
is the class of extremal properties.

© 2009 by Taylor and Francis Group, LLC

Birthday-based algorithms for functions 233

Longest paths. The first extremal property we would like to determine is
the behavior of a random mapping when choosing the worst possible starting
point. How long do cycle finding algorithms take in this worst case? The
good news is that the expected length of the longest tail, longest cycle and
longest path (including both tail and cycle) are of the same order of magnitude
O(
√
N) as in the average case. Only the constants differ.

More precisely, asymptotically the expected length of the longest cycle is
c1
√
N with c1 ≈ 0.782. The expected length of the longest tail is c2

√
N with

c2 =
√

2π log 2 ≈ 1.737. Finally, the expected length of the longest path is
c3
√
N with c3 ≈ 2.415. It is remarked in [FO90] that quite interestingly,

c3 < c1 + c2. As a consequence, for a non-negligible fraction of random
mappings, the longest tail does not lead to the longest cycle.

Giant component. Other noteworthy properties are the average size of the
giant component and of the largest tree in the graph of a random mapping.
Due to the results on the average component size and average tree size for a
random start-point, we already know that these sizes are respectively larger
than 2N/3 and N/3. Asymptotically, the giant component is of size d1N and
the largest tree of size d2N , with d1 ≈ 0.758 and d2 ≈ 0.48.

7.3 Number-theoretic applications

7.3.1 Pollard’s Rho factoring algorithm

Pollard’s Rho is a very practical factoring algorithm introduced in 1975 by
Pollard [Pol75]. This algorithm aims at finding relatively small factors of an
integer N . It heavily uses the algorithms of Floyd or Brent in order to find
cycles in sequences defined by a recursion formula. With Pollard’s Rho, the
sequence that we consider needs some additional property. More precisely, if
we denote this sequence by X, we require that for any prime factor p of N , the
sequence X (mod p) is also defined by a recursion formula. This limits the
possible choices for the function F used to compute the sequence. To ensure
this property and have correctly defined sequences modulo each prime factor,
a good approach is to choose for F a polynomial. In fact, the most common
choice is to use:

F (x) = x2 + c (mod N), (7.7)

for some constant c.
This may seem surprising because the analysis of sequences defined by a

recursion formula is done under the assumption that F is a random function,
which x2 + c is not. However, Pollard’s Rho algorithm is used routinely and
works extremely well. So despite the apparent inconsistency, this choice of

© 2009 by Taylor and Francis Group, LLC

234 Algorithmic Cryptanalysis

F is a good one. A partial explanation is given in [FO90]. More precisely,
they remark that the graph of F (x) = x2 + c is very specific, each node but
one (the value c) has either 0 or 2 predecessors. As a consequence, they also
analyze random binary function graphs where each node has in-degree 0 or
2 and find that the multiplicative constants appearing in the graph statistics
of the previous section are affected by this change but that their orders of
magnitude are preserved.

Once we choose for F a polynomial, we can easily check that for the sequence
defined by:

Xi+1 = F (Xi) (mod N), (7.8)

reduction modulo p for any factor p of N gives the same recursion formula
(modulo p instead of modulo N) for the reduced sequence.

For a prime divisor p of N , let X(p) denote the sequence X (mod p). We
know that X(p) satisfies the recursion:

X
(p)
i+1 = F (X(p)

i) (mod p). (7.9)

Using the usual analysis for these sequences, we expect that X(p) cycles with
parameters s and ` of the order of

√
p. In that case, Floyd’s or Brent’s

algorithm find a cycle in time O(
√
p), assuming that we can test for collisions

within the sequence X(p). To see that it suffices to remark that:

X
(p)
i = X

(p)
j ⇔ GCD(X(p)

i −X(p)
j , N) 6= 1. (7.10)

Thus, we can efficiently test for collisions using GCD computations. Moreover,
when a collision occurs modulo p, there is no special reason to have collisions
modulo the other factors of N . As a consequence, as soon as a collision occurs,
we usually recover a proper factor of N . Pollard’s Rho using Brent’s collision
finding algorithm is given as Algorithm 7.5.

Of course, Pollard’s Rho can also be used in conjunction with Floyd’s al-
gorithm. In both cases, one costly part of the method is that each equality
test requires a GCD computation and, thus, becomes expensive. In practice,
this number of GCD computations can be lowered. The idea is to multiply
together several consecutive values of the form X

(p)
i −X(p)

j corresponding to
several equality tests modulo p. Then, we compute a single GCD of the re-
sulting product with N . If this GCD is 1, all the equality tests fail. If the
GCD is a proper factor, we are done. However, if the GCD is N , we need to
backtrack and redo the equality tests one at a time, hoping for a proper factor
of N . The reason behind the need to backtrack is that by grouping several
tests together, we increase the probability of having simultaneous collisions
for the various factors of N .

Pollard’s Rho is a very interesting application of cycle finding algorithms,
which call for several specific comments. The first comment is that with
Pollard’s Rho, there is no need to compute the parameters s and ` of the
sequence X(p). Instead, it suffices to find a collision by two values X(p)

i and

© 2009 by Taylor and Francis Group, LLC

Birthday-based algorithms for functions 235

Algorithm 7.5 Pollard’s Rho factoring algorithm
Require: Input number to factor N , parameter c , max. iterations M

Let x←− 0
Let y ←− x
Let trap←− 0
Let nexttrap←− 1
for i from 1 to M do

Let x←− x2 + c mod N
Let f ←− GCD(x− y,N)
if f 6= 1 then

if f = N then
Output ‘Fails: collision modulo N ’
Exit

else
Output ‘Found f as factor of N ’
Exit

end if
end if
if i = nexttrap then

Let trap←− nexttrap
Let nexttrap←− 2 · trap
Let y ←− x

end if
end for
Output Failed

© 2009 by Taylor and Francis Group, LLC

236 Algorithmic Cryptanalysis

X
(p)
j which can be arbitrarily located. In particular, we do not need to use

Algorithm 7.3 to find the start of the cycle. A puzzling question concerning
Pollard’s Rho algorithm is whether we can devise a variation of this algorithm
based on a traditional birthday-based algorithm. In other words, given two
lists of numbers L1 and L2 with comparable sizes and an integer N , can we
efficiently discover two numbers x1 in L1 and x2 in L2 such that GCD(x2 −
x1, N) 6= 1. This is a difficult problem which was solved by P. Montgomery
in his thesis as a tool to improve elliptic curve factorization [Mon92].

7.3.2 Pollard’s Rho discrete logarithm algorithm

As many factoring algorithms, Pollard’s Rho can be adapted to compute
discrete logarithms in arbitrary cyclic groups. Let G be a multiplicative group
of prime2 order p, let g be a generator of G and let h be an element of G.
Solving the discrete logarithm problem corresponds to finding an integer α
such that h = gα. In order to apply a cycle finding algorithm, we choose
a random looking function F on G. To construct the function F , we first
partition G into three disjoint subsets G1, G2 and G3, approximately of the
same size, preferably with 1 not in G1. Then, we define F as follows:

F (x) =

x2 if x ∈ G1,
gx if x ∈ G2,
hx if x ∈ G3.

(7.11)

Then, we define the recursive sequence X, by letting X0 = 1. Note that if
1 ∈ G1, 1 is a fixed point of F . Thus in that case, we would need to choose
a different start-point. This is why it is preferable to have 1 6∈ G1. As usual,
we expect, after O(

√
p) steps, to detect a cycle in F and a collision Xi = Xj .

By itself, this collision does not suffice to recover α and we need to compute
some additional information about the sequence X.

In order to do this, let us consider the function φ from H = Z/pZ× Z/pZ
to G defined by:

(a, b) −→ gahb. (7.12)

This function is a surjection onto G and each element of G has p distinct
preimages in H. Moreover, given two distinct elements in H with the same
image in G, we can compute α. Indeed, if φ(a, b) = φ(a′, b′) then ga+αb =
ha
′+αb′ and α = a′−a

b′−b (mod p).
The next step is to lift the sequence X to H and to find a sequence Y of

elements in H such that X = φ(Y). This can be done using the following

2For a general treatment about discrete logarithms and a justification for restricting our-
selves to groups of prime order, see Chapter 6, Section 6.4.1.

© 2009 by Taylor and Francis Group, LLC

Birthday-based algorithms for functions 237

function G from H to H:

G(a, b) =

 (2a, 2b) if φ(a, b) ∈ G1,
(a+ 1, b) if φ(a, b) ∈ G2,
(a, b+ 1) if φ(a, b) ∈ G3,

(7.13)

It is easy to verify that φ(G(a, b)) = F (φ(a, b)) for all elements (a, b) in H.
As a consequence, the sequence Y defined by choosing Y0 = (0, 0) together
with the recursion law Yi+1 = G(Yi) satisfies X = φ(Y).

Of course, Y is a sequence on a much larger set than X, as a consequence,
we do not expect to have a collision in the sequence Y as early as in X.
Thus, the collision returned for the sequence X by the cycle finding algorithm
is usually not a collision for Y . As a consequence, we obtain two different
preimages from the same element of G and can compute α.

Note that if we have a collision on Y itself, the discrete logarithm can also
be recovered for a slightly higher cost by finding the entrance of the cycle.
The only exception occurs if Y collides on its initial value Y0.

7.3.3 Pollard’s kangaroos

Together with his Rho method, Pollard introduced another algorithm for
computing discrete logarithms when some additional information is known.
More precisely, he considers the problem gx = h in G and wants to recover x
from g and h, if we know in addition that x belongs to some interval [a, b]. In
this context, using Pollard’s Rho in the group G, without taking in this extra
information, is not always a good idea. In particular, when b − a is smaller
than the square root of the size of G, it is more efficient to recover x by brute
force, try all values in [a, b]. To deal with this problem, Pollard proposes to
use what he calls kangaroos. This method is also known as Pollard’s lambda
algorithm.

A kangaroo in Pollard’s method is a sequence of elements in G whose log-
arithm increases by successive jumps. In order to apply the method, we need
two kangaroos, a tame one, whose start-point is ga and a wild one, with start-
point is h. The first kangaroo is called tame, because the logarithm of the
corresponding sequence is always known. To precisely define the kangaroos,
we need a jump function j that associates to each element of G a positive num-
ber upper bounded by

√
b− a. A classical method is to divide G in k subset

of roughly equal sizes S0, . . .Sk−1, with k = blog2 b− a/2c, and for x in Si to
define j(x) = 2i. Once the jump function j is fixed, we let F (x) = x× gj(x).

The tame kangaroo is the sequence defined by:

T0 = ga (7.14)
Ti+1 = F (Ti).

© 2009 by Taylor and Francis Group, LLC

238 Algorithmic Cryptanalysis

The wild kangaroo is the sequence defined by:

W0 = h (7.15)
Wi+1 = F (Wi).

While computing the tame kangaroo sequence, it is important to keep track
of the discrete logarithm of Ti, i.e., of the value a +

∑i−1
k=0 j(Tk). As soon

as the discrete logarithm goes beyond b, we abort the sequence T and recall
the final position Tn, together with its discrete logarithm ln, i.e., Tn = gln .
After this final point is known, we start the wild sequence keeping track of the
sum of the jumps taken by the wild kangaroo. We abort the wild sequence
either when encountering Tn or when the sum of the jumps becomes larger
than b−a. In the latter case, the algorithm fails. Otherwise, we have found a
position Wi with corresponding sum si such that Wi = Tn, since Wi = h×gsi
and Tn = gln we conclude that:

h = gln−si . (7.16)

As Pollard’s Rho, Pollard’s kangaroo method is a generic algorithm. This
algorithm has a good probability of success and takes time O(

√
b− a) to

compute the discrete logarithm of h; for a rigorous analysis, see [MT09].

7.4 A direct cryptographic application in the context of
blockwise security

Blockwise security is a practical concern about the security of modes of
operation for block cipher which was discovered independently by two groups
of researchers. In [BKN04], it is shown that the practical implementation
of secure shell (SSH) which relies on the cipher block chaining (CBC) mode
of operation is insecure against a variation on chosen plaintext attacks. At
Crypto 2002, in [JMV02], the theoretical idea of blockwise security was in-
troduced. Moreover, in the same paper, it is shown that for several common
modes of operation there is a gap between blockwise and ordinary message-
wise security. After this discovery, several papers such as [FJMV04], [BT04]
or [FJP04] studied this paradigm of blockwise security and came up with
blockwise secure modes. The key result is that there exist modes of operation
with blockwise security levels essentially equivalent to usual messagewise se-
curity levels. More precisely, these modes of operation are secure up to the
birthday paradox bound and after that become insecure. In this section, after
some brief reminders about the CBC mode of operation and its security both
as a messagewise mode and as a blockwise mode, we study the behavior of
this mode beyond the birthday paradox bound and show that in the blockwise

© 2009 by Taylor and Francis Group, LLC

Birthday-based algorithms for functions 239

security model, we can use Brent’s algorithm to devise attacks which work
more efficiently than their messagewise counterparts.

7.4.1 Blockwise security of CBC encryption

In Section 6.1, we considered the security of CBC encryption, viewed as a
messagewise process, with the plaintext provided as a whole and the corre-
sponding ciphertext returned as a whole. However, in practice, implementing
this approach may become problematic, since the encryption box needs to be
able to internally store whole messages, which can potentially be very long.
For this reason, practitioners often use CBC encryption as a blockwise mode.
In that case, the plaintext message is transmitted block by block, and each
encrypted block is immediately returned. However, as noticed in [BKN04]
and [JMV02], in this blockwise model, CBC encryption is no longer secure.
Indeed, an active attacker may observe the current ciphertext block C(i) before
submitting the next block of plaintext P (i+1). As a consequence, this allows
him to choose at will the value v which enters EK by letting P (i+1) = v⊕C(i).
This property can be used in several ways to show that CBC encryption is
not secure as a blockwise mode of operation, for example by creating a simple
distinguisher able to make the difference between a CBC ciphertext and a
random message of the same length. To create this distinguisher, it suffices
to make sure that the same value v is to be encrypted twice in CBC mode.
Thus, a CBC encrypted message reflects this equality. Of course, in a random
message, the equality has no special reason to hold.

Interestingly, there is a simple countermeasure to fix this problem. This is
called Delayed CBC encryption and is proven to be secure in [FMP03]. The
basic idea on Delayed CBC is very simple, once a ciphertext block C(i) has
been computed, instead of returning it immediately, the encryption device
waits until it gets P (i+1) and then returns C(i). For the last encrypted block,
the encryption device returns it upon reception of a special block indicating
that the message is complete, this special block is not encrypted, it only
serves a bookkeeping purpose. The rationale behind Delayed CBC is that the
attacker can no longer control the block cipher inputs. Thus, Delayed CBC
prevents the simple attack that breaks plain CBC.

7.4.2 CBC encryption beyond the birthday bound

Beyond the security bound of CBC encryption, the birthday paradox comes
into play. As a consequence, among the ciphertext blocks, we expect to find at
least one collision, say C(i) = C(j). If we now replace each block of ciphertext
in this equality by its expression, we find that:

EK(C(i−1) ⊕ P (i)) = EK(C(j−1) ⊕ P (j)), and thus (7.17)
C(i−1) ⊕ P (i) = C(j−1) ⊕ P (j) since EK is a permutation.

© 2009 by Taylor and Francis Group, LLC

240 Algorithmic Cryptanalysis

We can rewrite this as P (i)⊕P (j) = C(i−1)⊕C(j−1). As a consequence, given
one collision, we learn the XOR of two blocks of plaintext. As the length of
the message grows, more and more collisions are found and thus more and
more information is learned about the plaintext message.

For a cryptanalyst to use this attack, he must be able to efficiently detect
collisions among the blocks of ciphertext. One very common technique is to
proceed as in Chapter 6 and sort the ciphertext blocks in order to detect these
collisions. However, this requires either a large amount of main memory or at
least a fast auxiliary storage device. For 64-bit block ciphers, the cryptanalyst
needs to store and sort about 232 blocks or equivalently 235 bytes. In fact,
the situation is slightly worse, since the cryptanalyst also needs to keep track
of the initial block positions when sorting in order to know the plaintext
blocks involved in the equation derived from the collision. If there is not
enough memory to sort a table containing both the ciphertext value and the
original position, an alternative is to keep the unsorted values somewhere on
an auxiliary storage device, to sort the ciphertext blocks without indices and
then to scan the auxiliary device to locate the original position of the colliding
blocks once their common value is known.

Even with this approach, we need 235 bytes of fast memory. Despite the
quick progress of computer hardware, 32 Gbytes is still a large amount of
memory, only available on dedicated computers. Thus, in practice, even when
CBC encryption is used with a 64-bit block cipher, say Triple-DES, putting
the attack into play requires some important computing effort from the crypt-
analyst. For this reason, among others, CBC encryption with Triple-DES is
still widely encountered.

7.4.3 Delayed CBC beyond the birthday bound

After considering the security of messagewise CBC beyond the birthday
bound, we now turn to blockwise security of Delayed CBC encryption beyond
this bound. In order to construct this attack, we are going to use a trick
similar to the one used for attacking ordinary blockwise CBC. More precisely,
whenever we receive a block of ciphertext, we determine the next block of
plaintext as a function of this block and send it back to CBC encryption.
Due to the one block delay, we can only start this from the second block of
plaintext. For the first plaintext block, we can submit any value of our choice,
such as the all-zeros block. Starting from the second block, we choose our next
plaintext block as:

P (i) = P (i−1) ⊕ C(i−2). (7.18)

Even with Delayed CBC, both values Pi−1 and Ci−2 are effectively known at
the time we need to submit Pi. Now, with this specific choice for plaintext
blocks, the ciphertext values are determined by the following equation:

C(i) = EK(C(i−1) ⊕ P (i−1) ⊕ C(i−2)) (7.19)
= EK(EK(P (i−1) ⊕ C(i−2))⊕ (P (i−1) ⊕ C(i−2))).

© 2009 by Taylor and Francis Group, LLC

Birthday-based algorithms for functions 241

In other words, if we let Zi denote the input to the block cipher in round i,
i.e., Zi = P (i) ⊕ C(i−1), we see that Zi satisfies a recursion law:

Zi = EK(Zi−1)⊕ Zi−1. (7.20)

Quite interestingly, xoring the input and the output to a block cipher is a
pretty standard construction used to build a pseudo-random function from
a pseudo-random permutation, known as Davies-Meyer construction. This
Davies-Meyer construction is often used in hash functions. For example, it is
encountered in SHA-1. If we define the function F by F (x) = x⊕EK(x), the
recursion law becomes Zi = F (Zi−1).

Using the analysis of Section 7.2, we know that the sequence Z loops back
to itself after about O(2n/2) steps. Moreover, we can consider using a cycle
detection algorithm to discover this loop.

7.4.3.1 Floyd’s algorithm

Remember that to use Floyd’s algorithm, we need to compute in parallel the
sequence Zi and the sequence Wi = Z2i in order to find an equality Zi = Wi.
Without going further into the details, we see that this is troublesome in our
context of blockwise CBC encryption. Indeed, since we do not control the
initial values C0 used during encryption, there is no way to compute both
sequences Zi and Wi at the same time. Of course, we can always store Z and
compare Zi with Z2i at each step, but this requires a large amount of memory,
which is exactly what we are trying to avoid. Still, note that this approach
would be better than sorting and could even work with slow memory or disk
storage.

7.4.3.2 Brent’s algorithm

On the contrary, with Brent’s algorithm, we immediately see that the loop
we induced in Delayed CBC encryption can easily be detected. Following our
description from Section 7.1.2, whenever the index i is a power of 2, we store
this value Z2t and then compare it to the subsequent values of Zi up to the
next power of two. This can be done without any need to compute the same
sequence twice or to control initial values.

In some sense, detecting a loop is already an attack. Indeed, this can
be seen as a real or random distinguisher. If the output is real, i.e., comes
from a blockwise CBC encryption, we find a cycle in time O(2n/2) with high
probability. If the output is random, then Brent’s algorithm almost never
finds a new value equal to the stored value. However, we can strengthen the
attack and do more than this basic distinguisher. In fact, we can use the cycle
to obtain the encryption of any value v of our choice under the underlying
block cipher EK . For this, when storing Z2t , which is a block cipher input, we
also store the corresponding output C(2t). Due to the one block delay, C(2t)

is not available immediately, but we store it whenever we receive it. When

© 2009 by Taylor and Francis Group, LLC

242 Algorithmic Cryptanalysis

the collision is detected, we have a new input Zi equal to Z2t . Of course,
this equality between inputs to the block cipher implies equality between the
output. So we know in advance that C(i) = C(2t). Thanks to this knowledge,
we can set P (i+1) = C(i) ⊕ v and thus obtain the encrypted value EK(v).

This shows that thanks to Brent’s algorithm, Delayed CBC encryption as
a blockwise mode of operation is (slightly) more vulnerable to attacks be-
yond the birthday paradox bound than ordinary CBC encryption used as a
messagewise mode of operation.

7.4.3.3 Nivasch’s algorithm

In this context of blockwise attacks, Nivasch’s algorithm can be very useful.
Indeed, it allows us to reduce the amount of required ciphertext before the
cycle is detected. In fact, using Algorithm 7.4 as presented in Section 7.1, we
are guaranteed to require at most s + 2` blocks of ciphertext. Of course, it
would be interesting to further reduce this number. Clearly, the first collision
occurs at position s+` and we cannot use fewer than s+` blocks of ciphertexts
to detect a collision. Following Nivasch in [Niv04], it is possible to devise a
variation of Algorithm 7.4 that uses some additional memory and can detect
the cycle with s + (1 + α)` blocks, for arbitrary small values of α. This
algorithm uses a technique called partitioning and its memory requirements
increase as α decreases.

7.5 Collisions in hash functions

Another application of cycle detection algorithms is the search for collisions
in hash functions, especially when their output length is too short. For ex-
ample, given a hash function with a 128-bit output, thanks to the birthday
paradox, we can find a collision with roughly 264 evaluations of the hash func-
tion. However, it is clearly infeasible with current computers to store and
sort the corresponding list of 264 hash values in order to discover the collision.
Thus, it is natural to ask how to use cycle detection algorithms to obtain a
collision. The first answer is to simply invoke the cycle detection algorithm
on a recursive sequence, where each value is obtained by hashing the previous
value. Yet, this answer is not satisfactory for several reasons. The first reason
is that this approach can only produce a meaningless collision and output
two random looking messages with the same hash. Of course, it would be
much preferable for a cryptanalyst to obtain two meaningful messages with
different meanings and the same hash. The second reason is that the cycle
detection algorithms presented in Section 7.1 are inherently sequential. And
while performing 264 operations is feasible with today’s computers, perform-
ing 264 sequential operations on a single computer is a completely different

© 2009 by Taylor and Francis Group, LLC

Birthday-based algorithms for functions 243

matter.

7.5.1 Collisions between meaningful messages

Finding a collision between meaningful messages is a now classical trick,
first introduced in [Yuv79]. The idea is to start by choosing two messages
M and M ′ with different meanings. Then in each message, we need to find
a number of places where safe modifications can be performed. Here, we
call safe modification any change which does not alter the meaning of the
message. There are usually many possible safe modifications in a human
readable message. We could replace a space by a line feed, a non-breaking
space or even two spaces. Similarly, at some points in a message, punctuation
can be added or removed; upper-case and lower-case letters can be exchanged
without altering the message’s meaning. Given t places of safe modification
for a message M , it is possible to construct a set of 2t different messages
with the same meaning. Note that for the hash function the 2t messages
are genuinely different and we obtain 2t random looking3 hash values. If we
proceed in the same way, we also obtain 2t different copies of M ′. Clearly,
for a n-bit hash function, with t > n/2 we expect the existence of a collision
between a copy of M and a copy of M ′.

The same idea of safe modifications can also be used in conjunction with a
cycle finding technique. However, we need some extra care to avoid uninter-
esting collisions between two copies of M or two copies of M ′. Given t points
of safe modification of M , for any t-bit number i, we denote by Mi the copy
obtained by setting the specific value of each point of modification according
to the value of a corresponding bit in the binary expansion of i. Similarly, we
denote by M ′i the i-th copy of M ′. Using this notation, we can construct a
function F from t+ 1 to n bits as follows:

F (v, i) =
{
Mi if v = 0,
M ′i if v = 1. (7.21)

Adding a truncation from n bits to t + 1, we can obtain a sequence of hash
values of meaningful messages and look for a collision. However, this direct
approach with t ≈ n/2 as above usually yields a trivial collision. Indeed, if
two hash values collide after truncation to t+1, at the next iteration we hash a
previously encountered message and enter a cycle with a collision between the
hash values of twice the same message. To avoid this bad case, we need more
points of safe modification, namely we need to choose t = n − 1. With this
choice, the entrance of the cycle corresponds to a genuine collision. Moreover,
with probability 1/2 this genuine collision is between a copy of M and a copy
of M ′. If not, we can simply restart the algorithm with a different start-point.

3Unless the hash function is badly broken.

© 2009 by Taylor and Francis Group, LLC

244 Algorithmic Cryptanalysis

7.5.2 Parallelizable collision search

Since cycle finding algorithms are inherently sequential, in order to find
collisions using a parallel computation, we need a different approach. This ap-
proach cannot look for a cycle within a single recursively defined sequence, but
instead needs to rely on the computation of several independent sequences.
We already introduced an algorithm of this kind to compute discrete loga-
rithms in a short interval: Pollard’s Kangaroo algorithm (see Section 7.3.3).
However, to use this idea in a parallelizable way, we need to adapt it. When
running on a parallel computer, it is essential to reduce the amount of commu-
nication and synchronization between parallel processes. A common approach
when looking for a specific value or property among a large set of data is to
use a large number of computers to create likely candidates and then to report
these candidates to a dedicated server which performs the final checking. For
a collision search, we need to report values which are likely to collide. This can
be achieved using the distinguished point technique from [QD90] and [vW96].
Note that in distinguished point algorithms, one node in the parallel com-
puter plays a special role. This node receives distinguished points from all
other nodes, checks for collisions within the set of distinguished points using
a sort based birthday algorithm as in Chapter 6 and pulls back the collisions
from this set of distinguished points to the real values. It is very important to
devise parallel collision search algorithms in a way that minimizes the com-
munication cost, the memory requirement and the computational overhead of
this server node.

In this section, we present one of the numerous possible options for paral-
lelizable collision search on a random function F . We assume that F operates
on a set of N elements and that the parallel computer consists of P identical
parallel nodes and a special server node. We also choose a set of D distin-
guished points. For algorithmic convenience, the distinguished points should
be easy to recognize and easy to generate. A typical example of set of dis-
tinguished points is the set of n-bits integers with d leading zeros. This set
contains D = 2n−d elements in a larger set of cardinality N = 2n. Each distin-
guished point x is easily recognized by the property: 0 ≤ x < 2n−d. Moreover,
with this definition of distinguished points, it is very easy to generate random
distinguished points at will.

With this setting, our algorithm works as follows. First, the server node
allocates a (distinct) distinguished point to each computation node. Given
this distinguished point, the computation node uses it as start-point for Ni-
vasch’s cycle detection Algorithm 7.4, with a small change. Namely, when
Nivasch’s algorithm encounters a distinguished point, it aborts and sends a
report. The report contains three values: the starting distinguished point, the
distinguished end-point and the length of the path between the two points.
The server node maintains a list of reports and detects collisions between
end-points. If a collision occurs between the values taken by F during the
global computation, necessarily this implies the existence of either a cycle on

© 2009 by Taylor and Francis Group, LLC

Birthday-based algorithms for functions 245

one computation node or a collision between two different nodes. Both pos-
sibilities are detected by our algorithm, in the first case, Nivasch’s algorithm
detects the cycle, in the second case, the server node discovers a collision
between two end-points. From this collision, between end-points, the real col-
lision is easily recovered. Indeed, assume that there is a path of length L1

from a distinguished point S1 to a end-point P and another path of length L2

from S2 to P . Without loss of generality, we can further assume that L1 ≥ L2.
Then, starting from S1, the server node walks the first path, taking exactly
L1−L2 steps. From that point, it now suffices to walk both paths in parallel,
until a collision is reached. Note that, it is always a genuine collision. Indeed,
since E is the first distinguished point encountered by walking from S1, S2

cannot lie on the first path. As a consequence, the two parallel walks start
from different places and end at the same position. Moreover, they have the
same length and the collision necessarily occurs after taking the same number
of steps on both paths.

Since any collision between two of the computed values of F is detected,
the number of values that need to be computed remains O(

√
N), as with se-

quential cycle detection algorithms. As a consequence, with P processors, the
parallelization speed-up is essentially optimal. One caveat is that the com-
puted values are not integrated into the global count until the corresponding
distinguished point is reported. Thus the number of distinguished points
should be adequately chosen. With D distinguished points, the fraction of
distinguished points is N/D. Thus the average length of a path between two
distinguished points is essentially N/D. Note that for some start-points, we
may enter a cycle. In this case, we cannot nicely define the distance between
two distinguished points. Ignoring this technical difficulty, we find that, as
a consequence, running our algorithm on P processors allows it to compute
PN/D points. In order to have O(

√
N) values of F , we need to choose:

D = O(P
√
N). (7.22)

Since the server node needs to store P paths, i.e., one per computation node,
the amount of required memory is O(P). Finally, the running time of the
code that extracts the collision on F from a collision between distinguished
points is upper bounded by the time needed to walk through two paths, i.e.,
O(N/D) = O(

√
N/P).

Note that with the above description and analysis, the computation is not
perfectly balanced between processors. Indeed, some paths between distin-
guished points are shorter than others. To improve this imbalance, an easy
patch is to serially run several instances of Nivasch’s algorithm on each com-
putation node, in order to average the paths’ length. This increases the pa-
rameter P and as a consequence the memory required on the server node.

Another remark is that when P becomes large, collisions coming from a
cycle within a single path become extremely rare. As a consequence, we
may replace Nivasch’s algorithm by a simpler one, which simply runs from a

© 2009 by Taylor and Francis Group, LLC

246 Algorithmic Cryptanalysis

distinguished point to the next, possibly aborting when it takes too long to
find a distinguished end-point. The only drawback of this approach is that the
exact analysis of the algorithm’s behavior becomes much more cumbersome.

7.5.2.1 Looking for many collisions

Another interesting aspect of the above parallelizable collision search algo-
rithm is that it can be used to efficiently construct a large number of collisions.
Note that the sequential cycle finding algorithms are not very efficient for con-
struction multiple collisions. Indeed, to construct k collisions, we essentially
need to repeat the cycle finding algorithm k times, for a total cost O(k

√
N).

On the contrary, with the above parallel algorithm, the birthday paradox con-
tinues to apply and to play for us after the first collision. As a consequence,
the overall cost to construct k collisions is reduced to O(

√
kN). However, we

should be careful when choosing the set of distinguished points. In particular,
it is clear that each stored path can yield at most one collision. As a conse-
quence, the parameter P should be chosen larger than the number of desired
collisions k.

An alternative would be to use arbitrary points instead of distinguished
points as start-points for the stored path. However, this approach introduces
a new drawback. Indeed, nothing would prevent us to compute twice the same
path or, more precisely, to compute two paths where one is a subpath of the
other. These two paths would not yield any new collision and would increase
the computational cost without any gain.

7.6 Hellman’s time memory tradeoff

Hellman’s time memory tradeoff is a generic method for recovering the
key K of a block cipher E. This method assumes that the cryptanalyst can
perform a massive precomputation about E beforehand and memorize some
information summarizing this precomputation, in order to help in recovering
the key K at a later stage. The goal is to achieve a non-trivial time mem-
ory tradeoff for the late stage of the attack. Two trivial possibilities are to
either memorize nothing and use brute force to recover K, or to memorize a
sorted table containing all pairs (EK(0n),K) and to perform a table lookup
of EK(0n) in order to recover K.

Despite the fact the Hellman’s time memory tradeoff uses a large amount
of memory, it is presented in this chapter for two main reasons. First, the
behavior of Hellman’s tradeoff is deeply connected with the analysis of random
functions. Second, Hellman’s tradeoff is extremely useful for extracting a
block cipher key after the blockwise attacks of Section 7.4.

Hellman’s algorithm is based on the analysis of the function F (K) =

© 2009 by Taylor and Francis Group, LLC

Birthday-based algorithms for functions 247

EK(0n) from the set of possible keys to itself. Note that if the key size and
the block size are different, this function needs to be adapted. If the key size
is smaller than the blocksize, we need to truncate the result. If the key size is
larger than the blocksize, then we concatenate several encryptions (say choos-
ing the constant blocks, 0n, 0n−11, . . .) and truncate the concatenation if
necessary. Breaking the block cipher E and finding K is clearly equivalent to
computing the inverse of F on the point EK(0n) obtained from an encryption
of 0n. Thus, Hellman’s tradeoff is usually considered to be a chosen plaintext
attack. In fact, it is slightly better than that, since we do not insist on the
choice of 0n. The only requirement is to make sure that there is some fixed
value v, for which it is easy to obtain an encryption of EK(v). For exam-
ple, if the adversary knows that users routinely encrypt messages with some
fixed headers, which is a frequent feature of several word processors, then,
assuming a deterministic encryption mode, chosen plaintext attacks may not
be necessary. Hellman’s algorithm gives another reason why using random-
ized encryption modes is important when using block ciphers. Indeed, with a
randomized mode, the adversary can no longer obtain the encryption of his
chosen fixed value and Hellman’s method can no longer be used.

7.6.1 Simplified case

To understand the key idea behind Hellman’s algorithm, we first consider
a very special case and assume that F is a cyclic permutation. In real life,
this never happens. However, in this case the analysis is much simpler. With
this unlikely hypothesis, we can start from an arbitrary initial key K0 and
precompute the complete sequence given by Ki+1 = F (Ki). This sequence
follows the cycle of F and goes in turn through all possible keys for the
block cipher, eventually coming back to K0 after 2k iterations, where k is the
number of key-bits. Every 2l steps, with l = bk/2c, we memorize the pair
(Kj·2l ,K(j−1)·2l). In other words, we remember the current key together with
its ancestor located 2l steps before. Once we have collected the 2k−l possible
pairs around the cycle, we sort these pairs by values and keep this sorted
array.

Given access to this array of sorted pairs, we can now invert F quite easily
in 2l steps. Starting from EK(0n) for an unknown key K, we look up this
value in our array. If it is not present, we apply F and look up again. After t
steps, we find a value F (t)(EK(0n)) in the array. For this value, we read the
second number in the pair, thus going 2l steps backward in the cycle of F .
Then, we apply F again 2l − t − 1 times and recover the (unique) preimage
of EK(0n), i.e., the key K.

In this simplified case, Hellman’s tradeoff needs to memorize 2k−l, i.e.,
2l or 2l+1 with our choice for l, pairs and the running time of the attack
stage (omitting the precomputation phase) is l · 2l, when counting the cost
of the dichotomy lookups in the sorted array. Note that this technique is

© 2009 by Taylor and Francis Group, LLC

248 Algorithmic Cryptanalysis

very similar to the baby step, giant step algorithm described in Section 6.4.2.
Reformulating Hellman’s algorithm in this context, we see that to take a single
baby step backward, we need to take many baby steps forward and a single
giant step backward.

7.6.2 General case

In the general case, F is no longer cyclic and no longer a permutation. More-
over, we expect it to behave like a random mapping. Thus, choosing a random
start-point and applying F iteratively quickly leads to a cycle of square-root
size. As a consequence, if we want to cover more than a negligible fraction of
the keys, we clearly need to use many start-points. Another difficulty is that
with several start-points, nothing prevents two different sequences to merge
at some point. In fact, any two starting points in the giant component lead to
merging sequences. At the latest, the sequences merge somewhere in the cycle
corresponding to the giant component. Even worse, finding a preimage for
EK(0n) is not sufficient to recover K, since preimages are no longer unique.
In order to bypass all these problems, Hellman’s tradeoff requires more time
and more memory than in the simplified case. The usual balance (neglecting
logarithmic factors) is 22k/3 in terms of both time and memory.

The classical analysis of Hellman’s tradeoff assumes that we are computing
sequences of length t for m random start-points. For each sequence, the start-
and end-points are memorized, sorted by end-point values. In order to find a
preimage by F , the same idea as in the simplified case is used. From a start-
point, F is applied repeatedly until a memorized end-point is reached. Then
the algorithm jumps back to the corresponding start-point and moves forward
again. Several cases are possible, in the most favorable we discover K, in the
other cases, we fail, either by finding a wrong preimage for EK(0n), i.e., a
different key that yields the same encryption, or by not even coming back to
the point EK(0n). The probability of success is of the order of mt/2k as long
as mt2 remains below 2k. If we go beyond this limit, the number of collisions
between chains becomes very large and the tradeoff becomes unworthy. Taking
m = t = 2k/3, we find a probability of 2−k/3 with memory requirements
of O(2k/3) keys and running time O(k2k/3). To improve the probability,
Hellman proposes to use 2k/3 different choices for the function F , by slightly
changing the way a ciphertext EK(0n) is converted back into a key. Assuming
independence between the tables generated for each of these functions, the
success probability increases to a constant fraction of the key space with time
and memory requirements 22k/3 (neglecting logarithmic factors).

© 2009 by Taylor and Francis Group, LLC

Birthday-based algorithms for functions 249

Exercises

1. At the end of Floyd’s algorithm, prove that t is the smallest multiple of
` greater than or equal to s.

2h. Given a discrete logarithm problem y = gx with the additional informa-
tion that every bit in odd position in x is a 0, devise a generic algorithm
to efficiently obtain x, assuming that there are n unknown bits in x.

3. In this exercise, we consider the simultaneous use of several copies of
Nivasch’s algorithm.

(a) Given a sequence Xi+1 = f(Xi) and two different order relations
on elements Xi, run in parallel two copies of Nivasch’s algorithm
defining one with each order relation. We detect the loop as soon
as one of the two copies does. Assuming that the result of each dif-
ferent comparison between unequal values behaves randomly, when
do you expect this detection to happen?

(b) What can be achieved with t different copies of Nivasch’s algo-
rithm?

(c) Describe an application where this technique offers a noticeable
gain.

4h. What is the expected complexity of finding the cycle’s start given the
complete state of Nivasch’s algorithm, after detecting a collision? Can
this be improved with t copies of the algorithm?

5. Implement the search of hash collisions using a cycle finding algorithm
on a reduced-sized hash function. For example, you can use a truncated
copy of SHA.

6h. Devise a method for searching many collisions (not multicollisions, just
several independent collisions) within a hash function, using a cycle find-
ing technique. Compare with seach for many collisions using a birthday
paradox approach with memory.

7. Open problem. Find a method to construct multicollisions (at least
a 3-multicollision) using a cycle finding approach.

© 2009 by Taylor and Francis Group, LLC

Chapter 8

Birthday attacks through
quadrisection

In practice, cryptanalytic attacks based on the birthday paradox are often
limited by the amount of memory they require. Indeed, the time and mem-
ory requirements of birthday paradox based attacks are roughly the same
and for practical purposes, memory costs much more than time. Of course,
when looking for collisions involving functions, we can use the techniques of
Chapter 7, however, their range of applicability is limited. In this chapter,
we study other specific instances of the birthday-based attacks for which the
techniques of Chapter 7 cannot be applied, but which, nonetheless can be
tackled using less memory than the generic methods of Chapter 6. These
techniques presented here reduce the required amount of memory, without
significantly increasing the running times. In fact, even when there is enough
memory available to perform a generic birthday attack, using these variations
may improve performance, due to cache effects.

8.1 Introductory example: Subset sum problems

To serve as an introduction to the techniques presented in this chapter, we
present an algorithm of Schroeppel and Shamir [SS81] first presented in 1979.
This example studies the problem of finding all the solutions to a given subset
sum problem. We first recall the definition of a subset sum problem.

DEFINITION 8.1 A subset sum problem consists, given n positive inte-
gers xi and a target sum s, in finding all the solutions to the equation:

n∑
i=1

eixi = s, (8.1)

where the ei values are integers equal to either 0 or 1.
The subset sum problem also has an associated decision problem where the

goal is to say whether a solution exists or not.

251

© 2009 by Taylor and Francis Group, LLC

252 Algorithmic Cryptanalysis

The subset sum problem is also called the knapsack problem.

8.1.1 Preliminaries

Clearly, the subset sum problem can be broken by brute force. It suffices
to compute the 2n different sums. This requires essentially no memory and
has a running time of 2n evaluations of a sum of n terms. One can do better
with a simple application of the birthday paradox: first split the x values into
two sets of roughly equal sizes, compute L1 the list of all possible sums for
the first set and L2 the list obtained by subtracting from s all the possible
sums for the second set. Any collision between L1 and L2 corresponds to an
equation:

bn/2c∑
i=1

eixi = s−
n∑

i=bn/2c+1

eixi, (8.2)

thus yielding a solution to the knapsack problem. As usual, this birthday-
based attack has a runtime O(n2n/2) and require to store 2bn/2c partial sums
in memory. For values of n where the brute force attack is at the edge of
possible computations, say n = 80 it can be argued whether the birthday-
based attack is better than the brute force attack. In practice, it is easier to
perform 280 computations in a distributed effort on many small computers or
to find a large computer with enough memory to store 240 numbers?

With the results of Chapter 7 in mind, it is natural to try solving such
a knapsack problem using a cycle finding algorithm. At first, this approach
seems reasonable. Indeed, assuming for simplicity that n is even, we can
easily define a function F on n/2 + 1 bits that maps values starting by 0 to
a sum of the first n/2 numbers in the knapsack as in the left-hand side of
Equation (8.2). The same function would map values starting by a 1 to the
target value s minus a sum of the last n/2 numbers, as in the right-hand side
of the same equation. Clearly, a random collision on F yields a solution to the
knapsack problem whenever the colliding values differ on their first bits, which
should heuristically occur with probability roughly 1/2. As a consequence, it
is natural to try using cycle finding algorithms to obtain a collision on F .
However, in many cryptographic applications of knapsacks, the values of the
knapsack elements are large numbers, of n bits or more. Otherwise, given
a possible value for the sum s there would be a huge number of solutions.
As a consequence, F is an expanding function which maps n/2 + 1 bits to
approximately n bits. For this reason, it cannot directly be used repeatedly
to construct an ultimately periodic sequence. Instead, we need to use some
function G to truncate the n bits back to n/2 + 1. Of course, from a starting
point y0 we can easily define a sequence, using the recursion formula:

yi+1 = G(F (yi)). (8.3)

© 2009 by Taylor and Francis Group, LLC

Birthday attacks through quadrisection 253

Clearly, this sequence usually leads to a cycle which can be found using a
cycle detection algorithm. Yet, this cycle does not usually produce any real
collision and cannot yield a knapsack solution.

The reason for this phenomenon is that by writing down the sequence y,
we also implicitly defined another sequence z by:

z0 = F (y0) and zi+1 = F (G(zi)). (8.4)

This implicit sequence z also yields a cycle. However, z values are short
numbers on n/2+1 bits, while y values are long numbers on n bits. As a con-
sequence, with overwhelming probability the sequences enter a cycle through
a z-collision and not through a y-collision. This means that we eventually find
an initial collision zi = zj which defines the entrance of the cycle. This colli-
sion of course leads to a collision on the subsequent y values, i.e., yi+1 = yj+1.
However, both values result from the same sum expression and thus cannot
offer a solution to the knapsack problem. It is worth noting that for knapsack
problems based on small knapsack elements, G would no longer be necessary
and this approach would work.

8.1.2 The algorithm of Shamir and Schroeppel

To overcome this difficulty, Shamir and Schroeppel devised an algorithm
which uses less memory than the birthday attack but still requires some non-
negligible amount of memory. Before presenting the algorithm of Shamir and
Schroeppel, it is useful to first remember from Section 6.3 that the birthday
attack can be implemented in two different ways. The first possibility is to
store a sorted copy of L1, then to generate on the fly elements of L2 and
search them by dichotomy in L1. The second possibility is to sort both L1

and L2 then to read both lists sequentially, advancing in turns either in L1 or
in L2, until collisions are found. In the generic setting, the second possibility
is the more costly in terms of memory, because two lists1 need to be stored.
However, in order to implement this option, we do not really need to store L1

and L2, instead we only need to be able to go through L1 (and L2) step by step
in increasing order. The key idea introduced by Shamir and Schroeppel shows
that for subset sum problems, we can produce the elements of L1 in increasing
order without fully storing L1. We also need to produce the elements of L2 in
increasing order. Since L2 is constructed by subtracting a partial subset sum
from s, it means that we need to produce the corresponding partial sums in
decreasing order. This can be achieved through a straightforward adaptation
of the method used with L1.

Assume for now than we are given a subset of the knapsack elements and
denote them by y1, . . . , yl. We need a memory efficient subroutine to produce

1Moreover, when n is odd, the second list is twice as long as the first.

© 2009 by Taylor and Francis Group, LLC

254 Algorithmic Cryptanalysis

all the sums for this subset in either increasing or decreasing order. For this,
we first split l roughly in half, letting l = l1 + l2 and construct two sets:

Y1 =

{
l1∑
i=1

eiyi | ∀ (e1, · · · , el1) ∈ {0, 1}l1
}

and (8.5)

Y2 =

{
l∑

i=l1+1

eiyi | ∀ (el1+1, · · · , el) ∈ {0, 1}l2
}
.

Any knapsack element can be uniquely written as the sum of an element from
Y1 and an element from Y2.

To solve our problem we first ask the following question: “Given two such
sums, σ = γ1 + γ2 and σ′ = γ′1 + γ′2 what can we say about the relative orders
of σ and σ′ from the relative orders between the γ values?” Clearly, if γ1 ≥ γ′1
and γ2 ≥ γ′2 then σ ≥ σ′. Similarly, when both γs are smaller, then σ is
smaller. However, when if γ1 ≥ γ′1 and γ2 ≤ γ′2, prediction is not easy.

To make good use of this partial information, we first sort Y2, then for each
number in Y1, we add it to the first element of Y2 and memorize the sum
together with its decomposition. For efficiency, we memorize these sums in
a binary search tree. This allows us to retrieve these sums in sorted order.
After this initialization, we proceed as follows, at each step take the smallest
sum from the tree and produce it as the next element of Y1 + Y2. After that,
we look at the decomposition, update the sum and put it back in the tree.
The update is done by keeping the same number from Y1 and by moving to
the next number in Y2 (which is easy, since Y2 is sorted). After the update,
we put the new value back into the tree, unless the end of Y2 was reached.
Using a self-balancing tree, since the size of tree is the size of Y1, the cost of
insertion and deletion is guaranteed to be O(log |Y1|).

To generate the values in decreasing order, two minor changes2 are required,
start from the end of Y2 instead of the beginning and take the last tree element
at each step instead of the first one. In both versions of the algorithm, each
element of Y1 is paired with each element of Y2 and thus the set Y1 + Y2

is completely constructed. Putting together one copy of algorithm going in
increasing order for Y1 + Y2 with another copy going in decreasing order for
Y3 + Y4 (and thus in increasing order for s − Y3 − Y4) allows us to find all
occurrences of s in Y1 + Y2 + Y3 + Y4. From a complexity point-of-view, this
requires a running time O(n2n/2) and a memory of O(2n/4) integers. The
running time is the same as the running time of the generic birthday attack,
but the required memory is much lower. Note that the constants implicit in
the O notations depend on the value of n modulo 4. The best case occurs
when n is a multiple of 4.

2Alternatively, we can simply use the exact same algorithm as before, using the reversed
order instead of the natural order on integers.

© 2009 by Taylor and Francis Group, LLC

Birthday attacks through quadrisection 255

Algorithm 8.1 Initialization of Shamir and Schroeppel algorithm
Require: Input ` knapsack elements y1, . . . , y`

Let `1 ←− b`/2c and `2 ←− `− `1
Construct an array Y2 containing the 2`2 possible sums of y`1+1, . . . , y`.
Sort the array Y2

Create an empty AVL-tree T and a set a 2`1 free nodes for this tree structure
for (e1, · · · , e`1) in {0, 1}`1 do

Compute Y1 ←−
∑`1
i=1 eiyi

Take the next free node N
Let Nvalue ←− Y1, Nindex ←− 0 and NsortKey ←− Y1 + Y2[0] {Insert
into the fields ofN the value Y1, the index 0 and the sorting key Y1+Y2[0]}
Insert N into T {according to the value of the sorting key}

end for
Output T and Y2 for use in Algorithm 8.2

Algorithm 8.2 Get next knapsack sum with Shamir and Schroeppel algo-
rithm
Require: Input array Y2 and current state of tree T

If T is empty, Output ‘Finished’
Remove the smallest node of T , let N be this node
Let S ←− NsortKey
Let Nindex ←− Nindex + 1
if Nindex < 2`2 then

Let NsortKey ←− Nvalue + Y2[Nindex]
Insert modified node N back into the tree T

end if
Output sum S and updated tree T

© 2009 by Taylor and Francis Group, LLC

256 Algorithmic Cryptanalysis

Clearly, the algorithm of Shamir and Schroeppel does not make use of the
strong internal structure of the list Y1, Y2, Y3 and Y4 which are built by
adding together knapsack elements. However, taking advantage of this extra
structure to either speed up the search for a knapsack solution or further
reduce the required memory is a nice open problem. Not using the internal
structure of Y1, Y2, Y3 and Y4 also means that the algorithm of Shamir and
Schroeppel has a large range of applicability. We study it in the sequel of
this chapter together with other algorithms which present the same kind of
tradeoff between time and memory.

8.2 General setting for reduced memory birthday at-
tacks

The idea of splitting a problem in four parts instead of two for the usual
birthday attacks, may be used in a variety of applications. In the general
setting, we are given four sets L1, L2, L3 and L4 of elements from a group G
with group operation �, together with a target group value g. The problem
is then to find all solutions (g1, g2, g3, g4) ∈ L1×L2×L3×L4 of the equation:

g1 � g2 � g3 � g4 = g. (8.6)

Assuming that the sets have sizes N1, N2, N3 and N4 of the same order
of magnitude, a generic birthday-based attack exists for this problem. This
generic attack first constructs the two sets:

L = {g1 � g2 | ∀ (g1, g2) ∈ L1 × L2} and (8.7)
L′ =

{
g � (g3 � g4)−1 | ∀ (g3, g4) ∈ L3 × L4

}
,

where h−1 denotes the inverse of h in the group G. Then the attack searches
for collisions between L and L′. Each collision yields a solution of Equa-
tion (8.6).

The size of L is N1N2 and the size of L′ is N3N4. Assuming without loss
of generality that N1N2 ≤ N3N4, the time complexity of the generic attack
is O(max(N1N2 log(N1N2), N3N4)) and the memory complexity measured in
number of group elements is N1N2. The knapsack example from Section 8.1
shows that for the additive group of integers (Z,+), the memory complexity
can be lowered without increasing the time complexity. More generally, we
can ask for a list of groups where this improvement can be achieved. In
the sequel, we give a list of specific examples where the improvement can be
achieved, followed by a more general treatment and examples of groups where
no known method exists.

Note that without loss of generality, we can always consider that the target
value g is the group identity element. Indeed composing Equation (8.6) with

© 2009 by Taylor and Francis Group, LLC

Birthday attacks through quadrisection 257

g−1 under the group operation, we find:

g1 � g2 � g3 � (g4 � g−1) = 1G. (8.8)

Thus it suffices to transform L4 by replacing each element g4 by g4 � g−1 to
make g disappear from Equation (8.6).

8.2.1 Xoring bit strings

A simple and natural group to consider in computer science and cryptogra-
phy is the group of n-bit strings, together with the group operation obtained
by bitwise xoring strings. Mathematically, this group can be viewed in many
different ways, the simplest is to consider it as the n-th fold direct product
Gn

2 where G2 is {0, 1} with addition modulo 2. Alternatively, adding some
more structure, it can also be viewed as the additive group of the finite field
F2n .

In this group, our generic problem reduces itself to find all quadruples of
values whose XOR is equal to the specified target. As usual, we can assume
without loss of generality that the specified target is the group identity ele-
ment, i.e., the string 0n.

Clearly, with this group, the approach used by Shamir and Schroeppel for
subset sum problems cannot work. Indeed, this approach heavily relies on the
existence of an order ≤ on Z , compatible with the group operation. In Gn

2 , no
such order exists. Instead, we need to use a very different method introduced
in [CJM02].

The basic idea of the method starts by selecting a subset of t bits among
the n available bits. For simplicity, we choose the t high bits of the n-bit
numbers that encode elements of Gn

2 . For each value x in Gn
2 , we denote by

[x]t the restriction of x to its t high bits. This restriction is compatible with
the XOR operation, more precisely we have:

[x⊕ y]t = [x]t ⊕ [y]t. (8.9)

Thus for any solution (x1, x2, x3, x4) of Equation (8.6) rewritten in Gn
2 as:

x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0n (8.10)

we necessarily have:
[x1 ⊕ x2]t = [x3 ⊕ x4]t. (8.11)

In other words, the value of the t high bits is the same when xoring the leftmost
elements x1 and x2, or when xoring the rightmost elements x3 and x4. Of
course, we do not know in advance this middle value of the t high bits; however,
we know for sure that it is shared between both sides. As a consequence,
denoting byMt this middle value, we can enumerate all possibilities forMt and
for each possibility create the list LMt

of all pairs (x1, x2) with [x1⊕x2]t = Mt

© 2009 by Taylor and Francis Group, LLC

258 Algorithmic Cryptanalysis

and the list L′Mt
of pairs (x3, x4) with [x3 ⊕ x4]t = Mt. Any collision between

these lists for any value of Mt yields a solution of Equation (8.10).
For a fixed value of Mt, the expected number of pairs in the first of these

two lists is N1N2 · 2−t and the expected numbers of pairs in the second list is
N3N4 · 2−t. For typical applications, we have N1 ≈ N2 ≈ N3 ≈ N4 ≈ 2n/4.
Thus, to keep the memory requirements around O(2n/4) it is natural to choose
t ≈ n/4. Indeed, with this choice the two middle lists are of approximate size
2n/4 · 2n/4 · 2−t ≈ 2n/4. Moreover, for each value of Mt finding collisions
between these lists costs O((n/2− t) 2n/2−t), i.e., O(n 2n/4) for our choice of
t. Thus, taking into account the loop on the 2t possibilities for Mt, the total
time for finding collisions is O(n 2n/2).

To make sure that the approach is sound, we need to make sure that LMt

and L′Mt
can be constructed efficiently. Assuming that L2 is already sorted

with respect to the value of the t high bits of each element, all solutions of
[x1 ⊕ x2]t = Mt can be found in time O(N1 logN2) using a simple variation
of the collision search method with a sorted list. For each element x1 of
L1, compute [x1]t ⊕Mt and search this value by dichotomy in the high bits
of L2. When N1 ≈ N2 ≈ N3 ≈ N4 ≈ 2n/4 and t ≈ n/4 the time and
memory complexity for building all lists LMt and L′Mt

in turn are O(n2n/2)
and O(2n/4). Note that it is essential to remember that we only need to
store the lists LMt

and L′Mt
corresponding to the current value of Mt. The

corresponding pseudo-code for this approach is given as Algorithm 8.3 or
alternatively as Algorithm 8.4

This method is quite different from the method of Shamir and Schroeppel
but it gives similar performances. Moreover, it removes the need to deal with
balanced trees altogether and, thus, it is simpler to implement.

8.2.2 Generalization to different groups

In the general setting, the group G from which elements of our four lists are
drawn is an arbitrary group. For now, we assume that this group is abelian.
In that case, group classification tells us that G is isomorphic to an additive
group:

Z/n1Z× Z/n2Z× · · · × Z/ntZ,

where each ni divides ni−1. As a consequence, it is natural to first consider
the case where G has this specific form. In the previous section, we dealt with
one extreme example of this case: (Z/2Z)n.

Here, the size of the group G is N , the product of the ni values. As usual, we
expect a solution when the size of the lists is of the order of N1/4. Depending
on the distribution of the ni values, several approaches are possible. The first
approach works when some partial product of the ni values is of the order of
N1/4. In that case, we can write G as a direct product G1 ×G2 by grouping
all the contributions to this partial product in G1 and the rest in G2. In this
direct product, G1 is of size around N1/4 and G2 of size around N3/4. Due

© 2009 by Taylor and Francis Group, LLC

Birthday attacks through quadrisection 259

Algorithm 8.3 Generating all solutions to Equation (8.10)

Require: Input four lists L1, L2, L3, L4 of ≈ 2n/4 n-bit values each
Require: Parameter t

Sort L2 and L4

Allocate arrays L and L′ of size 2n/2−t plus some margin
for Mt from 0 to 2t − 1 do

Reinitialize L and L′ to empty arrays
for all x1 ∈ L1 do

Search first occurrence x2 of ([x1]t ⊕Mt) in L2 high bits
while [x2]t = [x1]t ⊕Mt do

Add x1 ⊕ x2 to list L {Keeping track of x1 and x2 values}
Skip to next x2 in L2

end while
end for
for all x3 ∈ L3 do

Search first occurrence x4 of [x3]t ⊕Mt in L4 high bits
while [x4]t = [x3]t ⊕Mt do

Add x3 ⊕ x4 to list L′ {Keeping track of x3 and x4 values}
Skip to next x4 in L4

end while
end for
Sort L and L′

Find and output all collisions between L and L′ as quadruples
(x1, x2, x3, x4).

end for

© 2009 by Taylor and Francis Group, LLC

260 Algorithmic Cryptanalysis

Algorithm 8.4 Alternative option to Algorithm 8.3
Require: Input four lists L1, L2, L3, L4 of ≈ 2n/4 n-bit values each
Require: Parameter t

Sort L2 and L4

Allocate arrays L and L′ of size 2n/2−t plus some margin
for Mt from 0 to 2t − 1 do

Reinitialize L and L′ to empty arrays
for all x1 ∈ L1 do

Search first occurrence x2 of ([x1]t ⊕Mt) in L2 high bits
while [x2]t = [x1]t ⊕Mt do

Add x1 ⊕ x2 to list L {Keeping track of x1 and x2 values}
Skip to next x2 in L2

end while
end for
Sort L
for all x3 ∈ L3 do

Search first occurrence x4 of [x3]t ⊕Mt in L4 high bits
while [x4]t = [x3]t ⊕Mt do

Search x3 ⊕ x4 by dichotomy in L
if x3 ⊕ x4 found then

Output collision as a quadruple (x1, x2, x3, x4).
end if
Skip to next x4 in L4

end while
end for

end for

© 2009 by Taylor and Francis Group, LLC

Birthday attacks through quadrisection 261

to this repartition, a straightforward adaptation of Algorithm 8.3 gives the
desired result. It suffices to take as middle value Mt the projection of group
elements on the first coordinate G1. Then, for each element x1 of the first list
L1, with first coordinate [x1]G1 it is easy to find all elements x2 from L2 with
a G1-coordinate that satisfies:

[x1]G1 + [x2]G1 = Mt. (8.12)

Similarly, we find pairs (x3, x4) with:

[x3]G1 + [x4]G1 = −Mt. (8.13)

To finalize the computation, it suffices to search for collisions between G2

coordinates of the values of x1 + x2 and −(x3 + x4) occurring in the middle
lists.

When it is not possible to write G as a direct product with a correct size
repartition, the four-list problem needs a different approach. To illustrate
this, let us consider G = Z/pZ for a prime p. Here, G cannot be written as a
proper direct product. Instead, a simple alternative is to lift the problem to
Z and remark that for any solution:

x1 + x2 + x3 + x4 = 0 (mod p), (8.14)

the integer x1 + x2 + x3 + x4 is either 0, p, 2p or 3p, assuming that each
representative xi is chosen in [0, p − 1]. Moreover, the value 0 can only be
reached when x1 = x2 = x3 = x4 = 0. As a consequence, over Z/pZ we can
use three consecutive applications of the approach of Shamir and Schroeppel
described in Section 8.1 and solve the four-list problem without using too
much memory.

The same approach is easily generalized to a direct product with a bad
repartition. In that case, we write G = Z/N1Z × G2 where N1 is an integer
greater than the size of G to the power 3/4 and G2 is the remaining part
of the group structure. Denoting elements of G as pairs (x, y) and using
the approach of Shamir and Schroeppel, it is easy to create the sublist of
values x1 + x2 in increasing order over the integers and the sublist of x3 + x4

in decreasing values. From these lists, we extract partial solutions with x-
coordinates summing up to either N1, 2N1 or 3N1. Checking that in addition
the y coordinates also sum to 0 modulo N2 is a simple matter.

8.2.2.1 Badly presented groups

When the group G is not directly given as in additive form as

Z/n1Z× Z/n2Z× · · · × Z/ntZ,

it is not completely clear whether and how a reduced memory birthday para-
dox approach can be followed. Once again, several cases need to be consid-
ered. If the cardinality of G is known and if its factorization is accessible, the

© 2009 by Taylor and Francis Group, LLC

262 Algorithmic Cryptanalysis

additive representation of G can easily be derived. If, furthermore, an iso-
morphism from G to its additive representation can be computed efficiently
enough, we are clearly done. Similarly, when G can be expressed as a direct
product G1 × G2 with the right repartition of sizes, we can directly use the
first approach we used for groups in additive representation, even when G1

and G2 are given in arbitrary form. Note that when G has a small enough
subgroup (smaller than the square root of the size of G), then it is possible to
tabulate the discrete logarithms in this subgroup in order to use an additive
representation for this part.

Nevertheless, in our context, there remains a few bad group presentations
which prevent us from using a birthday approach with reduced memory re-
quirement. A typical example is the group G of an elliptic curve over a finite
field (see Chapter 14). If the order of the group is prime (or even a product of
two primes of comparable sizes), then there is no known algorithms to solve
the problem of four lists with memory requirement lower than the generic
birthday-based attack. Another natural example to consider is the case of
multiplicative subgroups in finite fields. Of course, if we consider the full mul-
tiplicative group and look for naturally occurring random solutions, the order
of the group cannot be too large and we are thus in the case where discrete
logarithms can be computed efficiently. Indeed, with a group of order N , the
subexponential complexity of discrete logarithm computation, even repeated
N1/4 times to deal with all the elements in the four lists is negligible compared
to the birthday running time of the algorithm N1/2. On the other hand, with
a moderately large subgroup in a large finite field, computing N1/4 discrete
logarithms with Pollard’s Rho is not an option. Similarly, if we consider small
sets of the full multiplicative group and know that a solution has somehow
been prearranged, we do not know how to apply the four-list approach. We
illustrate this in Section 8.4.2 where we study possible cryptanalysis of plain
RSA and plain ElGamal encryptions.

8.2.3 Working with more lists

Clearly, Equation (8.8) can easily be generalized to a different number
of lists. With two lists, the algorithmic issue is simple since the ordinary
birthday-based approach is almost optimal. With three lists of roughly equal
sizes N1/3 in a group of N elements, the best known algorithm is a simple
adaptation of the basic birthday approach. Sort the first list L1 and then for all
pairs (g2, g3) of elements in L2×L3, search for (g2�g3)−1 in L1. The required
memory is the optimal value N1/3 but the running time is O(N2/3 logN).

With more than four lists, the best known algorithm is to transform the
problem into a four-list version and proceed. Assuming t lists of roughly equal
sizes, we first group the lists into packets of approximately t/4 lists. When t
is a multiple of four, we group the t/4 first lists and put all the corresponding
sums (or group compositions) into the first list L1 of the target four-lists
problem. We group the next packet of t/4 lists into L2, L3 and L4. Clearly,

© 2009 by Taylor and Francis Group, LLC

Birthday attacks through quadrisection 263

any solution of the transformed four-list problem is a solution of the original
problem with t lists. When t is not a multiple of four, we group the lists in
order to balance the size of the lists as far as possible. However, in that case,
the resulting time-memory tradeoff is not as good.

8.3 Extensions of the technique

8.3.1 Multiple targets

A natural generalization is to consider the case where instead of a single
acceptable target, there are many. Clearly, if we are given a list L′ of possible
target, a very easy solution is to move the target taken from the list L′ from
the right-hand side to the left-hand side and obtain a new instance of the
original problem with a single target. This instance has one more list but we
already know how to address this case.

However, if the set of targets has some extra structure and can be described
more efficiently than by a simple list, it is possible to obtain better approaches.
To illustrate this, we start with a simple example. Assume that we are consid-
ering a four-list problem with lists L1, L2, L3 and L4 of elements in a group
G1×G2 and that the list of allowed targets is a direct product L′ = L′1×L′2.
In other words, a pair (g1, g2) is a valid target, if and only if, g1 ∈ L′1 and
g2 ∈ L′2. Moreover, assume that G1 and G2 have similar sizes, of the order
of 2n, that each of the lists L1 to L4 have size 2n/4 and that each of the lists
L′1 and L′2 have size 2n/2. With these parameters, the expected number of
solutions is 1.

With this specific instance, a first approach is to rewrite the problem as a
a problem of finding a fixed target within a sum of six lists. In approach, we
view each element g1 of L′1 as a representative for (g1, 0) in G1×G2 and each
element g2 of L′2 as a representative for (0, g2). If, in addition, we construct
the two sums of lists L1 + L2 and L3 + L4, we can directly use the ordinary
case of four sets, grouping L1 +L2 and L′1 on one size, L3 +L4 and L′2 on the
other. We obtain a running time of 2n and a memory requirement of 2n/2.
However, this approach does not take advantage of the extra structure within
L′, or equivalently of the fact that L′1 only contains elements of G1 and L′2
elements of G2.

In order to improve this case, we now consider a different approach. Here,
we first focus on the partial solutions, with a correct value in G1 but not nec-
essarily in G2. Clearly, L′2 is not needed to construct these partial solutions,
since any element of L′2 has a zero contribution on the G1 component of sums.
The expected number of partial solutions is 2n/2; moreover, using the basic
algorithm with one group containing L1, L′1 and the other group containing
L2 +L3, L4 we can construct all these solutions in time 23n/4. In our precise

© 2009 by Taylor and Francis Group, LLC

264 Algorithmic Cryptanalysis

case, the memory requirement is 2n/2, due to the need to store L′1. Once
a partial solution is constructed, it is easy to evaluate the G2 component of
the corresponding sum. Then, to check whether the partial solution is also
correct on G2, it suffices to test if the opposite of the G2 component belongs
to L′2, using a dichotomy search. As a consequence, with this specific set of
parameters, using the idea of partial solutions reduces the running time, on a
group G1 ×G2 of size 22n, from 2n down to 23n/4.

8.3.2 Wagner’s extension

Up to now, we have concerned ourselves with finding all solutions to Equa-
tion (8.8), usually in the case where a small number of solutions exist. David
Wagner [Wag02] asks a slightly different question and looks for a single solu-
tion to this equation, especially in cases where a large number of solutions is
expected. The surprising conclusion, in this case, is that the algorithms can be
adapted to yield a completely different and much more efficient time/memory
tradeoff. A precursor of this idea was already present in [CP91].

Let us start by considering the problem of xoring four bitstrings in this
new context. We are given four lists L1, L2, L3 and L4, each containing 2βn

n-bit numbers for some parameter β ≥ 1/4. On average, we expect 24β−1

solutions. The key idea of Wagner, is to restrict the search and only look for
solutions (x1, x2, x3, x4) where the restriction of x1 ⊕ x2 (and of x3 ⊕ x4) to
a fraction τn of the bits is zero. The expected number of pairs x1 ⊕ x2 such
that x1 ⊕ x2 is zero on these τn bits is 22β−τ . From this, we deduce that
the expected number of solutions to Equation (8.8) that satisfy the additional
condition is 24β−τ−1. A natural choice of parameters is τ = β = 1/3. In that
case, we expect to find one solution (among many) to the four-list problem,
using time and memory O(n · 2n/3). From a running time point-of-view, this
is more efficient than the usual O(n · 2n/2) of birthday-based attacks. On the
other hand, it only works when much larger lists of numbers are available.

Thus, we already see with four lists that asking for a single solution among
a large set leads to a better time/memory tradeoff. However, the real power of
this technique appears when we consider a larger number of lists. To simplify
the exposition of the method, let us assume that we are given 2t lists of 2αn

numbers on n bits. The simplification comes from the fact that when the
number of lists is a power of 2, we can more easily organize the computation,
since we can group lists by packets of 2, 4, . . . Within this list, we want to
find elements x1, x2, . . . , xt, with each xi in the corresponding list Li, whose
sum is zero (using a XOR sum). We proceed by using a succession of steps.
In each step, we regroup lists two by two, thus halving the number of lists.
Moreover, at each step, we cancel a fraction of the high bits. To balance
the computation, it is best to preserve the size of the lists considered at each
step, except in the final one, where we are happy to obtain a single solution.
Since the original lists contain 2αn elements, it is possible to cancel αn bits at
each step while preserving the sizes of the lists. Indeed, combining two lists

© 2009 by Taylor and Francis Group, LLC

Birthday attacks through quadrisection 265

together yield 22αn possibilities and forcing αn bits to be zeros reduces this
number by a factor of 2αn. At the final step, we use the birthday paradox
and expect a collision on 2αn bits to occur for lists of 2αn elements. With
2t lists, we perform t steps and we can work with α ≈ 1/(t + 1). Both from
a time and memory point-of-view, the complexity of this approach is 2t+αn.
If we are free to optimize this complexity by choosing t, then using t ≈

√
n

yields a subexponential algorithm with complexity 22
√
n.

With this extension, using bitstrings is a very comfortable option, indeed,
once a fraction of the bits has been set to zero in all groups at some steps, this
fraction clearly remains zero throughout the end of the algorithm. As already
noticed in [Wag02], this can be generalized to many other groups. However,
when generalizing Wagner’s extension to different groups, we need to take
care to avoid the resurgence of non-zero values in unwanted places. Over a
product of small groups, things are also well-behaved, it suffices to cancel
some of the small groups at each step to be sure that they do not reappear.
For integers modulo 2n, the best option is to cancel low order bits at each
steps, since carries only propagate from right to left. Over the integers, this
also is the best approach. Note that, in that case we encounter a new problem:
the sum of 2t numbers on n bits is a number on n+ t bits. Luckily, t is small
compared to n and this problem is minor. As a consequence, we see that
Wagner’s extension has essentially the same spectrum of applicability as the
original reduced memory birthday paradox attacks.

8.3.3 Related open problems

When searching collisions between two lists, the available algorithms are
essentially optimal. Indeed, it is clear that the running time is bounded by
the time required to read the input lists. With lists formed of 2n/2 elements,
we get a lower bound of 2n/2 operations to compare with the running time
O(n2n/2) of a fast sort algorithm. On the contrary, with the algorithms
presented in this chapter, we have no such guarantee. As a consequence, it
is worth pondering whether these algorithms can be improved. As a special
case, it is interesting to consider three lists L1, L2 and L3 of respective sizes
N1, N2 and N3. How much does it cost to find a solution of the equation:

x1 ⊕ x2 ⊕ x3 = 0, with x1 ∈ L1, x2 ∈ L2 and x3 ∈ L3. (8.15)

Clearly, the running time should be expressed as a function of N1N2N3. In-
deed, with random lists of n-bit numbers, we expect a solution whenN1N2N3 =
2n, independently of the individual values of N1, N2 and N3. With some spe-
cific choices for the sizes of the lists, we can achieve a complexity O(n2n/2).
For example, when N3 = 1 and N1 = N2 = 2n/2, a plain collision search
approach suffices. Similarly, when N1N2 = 2n/2 and N3 = 2n/2, the same
approach works. A much more problematic case is N1 = N2 = N3 = 2n/3. In
this case, we can sort one list, say L3 and then for each pair (x1, x2) ∈ L1×L2

© 2009 by Taylor and Francis Group, LLC

266 Algorithmic Cryptanalysis

search for x1 ⊕ x2 in L3. However, this solution yields a running time larger
than 22n/3. To reduce the running time, we can follow the approach of Wagner
and enlarge the lists L1, L2 and L3. For lists of size, 2αn with 1/3 ≤ α ≤ 1/2,
this leads to a running time 2(1−α)n. However, the best we can do is 2n/2 with
N1 = N2 = N3 = 2n/2, which is worse than the basic birthday algorithm.

This specific example emphasizes two more general open problems with
generalized birthday algorithms. The first open problem is to devise a new
algorithm that searches a unique solution with a better tradeoff between time
and memory. Typically, the current best algorithms have time 2n/2 and mem-
ory 2n/4, so we could afford to use some extra memory in order to go faster.
The second open problem concerns Wagner’s algorithm to search for one so-
lution among many. In its present form, this algorithm works extremely well
when the number of lists is a power of two. However, when this is not the
case, its behavior is obtained by rounding the number of lists down to a power
of two. In the worst case, when the number of lists is a power of two minus
one, this is highly unsatisfactory.

When considering the XOR operation with a large number of lists, it was
noted in [BM97] that Gaussian elimination can be used to solve the problem.

8.3.3.1 An incremental improvement

Looking again at the specific example of three lists, it is possible to slightly
improve the basic birthday algorithm when using a specific configuration of
the sizes of the lists. Instead of working with L1 = L2 = 2n/2 and L3 = 1,
we now use L1 = L2 = 2n/2/r and L3 = n/2, with r =

√
n/2. With this

choice, it is possible to rearrange the computations in order to scan the lists
L1 and L2 only once, simultaneously testing each candidate against the list
L3. In order to do that, we first need to perform some elementary linear
algebra on the elements of the lists. Viewing each element of the three lists
as a vector in Fn2 , it is clear that a solution x1 ⊕ x2 ⊕ x3 = 0 also satisfies
Mx1 ⊕Mx2 ⊕Mx3 = 0, for any n × n Boolean matrix. Moreover, if M is
invertible, any solution of the second equation is a solution to the original
problem. As a consequence, for any invertible matrix M , we may transform
the three lists by applying M to all their elements, without changing the set
of solutions.

Now, since L3 contains n/2 vectors, it spans a linear subspace of F2n of di-
mension at most n/2. We can easily choose a basis (b1, b2, · · · , bn) of F2n such
that each vector in L3 belongs to the subspace generated by (b1, b2, · · · , bn/2).
We now choose for M the matrix that transforms each vector of F2n to the
basis (b1, b2, · · · , bn). Clearly, each element x3 of L3 is such that Mx3 has
n/2 trailing zeros in position from n/2 to n. Moreover, L3 usually spans a
subspace of rank exactly n/2. In that case, b1, b2, . . . , bn/2 can simply be
chosen as the elements of L3. In that case, any vector Mx3 is zero everywhere
except in a single position between 1 and n/2. Once M is chosen, we can use
it to transform L1 and L2. After this transformation, it suffices to search for

© 2009 by Taylor and Francis Group, LLC

Birthday attacks through quadrisection 267

pairs of elements (x1, x2) such that Mx1 and Mx2 collide on the last n/2
bits in the new representation. As usual, we expect that a fraction 2n/2 of
all pairs satisfies this property. For each such candidate pair, it then suffices
to check that the corresponding sum belongs to L3. Since there are 2n/2+1/n
such pairs and since it suffices to check that sum contains a single one, this
can be done efficiently. All in all, we gain a factor r or

√
n/2 compared to

the basic birthday algorithm.

8.4 Some direct applications

8.4.1 Noisy Chinese remainder reconstruction

The Chinese remainder theorem, as recalled in Chapter 2, allows to recon-
struct an integer x in a given interval [Bl, Bh] from a list of modular values
x mod pi, as long as the values pi are mutually coprime, assuming that their
product is at least Bh −Bl + 1.

The notion of “noisy” Chinese remainder reconstruction covers several pos-
sible extensions of this basic problem. One simple extension is presented as
Exercise 1. In this section, we present a different extension, which arises
from the problem of counting points on elliptic curves. This problem, to-
gether with a birthday approach with reduced memory to solve it, was first
presented in [JL01].

The goal of the problem is to recover a unique integer x in a range [Bl, Bh]
from modular values modulo coprime numbers. The only difference with the
basic Chinese remainder theorem is that, instead of having a single candidate
for each modular value, we have a set of candidates. Some of these sets may
still contain a single element. Note that, by using a preliminary application
of the ordinary Chinese remainder theorem, it is possible to regroup all the
modulus with a single candidate into their product. Thus, without loss of
generality, we assume that we have a list of coprime numbers p0, p1, . . . , pk
together with sets Si of allowed modular values modulo pi. The set S0 contains
a single element, all the other sets contain at least 2. If for some reason, none
of the modulus corresponds to a unique modular value, we simply set p0 = 1
(and s0 = {0}).

To solve this problem in the context of point counting algorithms, the orig-
inal method was to use Atkin’s match and sort algorithm. With this method,
we use the fact that the elliptic curve whose cardinality is desired can be used
to test each candidate and check its validity. This algorithm is a birthday
paradox based algorithm of the type discussed in Chapter 6. We now recall
a brief description of the algorithm, since this is useful to present the noisy
Chinese remainder variation. The first step of the match and sort algorithm
is, excluding pO to sort the coprime modulus by increasing values of |Si|/pi.

© 2009 by Taylor and Francis Group, LLC

268 Algorithmic Cryptanalysis

After doing this, we consider the smallest possible values of ` such that the
product of all coprime values from p0 up to p` is larger than the length of
the interval Bh −Bl + 1. Combining all the allowed modular values for each
pi we obtain N =

∏`
i=1 |Si| candidates. Note that N is almost minimal, but

depending on the exact values of the modulus pi and of the cardinality |Si|
it can in some cases be improved, especially when there is a gap between the
length of the interval and the product of the modulus.

After choosing a set of modulus, it is possible to obtain the cardinality of
the elliptic curve by brute force. It suffices, given an element Q in the additive
group of the elliptic curve to check, for each of the N candidates ci, whether
ciQ is the neutral element in the group. Atkin’s match and sort refines this
into a birthday-based attack, by splitting the product of modulus in two
parts P and P ′. To each subproduct, we associate a set of allowed values,
respectively S and S′. The decomposition of the product is chosen to balance
the sizes of these two sets as much as possible. At this point, it is useful to
note that by shifting everything by a well-chosen constant, we can replace
the interval [Bl, Bh] by another interval centered around 0, say [−B,B], with
B ≤ PP ′/2. Once this is done, we can make sure that each candidate value s
in S is replaced by a new value s̃ such that: s̃ = s (mod P), s̃ = 0 (mod P ′)
and s̃ ∈]− PP ′/2, PP ′/2]. Similarly, each s′ in S′ is replaced by a new value
s̃′ such that: s̃′ = s′ (mod P ′), s̃′ = 0 (mod P) and s̃′ ∈ [−PP ′/2, PP ′/2[.

Making these replacements, we can rewrite each of the N possible candi-
dates as s̃+ s̃′+λPP ′ for s̃ and s̃′ in the modified sets and λ ∈ {−1, 0, 1}. Fi-
nally, it suffices to search for collisions between the sets, s̃Q and−(s̃′+λPP ′)Q
on the elliptic curve.

The approach presented in [JL01] no longer makes use of the group of the
elliptic curve. Instead, it relies on the fact that the modular information that is
obtained at the beginning of point counting algorithms is redundant and tries
to make use of this redundancy to recover the cardinality. Like Atkin’s match
and sort, it uses a centered interval [−B,B] and it starts by determining a
product of modulus larger than the interval length that generates the smallest
amount of candidates. Instead of splitting this product in two, we now split
it in four factors P1, P2, P3 and P4, chosen to balance the sizes of the lists
of allowed modular values for each Pi. To each factor Pi, we associate a
set Si that contains each of the candidate values modulo Pi. The values
stored in Si are normalized as follows: for each si in Si, we make sure that
si = 0 (mod Pj) for j 6= i and that v ∈ [−P1P2P3P4/2, P1P2P3P4/2]. As a
consequence, each of the N candidates modulo P1P2P3P4 can be written as
s1 + s2 + s3 + s4 + λ ·P1P2P3P4, with each si in the corresponding set Si and
λ ∈ {−2,−1, 0, 1, 2}.

Let q1, . . . , q` be the remaining modulus values, i.e., the values among the
initial p1, . . . , pk which do not appear in the product P1P2P3P4. To each
element si in one of the sets S1, S2 or S3, we can associate a vector V (si)
with ` coordinates, where the j-th coordinate is obtained by considering si
modulo qj . Similarly, assuming that we have guessed the value of λ, we can

© 2009 by Taylor and Francis Group, LLC

Birthday attacks through quadrisection 269

construct V (s4 + λ · P1P2P3P4) for each s4 in S4. It now remains to solve a
sum-of-four problem with multiple targets as in Section 8.3.1. More precisely,
we are looking for (s1, s2, s3, s4) such that the sum

V (s1) + V (s2) + V (s3) + V (s4 + λ · P1P2P3P4) (8.16)

has an acceptable value modulo each modulus qi. Thus, the set of allowed
targets is structured as a direct product. We refer the reader to [JL01] for
more details.

8.4.2 Plain RSA and plain ElGamal encryptions

In this section, we describe some birthday-based attacks from [BJN00]
against some variations of RSA and ElGamal encryption which do not fol-
low the state-of-the-art recommendations for secure encryption schemes. We
call these variations plain RSA and plain ElGamal. It should be clear from
the coming discussion that these simplified cryptosystems are insecure and
should not be used. We start by defining the simplified systems that we are
going to consider.

Plain RSA. Given an RSA public key (N, e), we use this key to directly
encrypt random session keys for a block cipher. Let K be such a random key,
the corresponding encrypted key simply is Ke (mod N).

Plain ElGamal. Given a large prime p, an element g of order q modulo
p, with q much smaller than p, more precisely, with (p − 1)/q ≥ 2m, and an
ElGamal public key y = gx (where x is the corresponding secret key). We
encrypt a randomly chosen session key K of at most m bits by choosing a
random number r and forming the ciphertext (gr,K × yr).

When encrypting a random key K with either plain RSA or plain ElGamal,
we do not check for any specific properties of this key. In particular, it is
conceivable that K viewed as an integer is a product of two integers K1 and
K2 of roughly equal size. The birthday paradox based attacks we present here
work in this specific case. As a consequence, they are probabilistic attacks
which only succeed when a bad key is chosen. We give some data about the
probability of this bad event occurring at the end of the section and show that
both asymptotically and in practice, this approach works for a non-negligible
fraction of the keys.

8.4.3 Birthday attack on plain RSA

With plain RSA, if the key K can be written as K = K1K2, the multiplica-
tivity of RSA implies that:

Ke = Ke
1K

e
2 (mod N). (8.17)

© 2009 by Taylor and Francis Group, LLC

270 Algorithmic Cryptanalysis

Given the encrypted key Ke, it is possible to obtain K1 and K2 from a list L of
encrypted small key (ke, k) sorted by increasing order of the first component.
Indeed, it suffices for all small keys K1 in L to search for Ke/Ke

1 in the first
component of L. If the search is successful, we clearly obtain an equality

Ke/Ke
1 = Ke

2 (mod N), (8.18)

for two small keys, from which we deduce that K = K1K2.
Forgetting about logarithmic factors, we can recover a n-bit key in time 2n/2

instead of 2n. This clearly shows that plain RSA is not a secure cryptosystem.
However, this attack is costly in terms of memory and we can ask whether it
is possible to lower these memory requirements. The natural option would be
to look for K as a product of four smaller keys K = K1K2K3K4; of course,
this covers a smaller fraction of the keys. In this case, we would like to use
the algorithms from the present chapter. However, here the group order is
unknown and discrete logarithm computations are not feasible, because N is
too large to factor. As a consequence, we find ourselves in one of the bad cases
presented in Section 8.2.2.1. A nice open problem is to adapt the algorithms
to this specific case and recover K using less memory.

8.4.4 Birthday attack on plain ElGamal

With plain ElGamal, instead of directly using multiplicative properties, we
first remark that both g and y belong to the (usually unique) subgroup of
order q in Fp. Thanks to this fact, we are able to derandomize the encryption
scheme and get a new value which is a function of the encrypted key only.
This value is:

(yrK)
p−1
q = (y

p−1
q)rK

p−1
q = K

p−1
q (mod p). (8.19)

Once again, if K = K1K2 then

K
p−1
q

1 K
p−1
q

2 = K
p−1
q , (8.20)

thus we can attack this scheme exactly as we did in the case of plain RSA.
The key difference here is that the order of the group where we want to

solve this multiplicative equation is no longer an unknown, indeed it is equal
to (p − 1)/q. Assuming that this number can be factored, we now know the
decomposition of the group as discussed in Section 8.2.2.1. From this discus-
sion, it follows that for n-bit keys, if K can be written as K = K1K2K3K4

a product of four numbers of about n/4 bits, we can use the quadrisection
approach if there is a small subgroup of size approximately 2n/4. As stated
in Section 8.2.2.1, we do not even need to compute logarithms and put the
problem into additive form in order to solve it.

However, computing logarithms is a good idea, since it allows us to solve
the problem efficiently even when the available subgroup is too large, up to

© 2009 by Taylor and Francis Group, LLC

Birthday attacks through quadrisection 271

2n/2 elements. Indeed, we have a list of 2n/4 small numbers. Thus, we need
to compute 2n/4 discrete logarithms. In our context, the best algorithms
available are generic algorithms such as Pollard’s rho. With a group of 2n/2

elements, each computation of a discrete logarithm costs 2n/4. As a conse-
quence, the total cost is 2n/2 and remains comparable to the running time of
the quadrisection approach. Once we have reduced the problem to its additive
form, we can, as in Section 8.2.2, lift the problem to Z and solve it efficiently.

© 2009 by Taylor and Francis Group, LLC

272 Algorithmic Cryptanalysis

Exercises

1h. Let N be a product of many small primes (or prime powers). Let X a
number in the interval [0, B], where B is a known upper bound. Assume
that we are given values for X mod p for each prime (power) in N , with
the following caveat: most modular values are correct, but some might
be incorrect. To parametrize the problem, it is useful to denote by NI
the product of the primes (or prime powers) for which the modular value
is incorrect.

• Show that if NI is given, we can obtain X as long as N/NI > B.

• Assuming that each prime (or prime power) in N has the same
order of magnitude P , we now assume that N contains n terms,
i.e., N ≈ Pn and NI contains nI terms. Describe a brute force
algorithm that search for X by trying all possibilities for NI . Under
which condition do we obtain a unique solution for X?

• An alternative approach is to first construct a value X̃ modulo
N that matches all the given modular values. Show that X̃ = X
(mod N/NI). Deduce that X/N can be approximated by a fraction
δ/NI . Can this fraction be obtained without exhaustive search?

• Combining exhaustive search together with the above approach,
when can X be recovered and at what cost?

2. Implement the birthday attack using quadrisection against RSA (or El-
Gamal) described in Section 8.4.2.

3h. The quadrisection algorithms from this chapter have all been presented
for commutative groups. Discuss their applicability to the group of 2×2
matrices over Fp.

4. Let L1, . . . , Ln be n lists, each containing 2 bitstrings on n bits. Write
an efficient method for finding n elements, one from each list, whose
sum is zero.

© 2009 by Taylor and Francis Group, LLC

Chapter 9

Fourier and Hadamard-Walsh
transforms

9.1 Introductory example: Studying S-boxes

Substitution boxes or S-boxes are very important ingredients in the con-
struction of secret key cryptographic algorithms. Their main role is to break
the linearity of these algorithms. Due to the binary nature of computers, most
S-boxes act on bits. They take a number of bits as input and produce a number
of bits as output. Having S-boxes with good properties is essential to the secu-
rity of secret-key encryption. For example, it is well known that the security of
the DES algorithm drops dramatically when its S-boxes are replaced without
care. The cryptanalysis of FEAL in [BS91b, GC91, MY92, TCG92], which
is an encryption algorithm similar to DES, illustrates this point. As a conse-
quence, the properties of S-boxes need to be studied with care when choosing
them, or when trying to cryptanalyze an encryption algorithm. In particular,
the linear and differential properties of S-boxes, which are respectively used by
linear [Mat93, Mat94a, Mat94b, TSM94] and differential [BS91a, BS92, BS93]
cryptanalysis, should always be determined.

9.1.1 Definitions, notations and basic algorithms

Let S be an S-box with a n-bit input and a t-bit output. The differential
characteristics of S are denoted by Dδ∆(S) and stand for the number of input
pairs (x, y) with input difference ∆ and output difference δ, i.e., such that
x⊕y = ∆ and S(x)⊕S(y) = δ. The linear characteristics of S are denoted by
LmM (S) and stand for the difference between the number of n-bit values x such
that the two bitwise scalar products (M |x) and (m|S(x)) are equal modulo
2 and the number of pairs such that these scalar products are different. The
n-bit value M is called the input mask and the t-bit value m the output mask.

Throughout this study, to simplify notations, we identify numbers with
the binary bitstrings that represent these numbers. To make the notation
explicit, let a and b be two numbers. First, write both a and b in basis 2, i.e.,
assuming `-bit values as sums

∑`−1
i=0 ai2

i and
∑`−1
i=0 bi2

i, with all values ai and
bi in {0, 1}. In this context, we identify a with the bitstring a`−1 · · · a1a0, we

273

© 2009 by Taylor and Francis Group, LLC

274 Algorithmic Cryptanalysis

also define the bitwise scalar product of a and b as:

(a|b) =
`−1∑
i=0

aibi mod 2.

From the definitions, we can directly derive two basic algorithms: one for
computing differential characteristics (Algorithm 9.1) and the other for lin-
ear characteristics (Algorithm 9.2). For linear characteristics, the algorithm
simply enumerates all input masks, all output masks and all input values,
compute the scalar products, do some counting and derive each characteris-
tic. The runtime is O(22n+t) operations on n-bit counters and in terms of
memory it suffices to store S and a couple of additional variables, thus re-
quiring t · 2n + O(1) bits of memory (assuming that the characteristics are
produced but not stored). For differential characteristics, we proceed slightly
differently, by first enumerating all values of the input difference ∆. For each
possible difference, we initialize to zero a table of 2t counters (one for each
possible output difference). Then, for each pair (x, x⊕∆) with the prescribed
input difference, its output difference S(x)⊕S(x+δ) is computed and the cor-
responding counter is incremented. The runtime is O(22n) and the memory is
t · 2n +n · 2t +O(1) bits to store S and the counters (again assuming that the
characteristics are not stored). Note that it is straightforward to gain a factor
of two using the fact that due to symmetry, each pair is computed twice, once
as (x, x⊕∆) and once as (x⊕∆, x). We also remark that for ∆ = 0 the result
is known without any computation, since the 2n pairs with input difference
0 all have output difference 0. We see that, using these basic algorithms, for
any choice of input and output sizes for S, it is easier to compute differential
characterics than linear characteristics.

Algorithm 9.1 Algorithm for computing differential characteristics
Require: Input Table S containing 2n elements on t bits

Create table Count of 2t integers
for ∆ from 0 to 2n − 1 do

Set table Count to zero
for x from 0 to 2n − 1 do

Increment Count[S[x]⊕ S[x⊕∆]]
end for
Print table Count: Count[δ]/2n is the probability of transition from input
difference ∆ to output difference δ

end for

© 2009 by Taylor and Francis Group, LLC

Fourier and Hadamard-Walsh transforms 275

Algorithm 9.2 Algorithm for computing linear characteristics
Require: Input Table S containing 2n elements on t bits

for M from 0 to 2n − 1 do
for m from 0 to 2t − 1 do

Let Count←− 0
for x from 0 to 2n − 1 do

if (x|M) = (S[x]|m) then
Increment Count

end if
end for
Print Count, where Count/2n is the probability of the event
(x|M)⊕ (S[x]|m) = 0

end for
end for

9.1.2 Fast linear characteristics using the Walsh transform

The Walsh (or Hadamard-Walsh) transform is a kind of discrete Fourier
transform which has been used for a long time in coding theory. It was
applied to cryptography by Xiao and Massey in [XM88]. Among its possible
applications, we find the fast computation of linear characteristics. The easiest
case happens for S-boxes with a single bit of output, i.e., when t = 1. In that
case, it suffices to consider the case of an output mask m equal to 1. Indeed,
when m = 0 the result is independent of the S-box and quite uninteresting.
From the definition, we have:

L1
M (S) =

∑
(x|M)=S(x)

1−
∑

(x|M) 6=S(x)

1 (9.1)

=
∑
x

(−1)(x|M) · (−1)S(x) =
∑
x

(−1)(x|M) · T (x),

where T (x) is defined as (−1)S(x). In this form, it is interesting to split T
in two halves T0 and T1 with inputs on n − 1 bits. More precisely, for all
0 ≤ x < 2n−1, we let:

T0(x) = T (x) and T1(x) = T (2n−1 + x). (9.2)

Similarly, we split S in two halves S0 and S1. Using these notations, we see
that for input masks M < 2n−1, we have:

L1
M (S) =

∑
x<2n−1

(−1)(x|M) · T0(x) +
∑

x<2n−1

(−1)(x|M) · T1(x) (9.3)

= L1
M (S0) + L1

M (S1).

© 2009 by Taylor and Francis Group, LLC

276 Algorithmic Cryptanalysis

Likewise, for input masks of the form 2n−1 +M with M < 2n−1, we have:

L1
2n−1+M (S) =

∑
x<2n−1

(−1)(x|M) · T0(x)−
∑

x<2n−1

(−1)(x|M) · T1(x)

= L1
M (S0)− L1

M (S1). (9.4)

Clearly, T0 and T1 can also be divided in halves and so on . . . until we reach
tables of size one where nothing remains to be done. This yields the following
algorithm, which receives as input the table T , modifies it in place and outputs
a new table, the Walsh transform of T denoted W (T). At position M in this
table, we find the value WM (T) = L1

M (S). This algorithm can be written
without using recursion, as described in pseudo-code as Algorithm 9.3.

Algorithm 9.3 Walsh transform algorithm
Require: Input Table T containing 2n elements −1, 1

Comment: Variable Sz is the small table size
Comment: Variable Pos is the small table position
for i from 0 to n− 1 do

Let Sz←− 2i, Pos←− 0
while (Pos < 2n) do

for j from 0 to Sz− 1 do
Let Sum←− T [Pos + j] + T [Pos + Sz + j]
Let Diff←− T [Pos + j]− T [Pos + Sz + j]
T [Pos + j]←− Sum
T [Pos + Sz + j]←− Diff

end for
Let Pos←− Pos + 2 · Sz

end while
end for
Output overwritten content of T containing W (T)

We see that the time complexity of the Walsh transform is O(n · 2n) and
that the required memory is O(2n) numbers or O(n·2n) bits since the numbers
contained in the Walsh transform are integers in the range between −2n and
2n. Another important fact about the Walsh transform is that it can easily
be inverted by a similar looking algorithm, the inverse Walsh transform Ŵ ,
described in pseudo-code in Algorithm 9.4.

Note that the only difference between the Walsh transform and its inverse is
the fact that in the inverse transform the variables Sum and Diff are divided
by 2 before being put back into the table. It is easy to check that each
elementary step of size Sz in the inverse Walsh transform is the inverse of the
corresponding step in the regular transform. Moreover, the order in which
the various elementary steps are performed is irrelevant because each of them

© 2009 by Taylor and Francis Group, LLC

Fourier and Hadamard-Walsh transforms 277

Algorithm 9.4 Inverse Walsh transform algorithm
Require: Input Table T containing 2n elements −1, 1

Comment: Variable Sz is the small table size
Comment: Variable Pos is the small table position
for i from 0 to n− 1 do

Let Sz←− 2i, Pos←− 0
while (Pos < 2n) do

for j from 0 to Sz− 1 do
Let Sum←− T [Pos + j] + T [Pos + Sz + j]
Let Diff←− T [Pos + j]− T [Pos + Sz + j]
T [Pos + j]←− Sum/2
T [Pos + Sz + j]←− Diff/2

end for
Let Pos←− Pos + 2 · Sz

end while
end for
Output overwritten content of T containing Ŵ (T)

commutes with all the others. As a consequence, we deduce that the two
algorithms are indeed inverses of each other.

For general S-boxes with t bits of output, it is also possible to speed up
the computation using the Walsh transform. It suffices for each output mask
m to construct an auxiliary table Sm(x) = (m|S(x)) with a single bit of
output, and then to proceed as above. This lowers the time complexity down
to O(n · 2n+t) compared to O(22n+t) for the basic algorithm. The memory
requirements are essentially multiplied by 1 + n/t, since in addition to S we
now need to hold in memory the Walsh transform of one Sm. Using this Walsh
transform algorithm, the computation of linear characteristics now compare
favorably with the computation of differential characteristics, especially when
the output size t is much smaller than the input size n. Indeed, we have to
compare O(n · 2n+t) with O(22n).

9.1.2.1 Basic implementation of the Walsh transform

In this section, we give a basic implementation of Algorithm 9.3 as Pro-
gram 9.1. One interesting experiment is to measure the speed of this code for
tables of increasing sizes. In this experiment, we take all possible sizes from
32 to 228 and, in order to reflect the time per element, we repeat the Walsh
transform 228/S times for a table of size S. We give the observed running
time in Table 9.1. For very small tables, the running times are high due to
function calls overhead. For large tables, we see that there is a progressive
slowdown between 211 and 220, followed by a brutal slowdown after 220. This
is the result of cache effects for large tables. Cache friendly versions of the
Walsh transform are given on the book’s website.

© 2009 by Taylor and Francis Group, LLC

278 Algorithmic Cryptanalysis

Program 9.1 C code for Walsh transform
#define TYPE int

/*In place Walsh transform*/
void Walsh(TYPE *Tab, TYPE size)
{
TYPE i,i0,i1; TYPE step;
TYPE sum,diff;
for (step=1;step<size;step<<=1) {
for (i1=0;i1<size;i1+=2*step) {
for (i0=0;i0<step;i0++) {
i=i1+i0;
sum=Tab[i]+Tab[i+step];diff=Tab[i]-Tab[i+step];
Tab[i]=sum;Tab[i+step]=diff;

}
}

}
}

Size S Runtime for Size S Runtime for
228/S executions 228/S executions

32 16.0 s 64 9.4 s
128 6.5 s 256 4.9 s
512 4.3 s 1024 4.1 s

2048 3.9 s 4096 4.0 s
8192 4.1 s 16384 4.5 s

32768 4.6 s 65536 4.8 s
131072 5.0 s 262144 5.1 s
524288 5.3 s 1048576 6.0 s

2097152 11.9 s 4194304 13.5 s
8388608 14.2 s 16777216 14.9 s

33554432 15.4 s 67108864 16.1 s
134217728 16.7 s 268435456 17.3 s

Table 9.1: Timings on Intel Core 2 Duo at 2.4 GHz using gcc 4.3.2

© 2009 by Taylor and Francis Group, LLC

Fourier and Hadamard-Walsh transforms 279

9.1.3 Link between Walsh transforms and differential char-
acteristics

In 1994, in two independent articles, Chabaud and Vaudenay [CV94], Dae-
men, Govaerts and Vandewalle [DGV94] discussed the relation between the
Walsh transform, or more precisely its square, and the value of differential
characteristics. In this section, we illustrate this relation by explicitly de-
scribing a Walsh transform based algorithm for computing differential char-
acteristics.

As with the case of linear characteristics, we start by studying S-boxes with
a single bit of output. In order to represent these S-boxes, we are going to
use polynomials in a multivariate polynomial ring. More precisely, we start
from the commutative ring over Z in n variables X0, X1, . . . , Xn−1. Then we
form an ideal I, generated by the n polynomials X2

0 −1, X2
1 −1, . . .X2

n−1−1.
Finally, we form the quotient ring:

K =
Z[X0, X1, · · · , Xn−1]

(I)
. (9.5)

In the ring K, we encode an S-box S by the polynomial fS defined as:

fS =
2n−1∑
i=0

(−1)S(i)Mi. (9.6)

In this expression Mi denotes the following monomial in K:

Mi =
n−1∏
j=0

X
Bj(i)
j , (9.7)

where Bj(i) denotes the j-th bit in the binary representation of i. Note that
in this representation, we use the trick of representing S-boxes multiplicatively
by 1 and−1 instead of 0 and 1, as we already did in the table T in Section 9.1.2.

In this polynomial representation, we first remark that the multiplication
of monomials modulo I is such that Mi = Mj ·Mk if and only if i = j ⊕ k.
This implies that the coefficient of M∆ in f2

S is:∑
i⊕j=∆

(−1)S(i)(−1)S(j). (9.8)

Since each term in the sum is equal to 1 when S(i) = S(j) and to −1 when
S(i) 6= S(j), the sum is clearly equal to D0

∆(S)−D1
∆(S). Moreover, it is clear

from a simple counting argument that D0
∆(S) +D1

∆(S) is 2n. Thus, we easily
recover D0

∆(S) and D1
∆(S).

As a direct consequence, computing f2
S yields the full table of differen-

tial characteristics for the single bit output S-box S. Thus, finding a fast
multiplication algorithm in K is sufficient to quickly compute the differential
characteristics of S.

© 2009 by Taylor and Francis Group, LLC

280 Algorithmic Cryptanalysis

What we need to do now, is a simpler analog of the well-known fact that
in the polynomial ring Z[x], fast multiplication can be performed using fast
Fourier transform, pointwise multiplication and inverse Fourier transform.

To describe fast multiplication in K, a simple way is to proceed by recursion
on the number of variables. Assume that we already know how to multiply
polynomials on n − 1 variables. To multiply f and g, we first write f as
f0 +Xn−1f1 and g as g0 +Xn−1g1. With this notation we have:

f · g = (f0g0 + f1g1) +Xn−1(f0g1 + f1g0). (9.9)

Denoting the product by h and writing h0 = f0g0 +f1g1 and h1 = f0g1 +f1g0,
we now remark that:

h0 + h1 = (f0 + f1) · (g0 + g1) (9.10)
h0 − h1 = (f0 − f1) · (g0 − g1).

Viewing f , g and fg as tables with 2n entries, where entry i is the coefficient
of Mi, and going through the recursion, we find the following relation between
the Walsh transforms of f , g and h:

W (h) = W (f)×W (g), (9.11)

where × denotes pointwise multiplication, i.e.,

∀ i : Wi(h) = Wi(f) ·Wi(g), (9.12)

Then h itself is obtained by computing the inverse Walsh transform of the
pointwise product.

In order to compute f2
S , it suffices to perform a single multiplication in K.

More precisely, we compute the Walsh transform of fS , square it pointwise and
apply the inverse Walsh transform. Thus, using this algorithm the complexity
of computing f2

S requires O(n ·2n) bit operations. As a consequence, we build
the complete table of differential characteristics for a S-box S with a single
bit output using O(n · 2n) bit operations, compared to O(22n) for the basic
Algorithm 9.1.

9.1.3.1 Differential characteristics for general S-boxes

In order to deal with general S-boxes with more than a single bit of output,
we need to generalize the above method, in order to account for the additional
output bits. We now describe two slightly different approaches that apply to
this generalized case.

9.1.3.1.1 Theoretical approach The first approach, is to look at the
problem from a theoretical point-of-view, replacing the function with several
bits of output by another function with a single bit of output. The simplest
way to proceed is probably to replace the S-box S by its characteristic function

© 2009 by Taylor and Francis Group, LLC

Fourier and Hadamard-Walsh transforms 281

as proposed in [CV94]. Indeed, the characteristic function is a function from
n + t bits to a single bit and we can encode it and use the Walsh transform
almost as in the case of a single bit output. More precisely, the characteristic
function of S is the function χS is defined as:

χs(y‖x) =
{

1, if y = S(x) and
0, otherwise. (9.13)

In this definition y‖x is a decomposition of the input to χS into a lower part
x on n bits and an upper part y on t bits.

Then, we use monomials on n + t variables in an enlarged copy of K and
define:

FS =
2n+t−1∑
i=0

χS(i)M(i) =
2n−1∑
i=0

M(i+ 2n · S(i)). (9.14)

Note that, this time, we do not use a multiplicative encoding with 1 and
−1. Using a simple computation, we can check that the coefficient of M(∆ +
2n · δ) in F 2

S is exactly Dδ∆(S). Thus we can compute all the differential
characteristics using a Walsh transform followed by a pointwise multiplication
and finally an inverse Walsh transform. The time complexity is O((n + t) ·
2n+t). However, the drawback of this approach is that we need to store in
main memory a large table with 2n+t entries.

9.1.3.1.2 Practical Variant To avoid this main drawback, we can use a
slightly different approach and rely on disk storage instead of main memory to
store the 2n+t entries. The goal here is to reduce the amount of main memory
needed to the maximum of 2n and 2t. The key ingredient is to alternatively
view a large table with 2n+t elements either as 2t columns of length 2n or 2n

rows of length 2t. First, to create the table by columns, we enumerate the 2t

possible1 linear output masks m and define Sm(x) = (m|S(x)) with a single
bit of output as in Section 9.1.2. For each value of m, we define fSm , compute
its square and save it to disk as a column containing 2n elements. Once this is
finished, we consider each of the 2n possible values2 for ∆ and read from disk
all the numbers f2

Sm
(∆) into a table T∆ with 2t elements. We now study the

relation between this table and the table T∆ of all differential characteristics
Dδ∆(S), for fixed input ∆. We claim that when the output difference of S is

1Clearly, for the zero mask, the computation is independent of S and the constant result
can be specified within the algorithm. However, to simplify the exposition, we skip this
minor improvement.
2Once again, we could ignore the case where ∆ = 0.

© 2009 by Taylor and Francis Group, LLC

282 Algorithmic Cryptanalysis

δ, the output difference of Sm is clearly (m|δ). As a consequence:

T∆(m) = D0
∆(Sm)−D1

∆(Sm) (9.15)

=
∑

(m|δ)=0

Dδ∆(S)−
∑

(m|δ)=1

Dδ∆(S)

=
∑
δ

(−1)(m|δ)Dδ∆(S) =
∑
δ

(−1)(m|δ)T∆(δ).

Thus, T∆ is the Walsh transform of the table T∆. This shows that by com-
puting an additional inverse Walsh transform on each table T∆ we can re-
cover the full table of differential characteristics. The complexity is again
O((n+ t) · 2n+t), but we require less main memory since we use disk space to
efficiently transpose the table from columns with fixed m to rows with fixed
∆. In fact, this approach does not even need the distinction between input
and output bits, it can be generalized to any Walsh transform computation
which overflows the available main memory, by regrouping bits arbitrarily.

When we compare this to the complexity of the basic algorithm, we see
that it is very useful when t is small compared to n but much less when t is
almost as large as n. The case where t is larger than n is rarely considered;
however, in this extreme case, the basic algorithm is faster than the Walsh
based technique described here. However, for S-boxes with many algebraic
properties, it may happen that even for large t a fast Walsh transform based
algorithm exists. It is for example the case of the AES S-box, due to the
linear redundancy between its bits described in [FM03]. Another possible
application is the computation of generalized differences with more than two
inputs. In this case, the cost of the basic algorithm grows to 23n (with three
inputs), while the Walsh based algorithm cost remains at (n+ t)2n+t.

9.1.4 Truncated differential characteristics

Truncated differential cryptanalysis is a variation of differential cryptanal-
ysis introduced in [Knu94]. The basic idea is to study partially known differ-
ences, where the difference is fixed on some bits and left unknown on other
bits. For this variation, it is possible to devise a variation of the basic algo-
rithm and build truncated differential characteristics by first enumerating an
input and an output masks, which describe the input and output bits where
the difference is known. Then, for each pair of masks, one enumerates all pos-
sible input pairs and increments the counter corresponding to the truncated
input and output difference of the pair. This is shown in pseudo-code as Al-
gorithm 9.5. The time complexity of this algorithm is O(max(23n+t, 22n+2t));
it requires a table of 2n+t elements in terms of memory. With this basic
approach, computing all possible truncated differential characteristics costs
a lot more than computing ordinary differentials. Before giving an improved
algorithm, we first need to count the total number of possible truncated differ-
entials, in order to obtain a lower bound for the complexity. The easiest way

© 2009 by Taylor and Francis Group, LLC

Fourier and Hadamard-Walsh transforms 283

is to remark that in general a truncated differential is defined by specifying
for each input and output bits whether it should be zero, one or unknown.
Thus, there are 3n+t different values to compute.

Algorithm 9.5 Algorithm for truncated differential characteristics
Require: Input Table S containing 2n elements on t bits

Create bidimensional array Count of 2n × 2t integers
for InMask from 0 to 2n − 1 do

for OutMask from 0 to 2t − 1 do
Set table Count to zero
for x from 0 to 2n − 1 do

for y from 0 to 2n − 1 do
Increment Count[(x⊕ y)&InMask, (S[x]⊕ S[x⊕∆])&OutMask]

end for
end for
Print table Count: Count[∆, δ]/2n is the probability of transition from
partial input difference ∆ to partial output difference δ

end for
end for

Looking beyond the basic approach, another idea is to compute the trun-
cated differentials from the table of ordinary differential. More precisely, we
can see that any truncated differential is the sum of all the ordinary differ-
entials that are compatible with this truncated differential. Here the word
“compatible” is understood in the natural sense and means that when the
truncated differential has a 0 or 1 bit in either the input or output mask, the
ordinary differentials we sum have the same bit value. When the truncated
differential has an undetermined bit, we sum over all possibilities for this bit.
As a consequence, to compute a truncated differential with k bits left un-
determined, we need to sum 2k ordinary differentials. For each choice of k
positions for the undetermined bits, there are 2n+t−k possible truncated dif-
ferentials, obtained by choosing the values of the bits in the other positions.
As a consequence, the total cost to compute all the truncated differential
with a given set of undetermined bits is 2n+t. Since there are 2n+t possible
sets of undetermined bits, the total complexity of this second approach is
22n+2t = 4n+t.

In order to compute truncated differentials, let us first consider the simplest
case where we limit the possibility of truncating to a single bit. To make things
even simpler, let us assume that the only bit which can be truncated is the
first input bit of S. In that case, given a fixed output difference δ and a
fixed difference on n − 1 input bits ∆′, we need to build the two differential
characteristics Dδ0‖∆′(S) and Dδ1‖∆′(S) to cover the two possible cases where

© 2009 by Taylor and Francis Group, LLC

284 Algorithmic Cryptanalysis

we do not truncate. We also need to compute a differential where the bit is
really truncated:

Dδ∗‖∆′(S) = Dδ0‖∆′(S) +Dδ1‖∆′(S). (9.16)

Here, the notation ∗ indicates that a bit of difference is left unspecified.
There are several ways to use Equation (9.16) in order to compute truncated

differential. One possibility, remembering that differential characteristics are
computing by a Walsh transform, followed by squaring and an inverse Walsh
transform, is to embed the computation of the truncated characteristics within
a modified inverse Walsh transform algorithm for the final step. Starting with
a single unspecified bit in high-order position, we can deal with it in the last
iteration of the inverse Walsh transform. Thus, we now concentrate on this
last iteration and find out how it can be modified to compute the additional
truncated difference. The required modification is very simple, since it suffices
in addition to Sum and Diff to store a copy of Sum + Diff, i.e., a copy of the
original content of T [Pos+ j] somewhere. Doing a similar reasoning on other
bits easily yields an extended variation of the inverse Walsh transform that
works on tables of size a power of 3. It is then possible to plug this modified
inverse Walsh in the algorithms of Section 9.1.3.1. Note that, for the practical
variant presented in Section 9.1.3.1.2 that uses two inverse Walsh transform
steps, both need to be modified, one to allow truncated input differences, the
other to permit truncated outputs. One difficulty is that right before calling
the modified inverse transform, we need to convert tables of size 2n (resp.
2t) into tables of size 3n (resp. 3t). This is done by sending the entry in
position i with binary decomposition i =

∑`
j=0 bj2

j to position
∑`
j=0 bj3

j .
Thus, the binary decomposition of i is interpreted in basis 3. All unspecified
positions are filled with zeros. A convenient convention is to organize the
modified inverse Walsh transform in such a way that for the entry in position
i the corresponding truncated difference is obtained by looking at the base 3
decomposition of i. A digit set to 0 means a 0 difference on the corresponding
bits, a 1 means 1 and a 2 means ∗ (unknown). From a complexity point-of-
view, we first study the runtime of the modified Walsh transform on a table of
size 3`. At first, it seems that the complexity is O(` 3`). However, taking into
account that a large part of the table is initially zero and that it is useless to
add/subtract zeros, the complexity can be lowered to O(3`). To implement
this improvement, it is easier to incorporate the binary to base 3 renumbering
within the modified inverse Walsh transform itself. With this improvement,
the main contribution to the runtime of the complete truncated differential
algorithm is the second layer of modified Walsh transform. Indeed, the first
layer performs 2t transforms on tables of size 3n, while the second layer does
3n transforms on tables of size 3t. Thus, we obtain a total runtime of O(3n+t)
which is optimal, since we need to compute 3n+t values.

For completeness, we give on the book’s website two different C programs
computing truncated differentials with this algorithm: one implementing the
modified inverse Walsh with complexity O(` 3`), the other slightly more com-

© 2009 by Taylor and Francis Group, LLC

Fourier and Hadamard-Walsh transforms 285

plicated with complexity O(3`). For the sake of simplicity, in these programs
everything is stored in main memory. However, for larger tables, it would
be worth doing the transpose from columns to lines on disk as explained in
Section 9.1.3.1.2.

9.2 Algebraic normal forms of Boolean functions

For a table S with n input bits and a single bit of output or equivalently
for the associated Boolean function f on n bits, another very interesting rep-
resentation is to write the Boolean function f as a polynomial in n variables
over the polynomial ring F2[x0, x1, . . . , xn−1]. This representation is called
the algebraic normal form of f and has many applications in cryptography
and coding theory. In particular, for a cryptanalyst, it is often interesting, in
the context of algebraic cryptanalysis, to look at the degree of the algebraic
norm form of f .

More precisely, the algebraic normal form of f is obtained by writing:

f(x0, . . . , xn−1) =
⊕

(a0,...,an−1)∈Fn2

g(a0, . . . , an−1)
∏
i

xaii (9.17)

The function g giving the coefficient of the polynomial in Equation (9.17) is
called the Moebius transform of the Boolean function f . Since g is also a
Boolean function, Moebius transforms can be computed by using operations
on bits only. Compared to Walsh transforms this gives a very significant
advantage and allows us to represent Boolean functions using a single bit in
memory per entry, instead of a full integer. It remains to see whether a fast
algorithm can work with this representation.

With a Boolean function f on a single bit entry x0, it is easy to see that:

g(0) = f(0) and g(1) = f(0)⊕ f(1). (9.18)

Moreover, since the transformation that sends (x, y) to (x, x ⊕ y) is its own
inverse, we see that for Boolean functions on a single variable, the Moebius
transform is an involution on the set of Boolean functions. To generalize to
more than one variable, let us consider f a Boolean function on n variables
and write:

f(x0, . . . , xn−1) = f (0)(x0, . . . , xn−2)⊕ f (1)(x0, . . . , xn−2) · xn−1, (9.19)

where f (0) and f (1) are two Boolean functions on n− 1 variables. If g(0) and
g(1) are the Moebius transforms of respectively f (0) and f (1), they are related
to the Moebius transform g of f by the equations:

g(x0, . . . , xn−2, 0) = g(0)(x0, . . . , xn−2) and (9.20)
g(x0, . . . , xn−2, 1) = g(1)(x0, . . . , xn−2).

© 2009 by Taylor and Francis Group, LLC

286 Algorithmic Cryptanalysis

Moreover, f (0) and f (1) are related to f by the equations:

f (0)(x0, . . . , xn−2) = f(x0, . . . , xn−2, 0) and (9.21)
f (1)(x0, . . . , xn−2) = f(x0, . . . , xn−2, 0)⊕ f(x0, . . . , xn−2, 1).

From these equations, we can devise a Moebius transform algorithm which is
very similar to the Walsh transform Algorithm 9.3. This yields Algorithm 9.6,
which is its own inverse. It can be as easy to implement as Program 9.2.

Algorithm 9.6 Moebius transform algorithm
Require: Input Truth table S of Boolean function f , with 2n entries

Comment: Variable Sz is the small table size
Comment: Variable Pos is the small table position
for i from 0 to n− 1 do

Let Sz←− 2i, Pos←− 0
while (Pos < 2n) do

for j from 0 to Sz− 1 do
S[Pos + Sz + j]←− S[Pos + j]⊕ S[Pos + Sz + j]

end for
Let Pos←− Pos + 2 · Sz

end while
end for
Output overwritten content of S containing Moebius transform

9.3 Goldreich-Levin theorem

Goldreich-Levin theorem [LG89] is a fundamental theorem in the theory of
cryptography. In particular, it is essential to the proof by H̊astad, Impagli-
azzo, Levin and Luby [HILL99] that a secure pseudo-random generator can
be constructed from any one-way function.

THEOREM 9.1
Let us denote by x a fixed unknown n-bit value and denote by f a fixed n-
bit to t-bit one-way function. Suppose there exists an algorithm A that given
the value of f(x) allows to predict the value of a scalar product (R|x) with
probability 1

2 + ε over the choice R among n-bit strings, using at most T
operations. Then there exists an algorithm B, which given f(x) produces in
time at most T ′ a list of at most 4n2ε−2 values that contain x with at least

© 2009 by Taylor and Francis Group, LLC

Fourier and Hadamard-Walsh transforms 287

Program 9.2 C code for Moebius transform
#define TYPE unsigned int

/*In place Moebius transform*/
void Moebius(TYPE *Tab, TYPE size)
{
int Wsize;
TYPE i,i0,i1; TYPE step;

Wsize=size/(8*sizeof(TYPE));

/*Moebius transform for high order bits, using word ops*/
for (step=1;step<Wsize;step<<=1) {
for (i1=0;i1<Wsize;i1+=2*step) {
for (i0=0;i0<step;i0++) {
i=i1+i0;
Tab[i+step]^=Tab[i];

}
}

}
/*Moebius transform for low order bits, within words*/
/* Assumes 8*sizeof(TYPE)=32 */
for(i=0;i<Wsize;i++) {
TYPE tmp;
tmp=Tab[i];
tmp^=(tmp<<16);
tmp^=(tmp&0xff00ff)<<8;
tmp^=(tmp&0xf0f0f0f)<<4;
tmp^=(tmp&0x33333333)<<2;
tmp^=(tmp&0x55555555)<<1;
Tab[i]=tmp;

}
}

© 2009 by Taylor and Francis Group, LLC

288 Algorithmic Cryptanalysis

1/2. The running time T ′ is given by:

T ′ =
2n2

ε2

(
T + log

(
2n
ε2

)
+ 2
)

+
2n
ε2
Tf . (9.22)

Informally, this theorem means that, for a one-way function f , it is not pos-
sible to find an efficient algorithm that can given f(x) predict scalar products
of the form (R|x) with a non-negligible advantage. Of course, if we remove
the fact that the prediction of (R|x) can be noisy, the theorem becomes a
straightforward application of linear algebra methods. Indeed, from n scalar
products (Ri|x), we completely recover x as soon as the Ri values are linearly
independent over F2.

Similarly, if we are given a probabilistic algorithm which outputs the value
of (R|x) with probability 1

2 +ε for any fixed R, recovering x is extremely easy.
Indeed, in that case, by choosing for R a value with a single bit set to 1 and
all other set to 0, we can learn the exact value of the corresponding bit of x.
It suffices to repeat the probabilistic algorithm to obtain many independent
predictions for (R|x). After some time, the correct value can be detected
through a majority vote (see Chapter 12).

The difficulty with the proof of Goldreich-Levin theorem is that, in some
sense, we need to hide the fact that we are repeating queries. To predict the
value of (R|x) for a fixed R, we first choose k random auxiliary strings R′1,
. . . , R′k. Then, we call the prediction algorithm A, 2k times, giving as input
f(x) together with a value R′(α) = R⊕

⊕k
i=1 αiR

′
i, where α takes all possible

values in {0, 1}k. Since:

(R|x) = (R′(α)|x)⊕
k⊕
i=1

αi(R′i|x), (9.23)

if we guess the k values of (R′i|x) we deduce 2k different prediction for (R|x).
Note that these predictions are not independent, only pairwise independent,
yet this suffices to make the proof go through.

Finally, from an algorithmic point-of-view, we need to compute the differ-
ence between the number of predicted 0 values and the number of predicted
1 values. This is precisely obtained by using a Walsh transform on the table
of values (R′(α)|x).

9.4 Generalization of the Walsh transform to Fp
The Walsh transform as presented in Section 9.1.2 is specific to the binary

field. However, it is natural to consider whether a similar method is appli-
cable to other finite fields. Since the Walsh transform is an efficient way to

© 2009 by Taylor and Francis Group, LLC

Fourier and Hadamard-Walsh transforms 289

search for approximate linear relations between the input and output of a
function, we first need to adapt the formalization of linear relations to larger
finite fields. We only consider the case of prime fields Fp. Indeed, any linear
relation that holds with good probability over an extension field implies an-
other good linear relation over the corresponding base field. Such a implied
relation can be constructed by applying the trace map to the original relation.
Such a generalized Walsh transform can be useful in several applications. A
first application is to compute characteristic for the non-Boolean generaliza-
tion of linear cryptanalysis introduced in [BSV07]. Another, more theoretical
application presented in Berbain’s PhD thesis [Ber07] concerns the security
proof of a generalization of the QUAD family of stream ciphers from [BGP06],
based on the evaluation of quadratic polynomials, to non-binary fields. This
proof relies on a generalization of the Goldreich-Levin theorem to non-binary
fields.

In this section, S is a function from Fnp to Ftp and all scalar products are
computed modulo p. We first note a key difference between F2 and the general
case Fp. In the general case, a linear expression can take more than two values.
As a consequence, it is no longer possible to regroup all cases into a single
number. Over F2, this was possible, because for any linear relation, we could
split all inputs to f into two sets: the matching entries and the non-matching
entries. Since the total number of input is fixed and known, the difference
between the cardinality of these two sets sufficed to encode all the information
we need. Over Fp, we need to distinguish between p different cases. As a
consequence, we change our definition accordingly and define LmM (S)(α) as
the cardinality of the set of inputs x such that:

(M |x) + (m|S(x)) = α (mod p). (9.24)

We know that for all input and output masks:

p−1∑
α=0

LmM (S)(α) = pn, (9.25)

since there are pn possible inputs to S. Clearly, we now need p − 1 different
numbers for each pair of masks to extract the complete information about
linear relations. Moreover, we can remark than there are relations between
some pairs of masks. More precisely, for any non-zero constant λ in Fp we
have:

LmM (S)(α) = Lλ·mλ·M (S)(λα), (9.26)

where λ ·m denotes the multiplication of each component in the mask m by λ.
Of course, as with the binary field, we first need to address the basic case

where S outputs a single element in Fp. In that case, thanks to the multi-
plicative property above we only need to consider output masks of the form
m = 1. Indeed, when m = 0 the values LmM (S)(α) are independent of S and
uninteresting. In this context, in order to compute the linear characteristics

© 2009 by Taylor and Francis Group, LLC

290 Algorithmic Cryptanalysis

of S, we split x into x0‖x′, M into M0‖M ′ and S into p subfunctions Sx0 for
each fixed value of the first coordinate. Using the definition, we then find:

L1
M (S)(α) = # {x|(M |x) + S(x) = α (mod p)} (9.27)

= # ∪x0∈Fp {x′|(M ′|x′) + S(x0‖x′)} = α−M0x0}
= # ∪x0∈Fp {x′|(M ′|x′) + Sx0(x′)} = α−M0x0}

=
∑
x0∈Fp

L1
M ′(Sx0)(α−M0x0).

From this equations, we could easily derive a Walsh transform that oper-
ates on p × pn values. However, this would not be optimal. Indeed, we have
pn possible input masks, p values of α for each mask and one copy of Equa-
tion (9.25) for each mask. As a consequence, it suffices to compute (p−1) ·pn
numbers to obtain the complete characterization of linear approximations of
S. In order to devise such an optimal variation, we proceed as in the binary
case, keeping only the computation of L1

M (S)(α), for non-zero values of α. Of
course, this means that whenever L1

M (S)(0) is needed, we have to replace it
using Equation (9.25). To avoid cumbersome constants, it is easier to com-
pute the renormalized values L̄1

M (S)(α) = L1
M (S)(α)−pn−1, which are related

by:
p−1∑
α=0

L̄mM (S)(α) = 0. (9.28)

Moreover, since the restricted function Sx0 only has n− 1 input coordinates,
we also have:

L̄1
M (S)(α) =

∑
x0∈Fp

L̄1
M ′(Sx0)(α−M0x0). (9.29)

The simplest way to implement the algorithm is to recompute values of
the form L̄1

M (S)(0) when they are needed, right before the innermost loop
of the algorithm. To make the algorithm complete, the only missing step
is the initial encoding of the function S in an adequate representation. In
the binary case, this initial encoding is a simple change between an additive
representation by elements of {0, 1} to a multiplicative representation {−1, 1}.
In the general case, this is more complex, since we need to transform the table
S of pn elements into a larger (p− 1)× pn array. In fact, this initial encoding
can be obtained by specifying the Walsh transform of a constant function
with no input, say S0() = α0. Using the definition, since the function can
only be evaluated on the (unique) empty input, we have L1

M ′(S0)(α0) = 1 and
L1
M ′(S0)(α) = 0, for α 6= α0. As a direct consequence, we find:

L̄1
M ′(S0)(α0) =

p− 1
p

and L̄1
M ′(S0)(α) = −1

p
. (9.30)

To avoid denominators, it is easier to multiply these numbers by p. Of course,
since all computations are linear, this implies that the results are scaled by

© 2009 by Taylor and Francis Group, LLC

Fourier and Hadamard-Walsh transforms 291

the same factor of p. It is interesting to remark that in the binary case, we
obtain (up to sign) the usual encoding.

In addition, it is easy to remark that this Walsh transform on Fp is almost
its own inverse. As in the binary case, during inversion we need to add a
division by p. Moreover, during inversion, we need an additional change of
sign when relating S to its restrictions. More precisely, in Equation (9.29),
α −m0x0 needs to be replaced by α + m0x0. Of course, in the binary case,
since 1 = −1 (mod 2) this change of sign is not visible. We give a pseudo-code
description of the Walsh transform over Fp and its inverse as Algorithm 9.8,
the preliminary encoding is given as Algorithm 9.7.

Algorithm 9.7 Pre-Walsh transform encoding over Fp
Require: Input Table S containing pn elements of Fp

Create (p− 1)× pn table S
for i from 0 to pn − 1 do

for j from 1 to p− 1 do
Let S[j][i]←− −1

end for
if S[i] 6= 0 then

Let S[S[i]][i]←− p− 1
end if

end for
Require: Output encoded table S

9.4.1 Complexity analysis

Since Algorithm 9.8 is presented in iterative form, its complexity analysis is
quite easy. First, when p is fixed, we see that only the outer loops depend on
n and that the running time is O(n ·pn), where the implicit constant depends
on p. When p also varies, we need to be more careful in our analysis. The
contribution of the outer loop is easy, it occurs n times. Put together, the
next two loops on Pos and i have a total contribution of pn−1 iterations, since
Pos advances by steps of p Sz. At the deepest level, we have a maximum
of three additional levels, with a total contribution bounded by O(p3). As
a consequence, when accounting for both n and p, in terms of arithmetic
operations the running time can be written as O(npn+2). Asymptotically,
this can be improved for large values of p by using fast Fourier transforms,
this is described in Section 9.5.2.1.

© 2009 by Taylor and Francis Group, LLC

292 Algorithmic Cryptanalysis

Algorithm 9.8 Walsh transform algorithm over Fp
Require: Input encoded (p− 1)× pn table S
Require: Input Boolean value inverse

Comment: Variable Sz is the small table size
Comment: Variable Pos is the small table position
Create temporary p× p table T .
for l from 0 to n− 1 do

Let Sz←− pl, Pos←− 0
while (Pos < pn) do

for i from 0 to Sz− 1 do
for k from 0 to p− 1 do

Let Sum←− 0
for m from 1 to p− 1 do

Let T [m][k]←− S[m][Pos + k Sz + i]
Let S[m][Pos + k Sz + i]←− 0
Let Sum←− Sum + T [m][k]

end for
Let T [0][k]←− −Sum

end for
for k from 0 to p− 1 do

for m from 1 to p− 1 do
for j from 0 to p− 1 do

if inverse = false then
Let m′ = m− kj (mod p)

else
Let m′ = m+ kj (mod p)

end if
Let S[m][Pos + k Sz + i]←− S[m][Pos + k Sz + i] + T [m′][j]

end for
end for

end for
if inverse = true then

for k from 0 to p− 1 do
for m from 1 to p− 1 do

Let S[m][Pos + k Sz + i]←− S[m][Pos + k Sz + i]/p
end for

end for
end if

end for
Let Pos←− Pos + p Sz

end while
end for
Output overwritten content of S containing (inverse) Walsh transform

© 2009 by Taylor and Francis Group, LLC

Fourier and Hadamard-Walsh transforms 293

9.4.2 Generalization of the Moebius transform to Fp
As in the binary case, the algebraic normal form of a function f is obtained

by writing:

f(x0, . . . , xn−1) =
∑

(a0,...,an−1)∈Fnp

g(a0, . . . , an−1)
∏
i

xaii (mod p) (9.31)

There are two essential differences here compared to the binary case. The
first difference is that g takes values modulo p instead of binary values. The
second one is that the exponent of each variables runs from 0 to p−1, instead
of simply being 0 or 1. The reason behind the second difference is that for
all value x in Fp, xp − x is always zero. This implies that when giving a
polynomial expression for f , any exponent greater than p can be reduced
modulo p − 1. Note that xp−1 should not be replaced by 1, because the two
expressions differ when x = 0.

Starting again with a univariate function f on a single entry x0 modulo p,
we see that:

f(0) = g(0),

f(1) =
p−1∑
i=0

g(i),

... (9.32)

f(j) =
p−1∑
i=0

g(i)ji,

...

Thus, the vector of values of f is obtained by multiplying the vector of values
of g by a fixed matrix:

Hp =

1 0 0 . . . 0
1 1 1 . . . 1
1 2 4 . . . 2p−1

...
...

...
. . .

...
1 p− 1 (p− 1)2 . . . (p− 1)p−1

 , (9.33)

defined modulo p.
For symmetry, it is better to reorder the rows of Hp. For this, choose a

generator h of the multiplicative group F∗p and write:

f(hj) =
p−1∑
i=0

g(i)hij = (g(0) + g(p− 1)) +
p−2∑
i=1

g(i)hij (9.34)

© 2009 by Taylor and Francis Group, LLC

294 Algorithmic Cryptanalysis

The sum in the right-hand side of this equation can be recognized as a Fourier
transform (see next section) of the vector G of p − 1 elements defined as
G(0) = g(0) + g(p − 1) and G(i) = g(i) and modulo p the inverse transform
is given by:

g(0) = f(0),

g(1) = −
p−2∑
i=0

f(hi)h−i,

...

g(j) = −
p−2∑
i=0

f(hi)h−ij , (9.35)

...

g(p− 1) = −
p−2∑
i=0

f(hi)− f(0).

This can be used to construct Algorithm 9.9 for Moebius transforms over Fp.

9.5 Fast Fourier transforms

Fourier transforms and fast algorithms for computing them are very general
tools in computer science and they are very closely related to Walsh trans-
forms. In order to define Fourier transforms in the general case, we require
the existence of a root of unity ξ of order N . The Fourier transform defined
from this root ξ maps vectors of N numbers to vectors of N numbers and the
transform of a vector X is X̂ given by:

∀i : X̂i = λξ

N−1∑
j=0

Xjξ
ij , (9.36)

where λξ is a renormalization factor. In practice, λξ is chosen to maximize
convenience and its value may depend on the context we are considering.

It is easy to show that up to a constant factor, the Fourier transform based
on ξ−1 is the inverse of the Fourier transform based on ξ. Indeed, the i-th

© 2009 by Taylor and Francis Group, LLC

Fourier and Hadamard-Walsh transforms 295

Algorithm 9.9 Moebius transform algorithm over Fp
Require: Input Table S describing function f on n variables, with pn entries

Comment: Variable Sz is the small table size
Comment: Variable Pos is the small table position
Create table T of p− 1 elements
Choose h, generator of F∗p.
for i from 0 to n− 1 do

Let Sz←− pi, Pos←− 0
while (Pos < pn) do

for j from 0 to Sz− 1 do
Set table T to 0
for k from 0 to p− 2 do

for l from 0 to p− 2 do
Let T [l]←− T [l] + S[Pos + (hk)Sz + j]h−kl mod p

end for
end for
for l from 1 to p− 2 do

Let S[Pos + lSz + j]←− −T [l]
end for
Let S[Pos + (p− 1)Sz + j]←− −T [0]− S[Pos + j]

end for
Let Pos←− Pos + p · Sz

end while
end for
Output overwritten content of S containing Moebius transform

© 2009 by Taylor and Francis Group, LLC

296 Algorithmic Cryptanalysis

component after applying both transforms is:

Ci = λξ−1λξ

N−1∑
j=0

(
N−1∑
k=0

Xkξ
jk

)
ξ−ij (9.37)

= λξ−1λξ

N−1∑
j=0

N−1∑
k=0

Xkξ
j(k−i) = λξ−1λξ

N−1∑
k=0

N−1∑
j=0

Xkξ
j(k−i)

= λξ−1λξ

N−1∑
k=0

Xk

N−1∑
j=0

ξj(k−i) = λξ−1λξNXi.

The last equation in this chain comes for the fact that
∑N−1
j=0 ξjt is equal 0

whenever t is non-zero modulo N and equal to N when t is 0 modulo N .
Due to this inversion formula, two choices of the renormalization factors

are frequently encountered. In theoretical texts, the usual choice is:

λξ = λξ−1 =
1√
N
. (9.38)

In computer science and especially when writing programs, it is often more
convenient to choose:

λξ = 1 and λξ−1 =
1
N
. (9.39)

Indeed, with this choice, we do not need to perform any divisions when com-
puting the direct transform. Moreover, all the divisions by N that occur
during the inverse transform are known to be exact. These divisions by N
are analogous to the divisions by 2 that occur in the inverse Walsh transform
Algorithm 9.3. Of course, if the value of ξ is not an integer, this point is moot.
In particular, this is the case when the Fourier transforms are performed over
the complex numbers, using for example:

ξ = e2π
√
−1/N . (9.40)

However, when performing Fourier transform computations over finite fields,
choosing λξ = 1 is a real asset.

From the definition of the Fourier transform, it is very easy to write a
simple algorithm with quadratic running time to compute Fourier transform,
see Exercise 2. However, this algorithm is not optimal and, as in the case of
Walsh transforms, it is possible to compute Fourier transforms much faster,
in time N logN . Interestingly, the algorithms involved greatly depend on the
value of the order N of the root ξ, but the end result holds for all values of N .

9.5.1 Cooley-Tukey algorithm

The most commonly known algorithm for computing discrete Fourier trans-
forms is due to J. Cooley and J. Tukey [CT65]. This algorithm is based on a

© 2009 by Taylor and Francis Group, LLC

Fourier and Hadamard-Walsh transforms 297

mathematical expression that allows to write the discrete Fourier transform
of order N = N1N2 in terms of smaller transforms of order N1 or N2. As
above, let ξ be a primitive root of order N and define ξ1 = ξN2 and ξ2 = ξN1 .
Clearly, ξ1 is a primitive root of order N1 and ξ2 is a primitive root of order
N2. The key idea is to renumber X and X̂, writing:

Xi1,i2 = Xi1N2+i2 with 0 ≤ i1 < N1 and 0 ≤ i2 < N2 and (9.41)

X̂j1,j2 = X̂j1+j2N1 with 0 ≤ j1 < N1 and 0 ≤ j2 < N2.

Note that two different renumberings are used for X and X̂. Using these
renumbering and ignoring the renormalization factor λξ we can write:

X̂j1,j2 =
N−1∑
i=0

Xiξ
i(j1+j2N1) (9.42)

=
N2−1∑
i2=0

N1−1∑
i1=0

Xi1,i2ξ
(i1N2+i2)(j1+j2N1)

=
N2−1∑
i2=0

N1−1∑
i1=0

Xi1,i2ξ
i1j1
1 ξi2j22 ξi2j1

=
N2−1∑
i2=0

(
ξi2j1

N1−1∑
i1=0

Xi1,i2ξ
i1j1
1

)
ξi2j22 .

Defining an intermediate step X̃k1,k2 as:

X̃k1,k2 =
N1−1∑
i1=0

Xk1,i2ξ
i1k1
1 . (9.43)

We see that X̃ can be computed by N2 independent evaluations of discrete
Fourier transforms of order N1. After this first series of Fourier transforms,
we obtain:

X̂j1,j2 =
N2−1∑
i2=0

(
ξi2j1X̃j1,i2

)
ξi2j22 . (9.44)

Thus, X̂ can be obtained by a second series of N1 independent Fourier trans-
forms of order N2 applied to ˜̃X defined by:

˜̃Xk1,k2 = ξk1k2X̃k1,k2 . (9.45)

This approach of Cooley and Tukey works very nicely when N can be writ-
ten as a product of small primes. In that case, the above decomposition can
be applied recursively and yields a fast discrete Fourier transform algorithm.
The typical case of application is N = 2n and is described in Algorithm 9.10.

© 2009 by Taylor and Francis Group, LLC

298 Algorithmic Cryptanalysis

Algorithm 9.10 Fast Fourier transform algorithm on N = 2n values
Require: Input Table T containing 2n entries
Require: Input Boolean value inverse

if inverse = false then
Let ξ ←− e2π

√
−1/2n

else
Let ξ ←− e−2π

√
−1/2n

end if
for k from 0 to n− 1 do

Let Sz←− 2k, Pos←− 0
while (Pos < 2n) do

for j from 0 to Sz− 1 do
Let Sum←− T [Pos + j] + T [Pos + Sz + j]
Let Diff←− T [Pos + j] + ξT [Pos + Sz + j]
if inverse = true then

Let T [Pos + j]←− Sum/2
Let T [Pos + Sz + j]←− Diff/2

else
Let T [Pos + j]←− Sum
Let T [Pos + Sz + j]←− Diff

end if
end for
Let Pos←− Pos + 2 · Sz

end while
Let ξ ←− ξ2

end for
Output overwritten content of T containing (inverse) Fourier Transform

© 2009 by Taylor and Francis Group, LLC

Fourier and Hadamard-Walsh transforms 299

9.5.1.1 Multiplication of polynomials

The Fourier transform is often used as an ingredient of fast multiplication
algorithms. These fast multiplication algorithms can be applied to integers
and to polynomials. The case of polynomials is especially interesting since
it sheds a different light on Fourier transform algorithms. To explain the
relation between the discrete Fourier transform of order N and polynomial
multiplication, we first associate to any vector X of N elements a polynomial
PX defined as:

PX(x) =
N−1∑
i=0

Xix
i. (9.46)

With this notation, we easily remark that the coefficients of the discrete
Fourier transform of X corresponds to the evaluations of the polynomial PX
at roots of unity. More precisely:

X̂i = PX(ξi), (9.47)

where as before ξ is a primitive root of unity of order N .
Since the discrete Fourier transform is a specific case of polynomial evalu-

ation, its inverse is a special case of Lagrange interpolation. With this dic-
tionary in mind, we can now study the multiplication of polynomials. Given
two polynomials PX and PY of degree less than N and their corresponding
vectors X and Y , we know that X̂i = PX(ξi) and Ŷi = PY (ξi). Multiplying
these two identities, we find:

X̂iŶi = PX(ξi) · PY (ξi) = (PX × PY)(ξi). (9.48)

We now denote by Ẑ the pointwise product of X̂ and Ŷ , i.e., let Ẑi = X̂iŶi
for all 0 ≤ i < N . The inverse transform of Ẑ is a vector Z with associated
polynomial PZ , such that:

PZ(ξi) = (PX · PY)(ξi), for all 0 ≤ i < N . (9.49)

This implies that PZ is equal to PX · PY modulo the polynomial xN − 1. If,
in addition, we take care to choose N larger than the sum of the degrees of
PX and PY , then PZ is exactly the product PX · PY .

9.5.1.1.1 Convolution product In fact, even without the above restric-
tion on the sum of the degrees of PX and PY , the vector Z is still worth
considering. Writing down explicitly the rule for polynomial multiplication
modulo xN − 1 we find that:

Zi =
N−1∑
j=0

XjY(i−j) mod N (9.50)

=
i∑

j=0

XjYi−j +
N−1∑
j=i+1

XjYN+i−j ,

© 2009 by Taylor and Francis Group, LLC

300 Algorithmic Cryptanalysis

under the convention that the second sum is empty when i = N − 1. This
vector Z is called the convolution product of X and Y and denoted by X?Y .

Clearly, from an algorithmic point-of-view, convolution products can be
computed very efficiently for N = 2n. It suffices to compute the Fourier
transform of X and Y , to perform pointwise multiplication of X̂ and Ŷ and
finally to apply the inverse discrete Fourier transform of the pointwise product.

However, the restriction N = 2n is not necessary, convolution products can
be computed efficiently for all values of N . The trick is to make the following
remark, given two vectors X and Y of order N (not a power of two), we pad
them into vectors X ′ and Y ′ of size N ′, where N ′ is the smallest power of two
greater than N . The padded vectors X ′ and Y ′ are defined in two different
ways. The first vector X ′ is a copy of X with as many zeros as needed in
positions from N to N ′ − 1. The second vector Y ′ is obtained by assembling
a complete copy of Y and an initial segment of Y , i.e., in positions from N to
N ′− 1 we find Y0, Y1, . . . up to YN ′−N−1. Since N ′ is a power of two, thanks
to the algorithm of Cooley and Tukey, the convolution product of X ′ and Y ′

is computed efficiently. Moreover, the first N elements of this product form
the convolution product of X and Y , see Exercise 3.

9.5.2 Rader’s algorithm

Since the approach of Cooley and Tukey yields a fast Fourier transform
algorithm only for highly composite values of the order N , a different approach
is also needed, in order to cover all possible values of N . Without loss of
generality, we may restrict ourselves to prime values of N , relying on Cooley
and Tukey approach to reduce the general case to the prime case. Thus,
we now assume that N = p is prime and we let g be a generator of the
multiplicative group F∗p. The computation of X̂ can then be decomposed in
two cases: X̂0 and X̂g−i with 0 ≤ i < p − 1. Indeed, any non-zero number
modulo p can be written as a power of g and we can always choose a negative
exponent if we desire to do so. For X̂0, we have:

X̂0 =
p−1∑
j=0

Xj . (9.51)

For X̂g−i , we can write:

X̂g−i =
p−1∑
j=0

Xjξ
jg−i (9.52)

= X0 +
p−2∑
k=0

Xgkξ
gk−i using j = gk.

Computing the above sum simultaneously for all values of i is equivalent to
a convolution product of the two sequences Xgk and ξg

k

, as defined in Sec-

© 2009 by Taylor and Francis Group, LLC

Fourier and Hadamard-Walsh transforms 301

tion 9.5.1.1.1. Thus, thanks to the results of this section, it can be computed
using discrete Fourier transforms of order 2t, where t is obtained by rounding
log2(p − 1) upward. Once this power of 2 has been chosen, the sequences
are padded and the convolution can be computed using Cooley and Tukey
algorithm for the discrete Fourier transform.

An alternative approach is to avoid the padding to a power of two and to
remark that p − 1 is always composite. As a consequence, it is possible to
perform the complete Fourier transforms by alternatively using the approaches
of Rader and Cooley-Tukey. However, this makes the complexity analysis
much more difficult. Moreover, since the approach of Rader involves the
computation of convolutions, it requires at least three applications of the
Fourier transform of size p−1. Thus, using Rader’s approach more than once
is unlikely to be efficient. Yet, there is one special case, where it is a good
idea. This case occurs when sequences of length p − 1 fit in memory, while
padded sequences of length 2t do not. In that case, using Rader’s approach
twice guarantees that all computations are made in main memory and it is
faster than swapping the computation to disk.

9.5.2.1 Application to Walsh transform over Fp

We saw in Section 9.4 that the Walsh transform over functions from Fnp
to Fp can be computed in O(npn+2) arithmetic operations. When p is fixed,
this can be rewritten as O(npn); however, when p is allowed to grow as pn

increases, it is not clear whether O(npn+2) is optimal. To answer this question,
we now extract the core routine of the Walsh transform over Fp. This core
runtine transforms a p×p array T to another array T̂ . We give its description
in Algorithm 9.11.

Algorithm 9.11 Core transform of extended Walsh over Fp
Initialize p× p array T̂ to 0
for k from 0 to p− 1 do

for m from 1 to p− 1 do
for j from 0 to p− 1 do

Let T̂ [m][k]←− T̂ [m][k] + T [m− kj][j]
end for

end for
end for
Output T̂

© 2009 by Taylor and Francis Group, LLC

302 Algorithmic Cryptanalysis

Equivalently, we can write the transform as in the following equation:

T̂m,k =
p−1∑
j=0

Tm−kj,j (9.53)

where the index m− kj is taken modulo p. Using Algorithm 9.11, this trans-
form is computed in O(p3) arithmetic operations. In order to improve the
extended Walsh transform as a whole, we are going to exhibit an asymptoti-
cally faster algorithm for this core transform.

For any p-th of unity ξ, let us define:

C
(ξ)
j =

p−1∑
m=0

ξm Tm,j and Ĉ
(ξ)
k =

p−1∑
j=0

ξkjC
(ξ)
j . (9.54)

We can remark that:

Ĉ
(ξ)
k =

p−1∑
j=0

p−1∑
m=0

ξm+kj Tm,j =
p−1∑
j=0

p−1∑
n=0

ξn Tn−kj,j (9.55)

=
p−1∑
n=0

ξn
p−1∑
j=0

Tn−kj,j =
p−1∑
n=0

ξn T̂n,k.

If we now consider a primitive p-th root of unity ξ, we can recover the
array T̂ from the collection of vectors Ĉ(ξ0), Ĉ(ξ1), . . . Ĉ(ξp−1). Indeed, we can
see that:

pT̂n,k =
p−1∑
i=0

ξ−in Ĉ
(ξi)
k . (9.56)

Indeed, in this sum, the coefficient in front of T̂n,k is 1 in each summand;
while the coefficient in front of T̂m,k is ξ(m−n)i. Thus, for m 6= n the sum of
the coefficients is 0.

As a consequence, we can compute the p× p array T̂ in three steps:

1. Compute the p2 values C(ξi)
j , where ξ is a primitive p-th root of unity,

from the values Tm,j using:

C
(ξi)
j =

p−1∑
m=0

ξim Tm,j .

2. Compute the p2 values Ĉ(ξi)
k from the values C(ξi)

j using:

Ĉ
(ξi)
k =

p−1∑
j=0

ξkj C
(ξi)
j .

© 2009 by Taylor and Francis Group, LLC

Fourier and Hadamard-Walsh transforms 303

3. Compute the p2 values T̂n,k from the values Ĉ(ξi)
k using:

T̂n,k =
p−1∑
i=0

ξ−in Ĉ
(ξi)
k /p.

In each of these three steps, we recognize p copies of a Fourier transform on p
elements. In the first step, the transform is performed on index m, in the sec-
ond step on index j and in the third step on index i. Of course, using Rader’s
algorithm, all these Fourier transforms can be computed using p log(p) arith-
metic operations. As a consequence, replacing the core Algorithm 9.11 with
cost O(p3) by these fast Fourier transforms with total cost O(p2 log(p)) yields
a fast extended Walsh algorithm with complexity O(n log(p)pn+1) arithmetic
operations, where the O constant is independent of both p and n.

Since we are considering the asymptotic complexity, it is also important to
express it in terms of bit operations, rather than arithmetic operations. For
this, we need to specify where the roots of unity ξ are taken and what the
size of involved integers is. It is clear that the integers are smaller than pn

in absolute value, and can, thus, be represented on n log(p) bits. For the
roots of unity, two options are available, we can either take complex roots
with sufficient precision to recover the array T̂ or p-th root of unity modulo a
large enough prime Q such that p divides Q−1. In both cases, assuming that
we are using a fast asymptotic multiplication algorithm, the bit complex-
ity is O(log(n) log log(p)(n log(p))2pn+1). Thus, the fast Fourier transform
can be used to asymptotically improve the extension of the Walsh transform
algorithm to Fp. However, in practice, pn cannot be too large, since the rep-
resentation S needs to fit in memory. As a consequence, p and n cannot both
be large at the same time and this asymptotic approach is very unlikely to be
useful.

9.5.3 Arbitrary finite abelian groups

All the previous sections in this chapter deal with Fourier (or Walsh) trans-
forms in abelian groups of various forms, Z/NZ or Fnp . We now generalize this
and show that Fourier transforms can be defined and computed efficiently for
arbitrary finite abelian groups. Let (G,×) be a finite abelian group. A char-
acter on G is a multiplicative map χ from G to the field3 C of complex
numbers. In this context, multiplicative means that for any pair of group
elements (g, h), we have χ(gh) = χ(g)χ(h). In particular, this implies the
following properties.

1. If e denotes the neutral element of G, we have χ(e) = 1.

3Here C could be replaced by any field containing enough roots of unity. For simplicity, we
only describe the case of the complex numbers.

© 2009 by Taylor and Francis Group, LLC

304 Algorithmic Cryptanalysis

2. For any g in G and any α in Z: χ(gα) = χ(g)α.

3. For any g in G, we have g|G| = e and χ(g)|G| = 1. Thus, χ takes its
values in the group MG of |G|-th roots of unity in C. As usual, |G|
denotes the order (or cardinality) of G. Note that depending on G the
range of characters may be a proper subgroup of MG.

4. The set of all characters on G forms a group denoted Ĝ where multipli-
cation of characters is defined by:

∀g ∈ G : (χ1χ2)(g) = χ1(g)χ2(g). (9.57)

5. The neutral element of Ĝ is the so-called trivial character 1̂ which sends
any group element to 1 in C.

6. The group Ĝ is abelian and finite. Commutativity is clear from the
definition. Finiteness is a direct consequence of the fact that both G
and the set MG of |G|-th roots of unity are finite, thus there is only a
finite number of possible mappings from G to the |G|-th roots of unity.

7. If the group G can be written as a direct product G1 × G2, then Ĝ =
Ĝ1 × Ĝ2.

PROOF In one direction, if χ1 is a character on G1 and χ2 a charac-
ter on G2 we can define a character χ1×χ2 on G letting (χ1×χ2)(g) =
χ1(g1)χ2(g2) for g = (g1, g2) ∈ G1 × G2. Thus, Ĝ1 × Ĝ2 is naturally
embedded into Ĝ.

In the other direction, let χ ∈ Ĝ and define χ1 and χ2, respectively, in
Ĝ1 and Ĝ2 by the following formulas:

∀g1 ∈ G1 : χ1(g1) = χ((g1, 1)) and (9.58)
∀g2 ∈ G2 : χ2(g2) = χ((1, g2)). (9.59)

Clearly, χ1 and χ2 are multiplicative. Furthermore, χ = χ1 × χ2. This
concludes the proof.

8. There is an isomorphism between G and Ĝ.

PROOF Thanks to the previous property and decomposing G into
a product of cyclic groups, it suffices to prove this fact when G is cyclic.
We assume that g0 denotes a generator of G.

In that case, a character χ is entirely determined by its value at g0.
Indeed, any element g in G can be written as gα0 and by multiplicativity,

© 2009 by Taylor and Francis Group, LLC

Fourier and Hadamard-Walsh transforms 305

we find χ(g) = χ(g0)α. Since, χ(g0) belongs to the set M|G| of |G|-th
roots of unity, there are |G| possible choices for χ(g0). Thus, G and Ĝ
have the same cardinality. It remains to prove that Ĝ is also cyclic to
conclude that they are isomorphic. This is done by choosing a primitive
|G|-th root of unity µ in C and by proving that the character χµ defined
by χµ(g0) = µ is a generator for Ĝ. Indeed, for any χ it is possible to
express χ(g0) as µβ , this implies that χ = χβµ.

9. Furthermore, G is naturally isomorphic to ˆ̂G.

PROOF The existence of an isomorphism is clear from the previous
item. Moreover, given an element g of G, we have a natural action of g
on Ĝ given by:

g(χ) = χ(g).

To check that this is indeed the group isomorphism we seek, we need
to show that two different elements of G induce different actions on Ĝ.
Equivalently, it suffices to prove that for g 6= e, there exists χ ∈ Ĝ such
that g(χ). As before, it suffices to give a proof for cyclic group. Using
the previous notations, g = gα0 , we see that g(χµ) = µα 6= 1.

10. For g 6= e in G, we have: ∑
χ∈Ĝ

χ(g) = 0. (9.60)

In addition: ∑
χ∈Ĝ

χ(e) = |Ĝ| = |G|. (9.61)

PROOF Equation (9.61) is clear, since for all χ, we have χ(e) = 1.
To prove Equation (9.60), we write G as a product of cyclic groups
G = G1 ×G2 × · · · ×Gk and the sum can be rewritten as:∑

χ1∈Ĝ1

· · ·
∑
χk∈Ĝk

χ1(g1) · · ·χk(gk) = 0.

As a consequence, it suffices to prove Equation (9.60) for a single cyclic
component with gi 6= ei. In this case, the sum becomes a sum of powers
of some root of unity and equal to 0.

© 2009 by Taylor and Francis Group, LLC

306 Algorithmic Cryptanalysis

Given all characters on a group G, we can now define the Fourier transform
of an arbitrary function f from G to C as:

f̂(χ) =
∑
g∈G

χ(g)f(g). (9.62)

The Fourier transform is invertible and the inverse is obtained by:

f(g) =
1
|G|

∑
χ∈Ĝ

χ−1(g)f̂(χ). (9.63)

This is a simple consequence of Equations (9.61) and (9.60).
In the general case, the Fourier transform can be used as a tool to compute

the so-called convolution product f1?f2 of two functions f1 and f2 from G to
C defined as:

(f1?f2)(g0) =
∑
g∈G

f1(g)f2(g0g
−1). (9.64)

Indeed, in general, we have f̂1?f2 = f̂1 · f̂2.

9.5.3.1 Link with the previous cases

To illustrate this general setting, let us compare it to the special cases of the
Walsh and Fourier transforms we already addressed. In each case, it suffices
to specify how the objects we are considering are encoded into functions from
a group G to C. In the case of the Fourier transform, we are considering
vectors of N elements and work with the group Z/NZ. The link with the
general case is obtained by mapping the vector X into a function fX over
Z/NZ defined by fX(i) = Xi. Since the group Z/NZ has cardinality N , the
N -th root of unity ξ = e2π

√
−1/N naturally arises.

For the Walsh transform, we are already considering functions from Fnp to
Fp and it suffices to represent the range Fp using the p-th roots of unity in C.
Note that there are several possible representations, one is trivial and maps
every element of Fp to 1. There are also p − 1 non-trivial representations
obtained by sending 1 (an additive generator for Fp) to one of the p − 1
primitive p-th of unity, say ξ and by sending an element x of Fp to ξx. In
truth, the algorithms of Section 9.4 can be viewed as p (or p − 1) parallel
applications of the general case, one for each possible representation.

© 2009 by Taylor and Francis Group, LLC

Fourier and Hadamard-Walsh transforms 307

Exercises

1. Looking back at truncated differential and at Equation (9.16), we would
like to compute truncated differentials for an S-box S on a single bit
from a table of ordinary differentials. Given a fixed input mask with k
unknown bits, show that it suffices to sum 2k values. Write a program
which computes the correct sum.

2h. Directly following Equation (9.36), write a program to compute Fourier
transform. What is the complexity of this program?

3. In Section 9.5.1.1.1, we have seen that to compute the convolution prod-
uct of two vectors X and Y on N elements, we can pad X with zeros
up to the next power of 2, pad Y with a copy of its initial segment and
compute the convolution product of the padded copies. Check that both
convolution products are indeed equal by using the program resulting
from Exercise 3. Prove the equality.

4h. How many multiplications (of reals) are needed to multiply two complex
numbers?

5. Implement the Moebius transform on F3.

6h. Study the Walsh transform given as Program 9.3 and its timings. Pro-
pose a method to avoid the performance penalty due to cache effects.

© 2009 by Taylor and Francis Group, LLC

Chapter 10

Lattice reduction

10.1 Definitions

Lattices are rich mathematical objects, thus before studying the algorithmic
issues involving lattices, it is essential to recall some important definitions and
properties concerning lattices.

DEFINITION 10.1 A lattice is a discrete additive subgroup of Rn.

While very short, this definition needs to be studied carefully to better
understand the notion. First recall that an additive subgroup of Rn is a set
S of elements such that:

• If ~x ∈ S then −~x ∈ S.

• If ~x ∈ S and ~y ∈ S then ~x+ ~y ∈ S.

As a consequence, the zero vector belongs to S and any linear combination of
vectors of S with integer coefficients is a vector of S.

However, a lattice L is more than an additive subgroup, it is a discrete
additive subgroup. This additional topological property implies that it is not
possible to construct a sequence of non-zero vectors in L with a zero limit.
Alternatively, it means that there is a small n-dimensional ball centered at
zero that contains no non-zero vector in L. As a consequence, if we are given
a norm on Rn, usually the Euclidean Norm, there exists a non-zero vector
which minimizes this norm. The norm, or length, of this vector is called the
first minimum of the lattice and denoted by λ1(L). Let ~v1 be a vector of L
with norm λ1(L), then any vector ~w in L such that the pair (~v1, ~w) is linearly
dependent can be written as ~w = α~v1 for some integer α. Indeed, assuming
that α is not an integer, implies that ~w−dαc~v1 is a non-zero vector in L with
norm smaller than λ1(L) and leads to a contradiction.

This basic consideration with a single short vector illustrates two very im-
portant properties about lattices: the existence of bases and the sequence of
successive minima.

A basis for a lattice L is a set of linearly independent vectors, ~b1, . . . , ~br
belonging to L such that any vector in L can be written as a linear combina-

309

© 2009 by Taylor and Francis Group, LLC

310 Algorithmic Cryptanalysis

tion, with integer coefficients, of the vectors ~bi. Any lattice L admits a basis,
moreover, the cardinality r is the same for all bases of a given lattice and is
called the rank of L. It is equal to the dimension of the vector subspace of
Rn spanned by L.

In cryptography, we often encounter, as a special case, lattices that only
contain vectors with integer coordinates. Such lattices are called integer
lattices.

Let L be a lattice of rank r in Rn and B and B′ be two bases of L. Each
basis can be represented as a matrix of dimension r × n, where each row of
the matrix B (resp. B′) contains the coordinates of one vector in the basis
B. Since all vectors of B′ belong to L, they can be expressed as a linear
combination of the vectors of B with integer coefficients. As a consequence,
there exists a square integer matrix U of dimension r such that:

B′ = UB. (10.1)

Of course, there also is a matrix U ′ with integer coefficients such that B =
U ′B′. Putting the two relations together, we find that U and U ′ are inverses
of each other. Since both U and U ′ are integer matrices, this implies that the
determinant of U is equal to 1 or −1. Such a matrix is called unimodular.

A direct consequence of the above relationship between two bases of L is
that for any basis B, the determinant det(B ·>B) is independent of the choice
of B. Indeed:

det(B′ ·>B′) = det(UB ·>B ·>U) = det(U) det(B ·>B) det(>U) = det(B ·>B).
(10.2)

Since in addition this invariant is a positive number, it is traditional to define
the determinant of the lattice L as:

det(L) =
√

det(B · >B). (10.3)

The determinant of L is also called the volume or sometimes co-volume of L.
In fact, the matrix B · >B itself is also important and is known as the Gram
matrix of the basis B.

For every lattice L, we can generalize the notion of first minimum λ1(L) and
define the sequence of successive minima. The k-th minimum of the lattice L
is defined as the smallest positive real number λk(L) such that there exists at
least one set of k linearly independent vectors of L, with each vector of norm
at most λk(L). Clearly, the sequence of successive minima satisfies:

λ1(L) ≤ λ2(L) ≤ λ3(L) ≤ · · · (10.4)

It is important to remark that in this definition, we do not only count
the number of vectors, but also ask that they are linearly independent. To
understand why, note that in any lattice, there are at least two vectors with
minimal length, since when x is one, −x is another. Of course, for some
lattices, it is possible to have more than two vectors with minimal length.

© 2009 by Taylor and Francis Group, LLC

Lattice reduction 311

From a mathematical point-of-view there exists an interesting relationship
between the values of the successive minima and the determinant of the lattice.
In particular, a theorem of Minkowski states that:

THEOREM 10.1
For every integer r > 1, there exists a constant γr, such that for any lattice
L of rank r and for all 1 ≤ k ≤ r:(

k∏
i=1

λi(L)

)1/k

≤ √γr det(L)1/r (10.5)

For more information about lattices, the reader may refer to [MG02].

10.2 Introductory example: Gauss reduction

Before studying general lattices and their reduction, it useful to start with
simple examples in small dimension. In this section, we consider integer lat-
tices in dimension 2, i.e., full rank additive subgroups of Z2, their descriptions
and the related algorithms. Note that, in the special case of dimension 2,
lattice reduction can also be expressed in the alternate language of binary
quadratic forms; for a detailed exposition, see [BV07].

To describe such a lattice, we are given a basis (~u,~v) formed of two linearly
independent vectors. For example, we might consider the lattice given in
Figure 10.1. We see on this figure that an arbitrary basis does not necessarily
give a pleasant description of the lattice. In fact, for this example, a much
better description is the reduced basis presented in Figure 10.2. In particular,
we see that the reduced basis contains much shorter vectors than the initial
basis; we also see that the vectors are nearly orthogonal. Computing a reduced
basis in dimension 2 can be done by using the Gauss reduction algorithm. This
algorithm is a greedy algorithm which iteratively reduces the length of the
longest vector in the basis. It continues as long as the reduced vector becomes
shorter than the other one, then it stops. We describe it as Algorithm 10.1.
A sample run is presented in Figure 10.3. The reader may also notice the
similarity of this algorithm with Euclid’s GCD Algorithm 2.1. Throughout
this chapter, the length of vectors is measured using the Euclidean norm ‖ · ‖.

In order to better understand Gauss’s algorithm, we are going to check a
few simple facts and prove its correctness:

1. The algorithm always outputs a basis of the correct lattice. This can
be shown by remarking that the lattice generated by (~u,~v) is a loop

© 2009 by Taylor and Francis Group, LLC

312 Algorithmic Cryptanalysis

Algorithm 10.1 Gauss’s reduction algorithm
Require: Initial lattice basis (~u,~v)

if ‖~u‖ < ‖~v‖ then
Exchange ~u and ~v

end if
repeat

Find integer λ that minimizes ‖~u− λ~v‖ by:
λ←−

⌊
(~u|~v)/‖~v‖2

⌉
Let ~u←− ~u− λ~v
Swap ~u and ~v

until ‖u‖ ≤ ‖v‖
Output (~u,~v) as reduced basis

Figure 10.1: A 2-dimensional lattice with a basis

invariant. In other words, the lattice entering any step of the main
loop is the same as the lattice exiting this loop. As a consequence, the
algorithm as a whole preserves the input lattice. We simply need to
check that the bases (~u,~v) and (~U, ~V) = (~u − λ~v,~v) generate identical
lattices. Take an element ~x = a~U + b~V of the second lattice, i.e., with
integer values a and b. Clearly ~x = a~u+ (b− λa)~v and ~x belongs to the
first lattice. Conversely, take ~x = a~u + b~v in the first lattice and check

© 2009 by Taylor and Francis Group, LLC

Lattice reduction 313

Figure 10.2: A reduced basis of the same lattice

that ~x = a~U + (b+ λa)~V belongs to the second lattice.

2. The algorithm always stops. The norm of the longest vector in the basis
decreases from one loop to the next. Since the squared norm is a positive
integer which also decreases, the algorithm must stop.

3. The computation of λ in the algorithm indeed minimizes the norm of
~u− λ~v. Let ~x = ~u− λ~v, we have to minimize:

‖~x‖ = ‖~u‖2 − 2λ(~u|~v) + λ2‖~v‖2.

This norm is a quadratic function in λ. For real values of λ it is mini-
mized at (~u|~v)/‖~v‖2. For integer values of λ the minimum is obtained by
rounding this quantity to the nearest integer. The minimum is unique
except when the value to be rounded is a half integer, in which case
there are two equally good solutions.

4. The first vector of the reduced basis is the shortest non-zero lattice vector.
First, if the algorithm outputs (~u,~v) we have ‖~u‖ ≤ ‖~v‖, thanks to the
loop exit condition. Then take ~x = a~u+ b~v any non-zero element of the
lattice, i.e., with a and b integers and (a, b) 6= (0, 0). Since the algorithm

© 2009 by Taylor and Francis Group, LLC

314 Algorithmic Cryptanalysis

(a) First reduction step

(b) Second reduction step

(c) Final reduction step

Figure 10.3: Applying Gauss’s algorithm

© 2009 by Taylor and Francis Group, LLC

Lattice reduction 315

ensures that |(~u|~v)| ≤ ‖~u‖2/2 can

‖~x‖2 = a2‖~u‖2 + 2ab(~u|~v) + b2‖~v‖2

≥ (a2 − |ab|+ b2)‖~u‖2

Clearly, T = a2 − |ab| + b2 is an integer. Moreover, thanks to the
symmetry in a and b, we can assume without loss of generality that
b 6= 0. In that case, we can write:

T = |b|2 · ((|a/b|2 − |a/b|+ 1).

From this expression, we conclude that T > 0. Indeed |b|2 > 0 and
the quadratic expression x2 − x+ 1 has negative discriminant and thus
x2− x+ 1 > 0 for all real values of x, including x = |a/b|. Since T is an
integer, we conclude that T ≥ 1 and finally

‖~x‖2 ≥ ‖~u‖2.

This shows that no non-zero vector in the lattice can be shorter than ~u.
However, a few other vectors may be as short as ~u. Studying our bounds
in more details, we see that for all such vectors we have −1 ≤ a ≤ 1
and −1 ≤ b ≤ 1. Clearly −~u is also shortest vector in any lattice, and
whenever ‖~v‖ > ‖~u‖ it is the only other possibility. When ‖~v‖ = ‖~u‖, we
have two additional solutions, ~v and −~v. If in addition |(~u|~v)| = ‖~u‖2/2,
two more vectors reach the minimum length either ~u−~v and its opposite
or ~u + ~v and its opposite, depending on the sign of (~u|~v). Lattices
illustrating these three possibilities are shown in Figure 10.4. Note that
this third option cannot be achieved with integer lattices. Indeed, a
typical basis for this is generated by:

~u =
(

1
0

)
and ~u =

(
1/2√
3/2

)
.

Since
√

3 is irrational, it is clear that this lattice can only be approxi-
mated by integer lattices.

We leave as an exercise to the reader to show that no vector in the lattice
linearly independent from ~u can be shorter than ~v. There are either two
vectors ~v and −~v reaching this minimum or four vectors. With four
vectors, the additional pair is formed of ~u − ~v and its opposite or of
~u+ ~v and its opposite, depending on the sign of (~u|~v).

10.2.1 Complexity analysis

In order to give a more precise analysis of Gauss’s algorithm it is very useful
to introduce a variant called t-Gauss reduction that takes a parameter t ≥ 1
and is described as Algorithm 10.2.

© 2009 by Taylor and Francis Group, LLC

316 Algorithmic Cryptanalysis

(a) Single pair of short vectors

(b) Two pairs of short vectors

(c) Three pairs of short vectors

Figure 10.4: Typical cases of short vectors in 2-dimensional lattices

© 2009 by Taylor and Francis Group, LLC

Lattice reduction 317

Algorithm 10.2 t-Gauss reduction algorithm
Require: Initial lattice basis (~u,~v)
Require: Parameter t ≥ 1

if ‖~u‖ < ‖~v‖ then
Exchange ~u and ~v

end if
repeat

Find integer λ that minimizes ‖~u− λ~v‖ by:
λ←−

⌊
(~u|~v)/‖~v‖2

⌉
Let ~u←− ~u− λ~v
Swap ~u and ~v

until ‖~u‖ ≤ t‖~v‖
Output (~u,~v) as reduced basis

The only difference between t-Gauss and Gauss’s algorithms is the loop exit
condition. With t-Gauss, we no longer ask for the new vector to be shorter
than previous vectors, we only require it to be not too long compared to the
vector ~v that is kept from the previous iteration. With this new condition,
the length of the shortest vector decreases by a factor t at every iteration but
the last one. This also implies that the length of the longest vector decreases
by a factor t at every iteration, except maybe during the first one. Indeed,
the longest vector in an iteration is the shortest vector in the next one. As
a consequence t-Gauss algorithm for t > 1 is a polynomial time algorithm
since its number of iterations is smaller than 1 + log(max(‖~u‖, ‖~v‖))/ log(t).
Moreover, if we denote by k(t) the number of iterations in t-Gauss, we have:

k(
√

3) ≤ k(1) ≤ k(
√

3) + 1.

This implies that Gauss’s algorithm, which is identical to t-Gauss when t = 1,
also is a polynomial time algorithm. The lower bound is clear. To prove the
upper bound, we now let t =

√
3 and study the output basis of

√
3-Gauss.

Let α and β denote the two real numbers such that the output basis (~u,~v)
satisfies:

‖~u‖ = α‖~v‖ and (~u|~v) = β‖~v‖. (10.6)

Several cases are possible:

1. If α ≤ 1, the basis is already Gauss reduced and thus in this instance,
k(1) = k(

√
3).

2. If
√

3 ≥ α > 1 and −1/2 < β < 1/2, Gauss algorithm would have an
additional iteration, which would simply exchange ~u and ~v. In this case,
k(1) = k(

√
3) + 1.

© 2009 by Taylor and Francis Group, LLC

318 Algorithmic Cryptanalysis

3. If
√

3 ≥ α > 1 and |β| > 1/2, we know that after the final iteration of√
3-Gauss, we have:

|(~u|~v)| ≤ ‖~u‖2/2 = α2/2‖~v‖ ≤ 3/2 · ‖~v‖. (10.7)

Thus, the next iteration of the complete Gauss algorithm would replace
~u by either ~u + ~v or ~u − ~v, depending on the sign of β. Moreover, due
to Equation (10.7), we notice that |β| ≤ α2/2. This implies that:

‖~u− ~v‖2 = ‖~u‖2 − 2(~u|~v) + ‖~v‖2 (10.8)

= (α2 + 1− 2β)‖~v‖2 ≥ ‖~v‖2.

And similarly that ‖~u+ ~v‖2 ≥ ‖~v‖2. Thus, after this additional itera-
tion, Gauss algorithm also stops and k(1) = k(

√
3) + 1.

4. Finally, if
√

3 ≥ α > 1 and |β| = 1/2, depending on the rounding
convention, one of the two above cases applies. We also have k(1) =
k(
√

3) + 1.

Much more is known about Gauss’s algorithm and its complexity; useful
references are [DFV97] or [Val91].

10.3 Higher dimensions

In order to reduce lattices in higher dimension, it is important to first de-
termine what a reduced lattice is. A first attempt is to generalize the mathe-
matical criteria that says that in dimension 2 a basis of a lattice L is reduced
when its first and second vectors realize the first and second minima λ1(L)
and λ2(L). Generalizing this, we would ask for a basis that realizes the suc-
cessive minima of a higher dimensional lattice. However, in large dimension,
this is not possible. For example, look at the following 5-dimensional lattice
(generated by its rows):

L =

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
1 1 1 1 1

 .

The successive minima of L are:

λ1 = 2, λ2 = 2, λ3 = 2, λ4 = 2 and λ5 = 2.

© 2009 by Taylor and Francis Group, LLC

Lattice reduction 319

To realize these minima, we may take the following family of vectors:

FL =

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

 .

Clearly, this family is not a lattice basis, because it cannot yield the vector
(1, 1, 1, 1, 1).

In fact, in large dimension, there is no good unique definition of a reduced
lattice. We can try to minimize the basis with respect to a variety of prop-
erties; however, the resulting definitions are not equivalent. In 1982, Lenstra,
Lenstra and Lovász [LLL82] proposed a polynomial time algorithm able to
produce reasonably good basis, using a relaxed notion for reduced basis. This
notion, called LLL-reduction is defined as follows.

DEFINITION 10.2 A basis B of a lattice L is said to be δ-LLL reduced
for a parameter 1/4 < δ ≤ 1 if the following conditions are satisfied:

∀ i < j :
∣∣∣(~bj |~b∗i)∣∣∣ ≤ ‖~b∗i ‖22

, (10.9)

∀ i : δ‖~b∗i ‖
2
≤

(
‖~b∗i+1‖

2
+

(~bi+1|~b∗i)
2

‖b∗i ‖
2

)
, (10.10)

where the vectors ~b∗i result from the Gram-Schmidt orthogonalization of the
basis B.

A basis that satisfies the single condition of Equation (10.9) is said to be
size-reduced. Moreover, Equation (10.10) is often referred to as Lovász con-
dition.

10.3.1 Gram-Schmidt orthogonalization

Since Gram-Schmidt orthogonalization is already present in the definition
of LLL-reduction, before presenting Lenstra, Lenstra and Lovász lattice re-
duction algorithm, it is essential to recall the details of Gram-Schmidt orthog-
onalization process. This algorithm takes as input a basis B = (~b1,~b2, · · · ,~bn)
of any vector subspace of Rm (with m ≥ n) and outputs an orthogonal basis
of the same vector subspace B∗ = (~b∗1,~b

∗
2, · · · ,~b∗n). In addition, B∗ satisfies

the following conditions:

1. ~b∗1 = ~b1,

2. ~b∗i is the projection of ~bi, orthogonally to the vector subspace generated
by the i− 1 first vectors of B.

© 2009 by Taylor and Francis Group, LLC

320 Algorithmic Cryptanalysis

Together with B∗ and assuming that vectors are represented by rows, Gram-
Schmidt algorithm computes a lower triangular matrix M, with 1s on its
diagonal, such that B = M B∗. Equivalently, this means that for any index
j, we have:

~bj = ~b∗j +
j−1∑
i=1

mj,i
~b∗i . (10.11)

Gram-Schmidt orthogonalization is given in pseudo-code as Algorithm 10.3.
The algorithm is illustrated in dimension 3 in Figure 10.5.

The output of the Gram-Schmidt algorithm also allows to write the Gram
matrix and the determinant of a lattice in a convenient form, indeed:

B · >B = M ·B∗ · >B∗ · >M. (10.12)

Moreover, B∗ · >B∗ is a diagonal matrix with diagonal entries equal to
‖~b∗i ‖

2
. Since the determinant of the square matrix M is 1, this shows that the

determinant of a lattice can be computed as the product of the norms of the
vectors in any Gram-Schmidt orthogonal basis.

Algorithm 10.3 Gram-Schmidt algorithm

Require: Initial basis of the vector space B = (~b1,~b2, · · · ,~bn)
Create basis B∗ and transformation matrix M
for i from 1 to n do

Let ~b∗i ←− ~bi
for j from 1 to i− 1 do

Let mi,j ←−
(~bi|~b∗j)

‖~b∗j ‖
2

Let ~b∗i ←− ~b∗i −mi,j
~b∗j

end for
end for
Output B∗ and M

10.3.2 Lenstra-Lenstra-Lovász algorithm

The algorithm of Lenstra-Lenstra-Lovász, also called the LLL or L3 algo-
rithm is obtained by combining Gauss reduction in dimension two, together
with Gram-Schmidt orthogonalization. The basic principle consists of apply-
ing Gauss reduction to a sequence of projected sublattices of dimension 2.
More precisely, it considers the lattice generated by the orthogonal projection
of two consecutive vectors ~bi and ~bi+1 on the vector subspace generated by the

© 2009 by Taylor and Francis Group, LLC

Lattice reduction 321

~b1

~b2

~b3

~b∗3

Figure 10.5: Computing ~b∗3 from ~b3

previous vectors (~b1, · · · ,~bi−1) and applies one iteration of t-Gauss reduction1

to this projected lattice. In order to also modify the high dimension lattice,
all swap and translation operations are pulled back from the projected space
and applied to the vectors ~bi and ~bi+1 themselves. In addition, these vectors
may also be changed by adding to them some vector from the sublattice with
basis (~b1, · · · ,~bi−1). The goal of this operation is to make sure that ~bi is not
too far from the corresponding projected vector ~b∗i . Once again, we illustrate
this in dimension 3 in Figure 10.6

Algorithm 10.4 gives a description of the L3 algorithm, using Algorithm 10.5
as a subroutine for length reduction. This subroutine is called RED within
Algorithm 10.4. In this description, all coordinates in B are integers and all
numbers in B∗ and M are represented as rationals.

To better understand this algorithm, let us detail the conditions of the
translation and exchange steps within the L3 algorithm. The goal of transla-
tions is to modify the off-diagonal coefficients in the triangular matrix M and
reduce them in absolute value below 1/2. In other words, these translations
are used to make sure that each ~bk is not too far from the corresponding ~b∗k
and “almost orthogonal” to its predecessors. This is achieved by calling subal-
gorithm RED to translate a vector ~bi along ~bj (with j < i). This subalgorithm
also modifies M to reflect this translation. The updates performed on M are

1The use of t-Gauss ensures polynomial time behavior. Note that, the parameter t and the
parameter δ of LLL-reduction are related by δ = 1/t.

© 2009 by Taylor and Francis Group, LLC

322 Algorithmic Cryptanalysis

Algorithm 10.4 LLL algorithm using rationals

Require: Initial basis of an integer lattice B = (~b1,~b2, · · · ,~bn)
Require: Parameter 1/4 < δ ≤ 1

Compute B∗ and M using Gram-Schmidt Algorithm 10.3
for i from 1 to n do

Let Li ←− ‖~b∗i ‖2
end for
Erase B∗

Let k ←− 2
while k ≤ n do

Apply length reduction RED(k, k − 1)
if (Lk +m2

k,k−1Lk−1) ≥ δ Lk−1 then
for l from k − 2 downto 1 do

Apply length reduction RED(k, l)
end for
Increment k

else
Let mm←− mk,k−1

Let LL←− Lk +mm2Lk−1

Let mk,k−1 ←− mmLk−1/LL
Let Lk ←− Lk−1Lk/LL
Let Lk−1 ←− LL
Exchange ~bk and ~bk−1

for l from 1 to k − 2 do
Let µ←− mi,k

Let mi,k ←− mi,k−1 − µmm
Let mi,k−1 ←− µ+mk,k−1mi,k

end for
if k > 2 then

Decrement k
end if

end if
end while

© 2009 by Taylor and Francis Group, LLC

Lattice reduction 323

~b1

~b2

~b′3

~b∗3

~b3

Figure 10.6: An elementary reduction step of L3 in dimension 3

Algorithm 10.5 Length reduction subalgorithm RED(i, j)
Require: Current lattice basis B and matrix M
Require: Integer i and j, where ~bi is to be reduced by ~bj

if |mi,j | > 1/2 then
Let r ←− bmi,je
Let ~bi ←− ~bi − r~bj
mi,j ←− mi,j − r
for w from 1 to j − 1 do

Let mi,w ←− mi,w − rmj,w

end for
end if

© 2009 by Taylor and Francis Group, LLC

324 Algorithmic Cryptanalysis

easy to follow and detailed in subalgorithm RED. Note that the orthogonalized
vector ~b∗i remains unchanged during a call to RED.

The exchange steps are used to simultaneously reduce the norm of ~b∗k−1 and
increase the norm of ~b∗k. Note that B∗ itself is not used during the algorithm

and that the knowledge of the squared norms ‖~b∗i ‖
2

denoted by Li in the
algorithm and of the lower diagonal matrix M suffices. During exchange
steps, the values of the norms and the matrix M also need to be updated.
Since these updates are more complicated than during translation steps, we
now detail the mathematics behind them.

Given a pair of vectors ~bi and ~bi+1, let us denote by ~u and ~v their respective
projections orthogonally the subspace spanned by (~b1, · · · ,~bi−1). In the spe-
cial case i = 1, we have ~u = ~b1 and ~v = ~b2. We have the following identities
before the exchange:

~b∗i = ~u, ~b∗i+1 = ~v − (~v|~u)

‖~u‖2 ~u, mi+1,i = (~v|~u)

‖~u‖2 ,

∀ k > i+ 1 : mk,i = (~bk|~b∗i)

‖~b∗i ‖
2 , mk,i+1 = (~bk|~b∗i+1)

‖~b∗i+1‖
2 .

(10.13)
and after the exchange:

b̂∗i = ~v, b̂∗i+1 = ~u− (~v|~u)

‖~v‖2 ~v, m̂i+1,i = (~v|~u)

‖~v‖2 ,

∀ k > i+ 1 : m̂k,i = (~bk|b̂∗i)

‖b̂∗i ‖
2 , m̂k,i+1 = (~bk|b̂∗i+1)

‖b̂∗i+1‖
2 .

(10.14)
Moreover, since the determinant of a lattice is an invariant that does not

depend on the chosen basis, we necessarily have:

‖b̂∗i ‖2 · ‖b̂∗i+1‖2 = ‖~b∗i ‖2 · ‖~b∗i+1‖2 (10.15)

As a consequence, we derive the following update formulas:

‖b̂∗i ‖2 = ‖~b∗i+1‖2 +m2
i+1,i‖~b∗i ‖2, ‖b̂∗i+1‖2 = ‖~b∗i ‖

2‖~b∗i+1‖
2

‖b̂∗i ‖2
,

∀ k < i : m̂i+1,k = mi,k, m̂i+1,i = ‖~b∗i ‖
2

‖b̂∗i ‖2
mi+1,i,

m̂i,k = mi+1,k,

∀ k > i+ 1 : m̂k,i+1 = mk,i −mi+1,imk,i+1,
m̂k,i = mk,i+1 + m̂i+1,i m̂k,i+1.

(10.16)
Looking at the conditions enforced during L3 reductions, it is clear that

this algorithm yields a LLL-reduced basis of the input lattice. In addition, L3

is a polynomial time algorithm and LLL-reduced bases are reasonably good.

© 2009 by Taylor and Francis Group, LLC

Lattice reduction 325

The L3 lattice reduction can also, with a minor modification, starting from
a family of vectors that generates a lattice, construct a reduced basis for this
lattice. This modified algorithm simply removes any zero vectors that appear
among the vectors ~bi during the computations.

Complexity of the L3 algorithm

In order to bound the complexity of the L3 algorithm, we are going to
rely on the notion of determinant described in Section 10.1. Given a basis
(~b1, · · · ,~bn) of a lattice L, we can construct a family of sublattices L1, . . . , Ln,
where each lattice Li is generated by an initial segment of the given basis of L:
(~b1, · · · ,~bi). We let di denote the determinant det(Li) of the i-th sublattice.
At each step of the L3 algorithm, the values of di for the current basis may
change. More precisely, we can study the possible behavior of these values
during translations and during exchanges. During translations, we see that a
single vector is changed by addition of multiples of previous vectors. Clearly,
this operation does not modify any of the sublattices and only changes the
representations of these lattices. During exchanges, the situation is slightly
more complicated. Assume that ~bk and ~bk−1 are exchanged, then we see that
none of the sublattices Li for i < k − 1 are modified. Similarly, none of the
sublattices Li for i ≥ k are modified, since up to order the basis of each is
preserved. However, the sublattice Lk−1 is modified. Thus, the determinant
dk−1 can change. Since this determinant is the product of the norms of the
vectors ~bi

∗
up to k − 1 and since ‖ ~bk1

∗
‖ decreases by a factor at least δ−1, so

does dk−1. More precisely, if d̂k−1 denotes the new value after the exchange,
we have:

d̂k−1 ≤ δ · dk−1. (10.17)

Thus, during each exchange of the L3 algorithm, one value of di goes down,
while the others are unchanged. During all other operations in L3, all values
dis are left unchanged. As a consequence, the product of all dis

D =
n∏
i=1

di (10.18)

is decreasing throughout the L3 algorithm. Moreover, whenever it changes,
it is divided by at least by δ−1. In addition, D2 is a non-zero integer, thus
D must remain greater than 1. Letting DInit denote the initial value of D,
we see that the L3 algorithm performs at most log(DInit)/ log(t) exchanges.
This allows to bound the number of arithmetic operations performed during
L3; however, it does not suffice to compute the running time of L3. We also
need to analyze the size of the numbers that occur throughout the algorithm.
In fact, the real difficulty is to check that the denominators of fractions remain
small enough. With the original L3 algorithm, they are bounded by the largest
value among the squared determinants d2

i . As a consequence, it is possible to
show that, using ordinary multiplication, the complexity of L3 reduction for

© 2009 by Taylor and Francis Group, LLC

326 Algorithmic Cryptanalysis

an integer lattice of rank r in dimension n, with all entries in the basis vectors
bounded by B is O(nr5 log3(B)).

This complexity can be improved by using floating point numbers instead
of rationals, within the L3 algorithm, keeping only the integer coordinates
of basis vectors in exact form. A side effect of this change is that we can
no longer round numbers to their nearest integer without mistakes and that
we need to relax the length reduction condition given by Equation (10.9). It
suffices to replace the constant 1/2 in this algorithm by a slightly larger con-
stant, such as 0.501 or something similar. From a theoretical point-of-view the
fastest algorithm is described in [NS05] and has complexity O(nr4 log2(B)).
In practice, floating point numbers with fixed precision are often used; how-
ever, in bad cases the round-off errors prevent the algorithm from terminating.
Many heuristics have been proposed to avoid this bad behavior, for example
see [SE94], but, despite their good performances in many cases, they some-
times fail.

Properties of LLL-reduced bases

Given a LLL-reduced basis for a lattice L, we first remark that any non-zero
vector of L has its norm at least as large as the norm of the shortest vector
~b∗i in the orthogonal basis. Due to Lovász conditions, we find:

‖~b∗i+1‖
2
≥ ‖~b∗i ‖

2
(
δ − 1

4

)
. (10.19)

If λ1 denotes the first minimum of L, it is greater than the norm of the shortest
~b∗i . It follows that:

λ1 ≥
(
δ − 1

4

)(n−1)/2

‖~b1‖. (10.20)

As a consequence, the first vector of a LLL-reduced basis is not too large
when compared to the first lattice minimum. This relation is often used in
the special case δ = 3/4, yielding:

‖~b1‖ ≤ 2(n−1)/2 λ1. (10.21)

Another very useful inequality related the size of ‖~b1‖ with the determinant
of the lattice. Since the determinant is equal to the product of the norms of
all ~b∗i and multiplying together the equations:

‖~b∗i ‖ ≥
(
δ − 1

4

)(i−1)/2

‖~b1‖, (10.22)

we find:

det(L) ≥
(
δ − 1

4

)n(n−1)/4

‖~b1‖
n
. (10.23)

Taking the n-th root and letting δ = 3/4, we obtain:

‖~b1‖ ≤ 2(n−1)/4 det(L)1/n. (10.24)

© 2009 by Taylor and Francis Group, LLC

Lattice reduction 327

10.4 Shortest vectors and improved lattice reduction

Once we have computed a LLL-reduced basis for a lattice L, we already have
obtained some reasonably short vectors. However, we might wish to obtain
stronger results. One typical problem is to determine the first minimum λ1(L)
of the lattice and find a non-zero vector achieving this minimal length. Note
that we cannot use a straightforward brute force approach to find such a
shortest vector. Indeed, the set of lattice vectors is infinite and we cannot
directly enumerate it. Instead, we first need to analyze the properties the
lattice and determine a finite set of candidates that contains the shortest
vector. This is the basic idea of enumeration algorithms [Kan83].

10.4.1 Enumeration algorithms for the shortest vector

Assume that we are given a basis B for a lattice L of rank r. Then, for
any r-uples α of integers, we can compute a vector ~V (α) in L by the following
formula:

~V (α) =
r∑
i=1

αi~bi, (10.25)

where the vectors ~bi are in the basis B. Can we determine a finite set SB
such that the shortest non-zero vector in L is equal to ~V (α) for some α in
SB? Kannan showed in [Kan83] that such a finite set exists and can be used
to construct an algorithm for finding the shortest vector.

As before in this chapter, we denote by B∗ the Gram-Schmidt orthogo-
nalized basis corresponding to B and by ~b∗i the vectors from B∗. Let α by
a non-zero r-uple as above such that αk is the last non-zero component in
α, i.e., for any integer i > k, we have αi = 0. Then, we have the following
identity:

~V (α) =
k∑
i=1

αi~bi =
k−1∑
i=1

βi~b
∗
i + αk~b

∗
k, (10.26)

for some r − 1-uple β. Since B∗ is an orthogonal basis, this implies that the
norm of ~V (α) is greater than αk times the norm of ~b∗k. As a consequence, we
know that if α is such that ~V (α) is the shortest non-zero vector in L then for
any vector ~v in L we have:

|αk| ≤
‖~v‖
‖~b∗k‖

. (10.27)

As a consequence, we have shown that there are only finitely many possibilities
for the last non-zero integer in α. Note that the quality of bound given by
Equation (10.27) varies depending on the vector ~v we choose and on the norm
of ~b∗k. Using a LLL-reduced basis in this bound is a good idea because it gives

© 2009 by Taylor and Francis Group, LLC

328 Algorithmic Cryptanalysis

two improvements. First, the first vector in the reduced basis is quite small
and is a good candidate for ~v. Second, thanks to Equation (10.19), the norm
of ~b∗k in a reduced basis is not too large. More precisely, with a L3 reduced
basis, with parameter t, we can derive the following bound for αk:

|αk|2 ≤
(
δ − 1

4

)k−1

(10.28)

It remains to see that the other component in α can similarly be bounded
when ~V (α) is the shortest non-zero vector in L. More precisely, substituting
Equation (10.11) into Equation (10.26) and letting βk = αk we may remark
that for a L3 reduced basis, we have:

βj = αj +
k∑

i=j+1

βimi,j . (10.29)

This implies that:

|αj +
k∑

i=j+1

βimi,j | ≤
‖~v −

∑k
i=j+1 βi

~b∗i ‖
‖~b∗j‖

≤ ‖~v‖
‖~b∗j‖

. (10.30)

Thus, for a L3 reduced basis, there are fewer than 2
(
δ − 1

4

)j−1 values to
consider for αj .

All in all, starting from a L3 reduced basis, it is possible to obtain the
shortest vector of a lattice of rank r by considering at most 2O(r2) vectors.
In addition to Kannan in [Kan83], this has also been studied by Fincke and
Pohst in [FP85] and, later, by Schnorr and Euchner in [SE94]. A completely
different algorithm for finding short vectors was proposed by Ajtai, Kumar
and Sivakumar in [AKS01]. It is asymptotically much more efficient, but does
not seem to be practically competitive for the current dimensions that can be
addressed with lattice reduction.

Note that a technical difficulty when programming this algorithm is that
we need to write down r level of embedded loops. Were r fixed, this would
cause no problem, but with varying values of r, we have to either write a
recursive routine or remove the recursivity by explicitly remembering a stack
of loop counters inside an array. A basic enumeration algorithm using this
second approach is listed as Algorithm 10.6. One important practical feature
of this algorithm is that whenever a new shortest vector is found, its length
is used to bound the coefficients used during the enumeration. Moreover, the
coefficients are bounded using the first inequality of Equation (10.30), which
is tighter than the second one.

In practice, Schnorr and Euchner propose in [SE94] to speed up the enu-
meration algorithm by changing the order in which the various possibilities
for α are considered. Instead of enumerating the values at each level from the

© 2009 by Taylor and Francis Group, LLC

Lattice reduction 329

Algorithm 10.6 A basic short vector enumeration algorithm
Require: Input L3 reduced basis B of rank r, orthogonalized B∗ and M
Require: Input round-off error tolerance ε

Let array αbest[1 · · · r]←− (1, 0, 0, · · · , 0)

Let Lbest ←− ‖~b1‖
2

Declare array α[1 · · · r + 1]
Let α[r + 1]←− 0 {Defined to avoid memory overflows}

Let α[r]←− −b
√
Lbest/‖~b∗r‖

2
+ εc

Declare array L̃[1 · · · r + 1]
Let L̃[r + 1]←− 0
Let t←− r {Initialize loop level index to outer loop}
while t ≤ r do

if t = 0 then
Let ~c←−

∑r
i=1 α[i]~bi

Let L←− ‖~c‖2 {Recompute exact squared norm}
if L < Lbest then

Let Lbest ←− L
Let αbest ←− α

end if
Increment α[1]
Let t←− 1

else
Let β ←− α[t] +

∑r
i=t+1 α[i]mi,t

Let L̃[t]←− L̃[t+ 1] + β2‖~b∗t ‖
2
{Approximate contribution to norm}

if L̃[t] < Lbest + ε then
if t > 1 then

Let β ←−
∑r
i=t α[i]mi,t−1

Let α[t− 1]←− −b
√

(Lbest − L̃[t])/‖~b∗t−1‖
2

+ εc − β
end if
Decrement t {Go to next inner loop level}

else
Increment α[t+ 1]
Increment t {Go to next outer loop level}

end if
end if

end while
Output coordinates αbest of shortest vector in basis B.

© 2009 by Taylor and Francis Group, LLC

330 Algorithmic Cryptanalysis

smallest to the largest possibility, they propose to use a centered approach.
For example, at the first level of the enumeration, i.e., when considering α[r],
since the enumeration starts from the end, they enumerate the possibilities in
the order 0, 1, −1, 2, −2, . . . For inner levels, the enumeration starts from
the middle of the range of available option and proceeds outwards, alternating
on the left and right sides.

10.4.2 Using shortest vectors to improve lattice reduction

Thanks to the above enumeration algorithms for short vector, it is possible
to construct lattice bases which are more strongly reduced than L3 reduced
bases. Moreover, Kannan showed in [Kan83] that the relationship between
short vector and strong lattice reduction runs both ways. In one direction,
we can use short vectors to improve the quality of lattice basis, in the other
direction, the short vector enumeration algorithms run faster when applied to
strongly reduced basis. Using this bidirectional relationship, Kannan devised
a recursive algorithm that constructs strongly reduced basis and short vector
faster than by running the enumeration algorithm directly with a L3 reduced
basis. Recall that for a lattice of rank r, we showed in Section 10.4.1 that
starting from a L3 reduced basis, it suffices to enumerate 2O(r2) vectors to
find the shortest lattice vector. With the recursive algorithm of Kannan, the
complexity is lowered to 2O(r log r).

This algorithm relies on the notion of Hermite-Korkine-Zolotarev or HKZ
reduced basis. A basis B of a lattice L, with orthogonalized basis B∗ such
that B = M · B∗ is HKZ reduced, if and only if, the following properties are
satisfied:

1. The basis B is size-reduced, as in Equation (10.9), i.e., all off-diagonal
coefficients of M satisfy |mi,j | ≤ 1/2.

2. The vector ~b1 realizes the first minimum λ1(L).

3. The projection of the vectors ~b2, · · · , ~br orthogonally to ~b1 form an HKZ
reduced basis.

The third condition is recursive; however, it simply means that ~b2 is chosen
to minimize ‖~b∗2‖ and so on for the subsequent vectors. It is easy to remark
that an HKZ reduced basis is L3 reduced.

During Kannan’s algorithm, we also need a slightly relaxed notion as an
intermediate computation step. We say that a basis B is quasi-HKZ reduced,
when ‖~b1‖ ≤ 2‖~b∗2‖ and the projection of the sublattice (~b2, · · · ,~br) orthogo-
nally to ~b1 is HKZ reduced. The key point is that enumerating the shortest
vector in a lattice given a quasi-HKZ reduced basis is much more efficient
than with an L3 reduced basis. A sketch of Kannan’s algorithm is given as
Algorithm 10.7. This algorithm uses L3 on a generating family as subroutine.

© 2009 by Taylor and Francis Group, LLC

Lattice reduction 331

It has been thoroughly analyzed when the underlying L3 uses exact arith-
metic [HS07]. However, in practice, it is usually replaced by floating point
heuristics. Due to its high time complexity, Kannan’s algorithm for HKZ
reduction can only be used for lattices of small enough rank.

Algorithm 10.7 Kannan’s HKZ reduction algorithm
Require: Input basis B of a lattice L

repeat
Reduce B using L3

Use HKZ reduction recursively on projected lattice (~b2, · · · ,~br) orthogo-
naly to ~b1.

until ‖~b1‖ > ‖~b∗2‖ {Loop output of quasi-HKZ reduced basis}
Find ~bmin shortest vector in B using Algorithm 10.6.
Apply L3 on family (~bmin,~b1, · · ·~br) to obtain a L3 reduced basis with ~bmin
As first vector. Put the output in B.
Use HKZ reduction recursively on projected lattice (~b2, · · · ,~br) orthogonally
to ~b1.
Output HKZ reduced B, including lattice shortest vector.

10.4.2.1 Schnorr’s block reduction

To conclude this chapter on lattice reduction, let us mention that for lattices
of large rank, where HKZ reduction is not feasible, there exists a family of
reduction algorithms introduced by Schnorr in [Sch87] called block Korkine-
Zolotarev reduction. The basic idea is to use HKZ reduction on projected
sublattices of fixed rank. Without going into the details, let us mention that
each algorithm in the family has a polynomial running time. Of course, the
degree of this polynomial grows with the size of the considered blocks. Heuris-
tic versions of this algorithm are available in some of the computer packages
cited in the preface.

10.5 Dual and orthogonal lattices

When dealing with lattice reduction in cryptography, the notions of dual
and orthogonal of a given lattice are frequently encountered. Since these two
notions are important and distinct from each other, we describe them in this
section.

© 2009 by Taylor and Francis Group, LLC

332 Algorithmic Cryptanalysis

10.5.1 Dual of a lattice

Let L be a lattice of rank r in a vector space of dimension n. Consider
span(L), the vector subspace spanned by L. We first define the dual lattice
L∗ as a set:

L∗ = {~u ∈ span(L) | ∀~v ∈ L : (~u|~v) ∈ Z} .

To check that L∗ is indeed a lattice, we need to prove that it is a discrete
subgroup of Zn. In fact, in this case, it is even a discrete subgroup of span(L).
The subgroup part is left as exercise to the reader. To prove that L∗ is a
discrete subgroup, we proceed by contradiction. If L∗ is not discrete, then
there exists a sequence of vectors ~ui of L∗, whose norms tend to 0 as i tends
to infinity. Of course, this limit also holds for any equivalent norm. We now
consider (~v1, · · · , ~vr) a basis of L and the norm ‖ · ‖L defined on span(L) by:

‖~u‖L =
r∑
i=1

(~u|~vi)2
.

Now, by definition of L∗, the norm of any vector in the sequence ~ui is a sum
of squares of integers and, thus, a non-negative integer. As a consequence,
the sequence ‖~ui‖L is a sequence of non-negative integers which tends to zero.
Moreover, since none of the ~ui is the zero vector, none of the norms ‖~ui‖ can
be equal to zero and the norms are lower bounded by 1. This contradiction
concludes the proof.

When the lattice L has full rank, i.e., when r = n a basis for L∗ can simply
be obtained by the transpose of the inverse matrix of a basis of L. In the
general case, in order to explicitly construct a basis of the dual lattice, the
easiest is to start from a Gram-Schmidt orthogonalization of a basis of the
original lattice. Let us consider (~b1, · · · ,~br) a basis of L and (~b∗1, · · · ,~b∗r), its
Gram-Schmidt orthogonalization.

We first remark that ~̂br = ~b∗r/‖~b∗r‖
2

belongs to the dual lattice L∗. Indeed,

the scalar product of ~b∗r with ~bi is 0 when i < r and ‖~b∗r‖
2

when i = r. Thus,
decomposing any vector ~v in L on the given basis, we find that the scalar

product of ~v with ~̂br is a integer. In truth, this integer is the coefficient of ~br
in the decomposition of ~v. Next, we consider the vector ~̂b∗r−1 = ~b∗r−1/‖~b∗r−1‖

2

and see that, in general, this vector does not belong to L∗. Indeed, its scalar
products with all ~bis are zeros when i < r − 1 and its scalar product with
~br−1 is equal to one; however the scalar product with ~br is not necessarily an
integer. More precisely, using the notation of Section 10.3.1, we have:

(~br|~b∗r−1) = mr,r−1‖~b∗r−1‖
2
. (10.31)

It follows that:
(~br|~̂b∗r−1) = mr,r−1. (10.32)

© 2009 by Taylor and Francis Group, LLC

Lattice reduction 333

Clearly, adding a multiple of ~b∗r to ~̂b∗r−1 preserves the scalar product with ~bi
for i < r and modifies the scalar product with ~br. In particular, if we consider

the vector ~̂br−1 = ~̂
b∗r−1 −mr,r−1

~̂
br, the scalar product with ~br becomes 0 and

we obtain a second, linearly independent, vector in L∗.
To construct a complete basis for L∗, we first specify its Gram-Schmidt

orthogonalized basis:

(~̂b∗r , · · · ,
~̂
b∗1) =

(
~b∗r

‖~b∗r‖
2 , · · · ,

~b∗1

‖~b∗1‖
2

)
. (10.33)

In other words, the basis for L∗ has the same orthogonalized basis as the
initial basis for L, but the order of vectors is reversed. Then, we specify the
Gram-Schmidt coefficients for the dual basis. For simplicity, it is preferable
to number the basis vectors of the dual lattice in reversed order and consider
a basis (~̂br, · · ·~̂b1). The Gram-Schmidt coefficients of this basis are chosen as
follows:

(~̂bi|~̂b∗j)

‖~̂b∗j‖
2 = −mi,j .

Equivalently, we simply compute ~̂bi as ~̂b∗i −
∑r
j=i+1mi,j

~̂
b∗j .

We leave as an exercise to the reader to check that by applying the same
method to compute a dual of the dual basis gives back the original basis of
the lattice L. In addition, the reader can also verify that when the initial
basis of L is L3 reduced, so is the resulting basis of the dual lattice.

10.5.2 Orthogonal of a lattice

Let L be an integer lattice in a vector space of dimension n, with rank
r < n. We define the orthogonal lattice L⊥ as the following subset of Zn:

L⊥ = {~u ∈ Zn | ∀~v ∈ L : (~u|~v) = 0} .

It is clear that L⊥ is a subgroup of Zn and thus an integer lattice. Its
rank is equal to n− r. Moreover, lattice reduction and, in particular, the L3

algorithm gives an efficient way to compute L⊥ from L. Consider the lattice
spanned by the columns of the following matrix:(

k ·B(L)
I

)
where B(L) is the matrix of an L3 reduced basis of L, k is a large enough
constant and I is an n× n identity matrix. After applying the L3 algorithm
to this lattice, we obtain a matrix of the form:(

0 k · U
B(L⊥) V

)

© 2009 by Taylor and Francis Group, LLC

334 Algorithmic Cryptanalysis

where B(L⊥) is a L3 reduced basis of the orthogonal lattice L⊥. This notion
of orthogonal lattice is frequently used in Chapter 13. Note that it is usually
more efficient to use linear algebra rather than lattice reduction to construct
a basis of the vector space spanned by B(L⊥). Moreover, by using a linear al-
gebra method that does not perform divisions, i.e., similar to Hermite normal
form computations, we can in fact obtain a basis B(L⊥). This is essential for
the efficiency of the algorithms presented in Chapter 13.

© 2009 by Taylor and Francis Group, LLC

Lattice reduction 335

Exercises

1. Let A and N be two coprime integers. Consider the lattice L generated
by the rows of: (

A 1
N 0

)
.

• Let (u, v) be any vector in this lattice with v 6= 0. What can you
say about u/v?

• What is the determinant of the lattice L?

• If (u, v) is the smallest vector in L, what can you say about u/v?

• Find a similar result using the continued fraction expansion of
A/N .

2h. Prove that the second vector in a Gauss reduced basis for a 2-dimensional
lattice achieves the second minimum of this lattice.

3. Consider the n dimensional lattice L generated by the identity matrix.

• What are the minima of this lattice?

• Write a program that generates random looking bases of L.

• How can you easily check that a matrix M is a basis for L?

• Experiment with an existing implementation of lattice reduction
algorithms and try to reduce random looking bases of L. When
does the lattice reduction algorithm output the identity matrix (or
a permuted copy)?

4h. Show that any lattice reduction algorithm can be modified to keep track
of the unimodular transform that relates the input and output matrices.

5. Reduce, by hand, with the L3 algorithm the lattice generated by: 1 2 3
4 5 6
7 8 10

 .

© 2009 by Taylor and Francis Group, LLC

Chapter 11

Polynomial systems and Gröbner
base computations

Thus, if we could show that solving a certain system requires at
least as much work as solving a system of simultaneous equations
in a large number of unknowns, of a complex type, then we would
have a lower bound of sorts for the work characteristic.

Claude Shannon

As shown by the above quote, written by Claude Shannon in his famous
paper [Sha49], multivariate polynomial systems of equations naturally arise
when writing down cryptanalytic problems. To illustrate this fact, let us
consider two simple examples, one coming from public key cryptography and
the other from secret key cryptography.

Factoring Writing down factoring as a multivariate system of polynomial
equations is a very simple process. Assume that N = PQ is an RSA number.
Writing P and Q in binary, we can define two sets p and q of unknowns over
F2 according to the following correspondence:

P =
∑
i

pi2i, and Q =
∑
i

qi2i.

Replacing P and Q in the equation N = PQ yields a multivariate polynomial
equation over the integers. Finding the factorization of N corresponds to
finding a {0, 1} non-trivial solution to this equation.

In fact, it is possible to go further and rewrite this equation as a system
of equations over F2. In order to get a reasonably simple expression, it is a
good idea to add extra variables to keep track of the computation. To give a
simple example, assume that we would like to factor 35 into two numbers of
3 bits each: P = 4p2 + 2p1 + p0 and Q = 4q2 + 2q1 + q0. This easily yields an
equation:

16p2q2 + 8(p1q2 + p2q1) + 4(p0q2 + p1q1 + p2q0) + 2(p0q1 + p1q0) + p0q0 = 35.
(11.1)

337

© 2009 by Taylor and Francis Group, LLC

338 Algorithmic Cryptanalysis

To replace this equation with a system of equations over F2, we define a
partial sum S = p0Q + 2p1Q and see that N = S + 4p2Q. The partial sum
S can be represented as 16s4 + 8s3 + 4s2 + 2s1 + s0. Adding two new sets of
variables c and c′ to deal with the carries in both additions, we finally obtain:

s0 = p0q0,
s1 = p0q1 ⊕ p1q0 c1 = p0p1q0q1,
s2 = c1 ⊕ p0q2 ⊕ p1q1, c2 = c1p0q2 ⊕ c1p1q1 ⊕ p0p1q1q2,
s3 = c2 ⊕ p1q2, c3 = c2p1q2,
s4 = c3;

1 = s0, 1 = s1,
0 = s2 ⊕ p2q0, c′2 = s2p2q0,
0 = s3 ⊕ c′2 ⊕ p2q1, c′3 = s3c

′2⊕ s3p2q1 ⊕ c′2p2q1,
0 = s4 ⊕ c′3 ⊕ p2q2, 1 = s4c

′3⊕ s4p2q2 ⊕ c′3p2q3.

(11.2)

This is a polynomial system of multivariate equations of degree 4. This can
be generalized to express the factorization of any RSA number N as a system
of O(log(N)2) equations of degree 4 over F2.

Cryptanalysis of DES We saw in Chapter 5 the bitslice description of the
DES algorithm. In this description, the S-boxes are given as logical formulas
or equivalently as polynomial expressions over F2. Since the other compo-
nents of the DES algorithm are linear, the DES can in fact be written as a
sequence of polynomial evaluations. Thus, by substituting the plaintext and
ciphertext values he knows into these evaluations, a cryptanalyst may de-
scribe the key recovery problem of DES as a polynomial system of equations.
In order to limit the total degree of the system and preserve its sparsity, it is
convenient to introduce additional variables that represent the intermediate
values encountered in this Feistel scheme.

From these two simple examples, we see that multivariate polynomial sys-
tems of equations can be used very easily to describe many cryptanalytic
tasks. As a consequence, it is important to study whether such multivariate
systems of equations are easy to solve and to understand the key parameters
that govern the complexity of solving such systems.

11.1 General framework

Throughout the rest of this chapter, K denotes an arbitrary field and K̄ its
algebraic closure. As a final goal in this chapter, we would like to formalize

© 2009 by Taylor and Francis Group, LLC

Polynomial systems and Gröbner base computations 339

the resolution of a system of m algebraic equations in n unknowns:
f1(x1, · · · , xn) = 0

...
fm(x1, · · · , xn) = 0

 (11.3)

More precisely, we would like to determine if such a system has got solutions
and if so, whether there are finitely or infinitely many. Finally, we would like to
compute some solutions and, when the number of solutions is finite, possibly
list all solutions. We already know that, even when considering univariate
polynomials, the notion of roots of polynomials is a delicate one. Indeed, over
the real field R, similar polynomials may have distinct behaviors, for example,
x2 − 1 has two roots, while x2 + 1 has none. Thankfully, this first difficulty
vanishes when the polynomials are considered over the algebraic closure of the
real field, i.e., the field C of complex numbers. There, both polynomials have
two roots. For this reason, we systematically consider roots of an algebraic
system as in Equation (11.3) as defined over the algebraic closure K̄.

Looking at our system of equations, intuition says that we should expect
a finite number of solutions when the number of equations is equal to the
number of unknowns, m = n. With more unknowns than equations, there will
be degrees of freedom left and we expect an infinite number of solutions. With
more equations than unknowns, we expect that the equations are incompatible
and that no solutions exist. Of course, we already know from the simple case
of linear systems of equations that this is not always true. For example, the
following system of 2 linear equations in three unknowns has no solution:{

x1 + x2 + x3 = 0
x1 + x2 + x3 = 1

}
. (11.4)

To also give a counter-example for the other case, let us consider the following
system of 3 linear equations in two unknowns:x1 + x2 = 0

x1 = 1
x2 = −1

 , (11.5)

this system clearly has a solution. In the case of linear systems, the algorithms
from Chapter 3 can solve all these issues. With general systems, the situation
is more complicated and we need to introduce some additional mathematical
notions. Comparing the systems given by Equations (11.3) and (11.4), we
first see a difference in the way of writing the equations. With linear systems,
it is convenient to have a linear combination of the unknowns on the left-hand
side of each equation and a constant on the right-hand side. With algebraic
systems, it is often considered preferable to shift the constants to the left-hand
sides and incorporate them in the polynomials f1, . . . , fm.

© 2009 by Taylor and Francis Group, LLC

340 Algorithmic Cryptanalysis

11.2 Bivariate systems of equations

Since the issue of solving general systems of equations is quite complicated
and since we already know how to solve univariate polynomial equations,
we start by considering the reasonably simple case of bivariate systems of
equations before turning to the general case.

First, if we are given a single polynomial f(x, y) in two unknowns, we can
prove that this polynomial has a infinite number of roots over the algebraic
closure K̄. For this purpose, let us write:

f(x, y) =
dx∑
i=0

f (i)(y)xi. (11.6)

Furthermore, let g(y) denote the greatest common divisor of (f (1), · · · , f (dx)),
omitting f (0). This polynomial g has a finite number of roots, possibly zero.
For each root ν of g, we see that f(x, ν) is a constant polynomial and thus does
not have any root, unless f (0)(ν) = 0. For any value ν with g(ν) 6= 0, f(x, ν)
is a non-constant polynomial and its number of roots (with multiplicities)
is equal to its degree. Since K̄ is always an infinite field, f has necessarily
infinitely many solutions: at least one for all possible values of y but the
finitely many roots of g.

After considering a single polynomial, the next step is to look at a system
of two algebraic equations, f1(x, y) = f2(x, y) = 0. Proceeding as above, we
can write:

f1(x, y) =
d1,x∑
i=0

f
(i)
1 (y)xi and f2(x, y) =

d2,x∑
i=0

f
(i)
2 (y)xi, (11.7)

thus viewing f1 and f2 as polynomials in K[y][x]. With this view, it is natural
to compute the GCD of f1 and f2 using Euclid’s algorithm for univariate
polynomial in x. Note that we need to be careful because K[y] is a ring and
not a field. To avoid this complication, one option is to allow rational fractions
from K(y) as coefficients of polynomial in x during the GCD computations.
At the end of the computation, we obtain a polynomial in x with coefficients
in K(y). Two cases are possible, either this polynomial is of degree zero in x
or it is of higher degree. When the degree is positive, we learn that f1 and
f2 are both multiples of another polynomial in x and y. Thus, we are back
to the case of a single polynomial. When the degree in x is 0, the GCD with
coefficient in K(y) is 1. Thus, at first, one may expect that the system has
no roots. However, at that point, we need to clear the denominators in the
relation and obtain:

µ(y)f1(x, y) + ν(y)f2(x, y) = g(y). (11.8)

© 2009 by Taylor and Francis Group, LLC

Polynomial systems and Gröbner base computations 341

Since, at this point, g no longer contains the variable x, we say that we have
eliminated x from the algebraic system of equations.

An example of this approach is given in Figure 11.1. This example is quite
simple; however, in general, due to the need to clear denominators, using
GCD computations for the purpose of elimination is somewhat cumbersome.
Thankfully, there exists a different approach which always yields the correct
result and simply requires to compute the determinant of a square matrix
whose coefficients are univariate polynomials. This approach is the computa-
tion of resultants and is addressed in the next section.

11.2.1 Resultants of univariate polynomials

To understand how resultants work, we start with univariate polynomials.
Let g1(x) and g2(x) be two monic polynomials in K[x], we define the resultant
Res(g1, g2) as:

Res(g1, g2) =
∏

α root in K̄ of g1

(with multiplicity)

g2(α). (11.9)

Splitting g2 into a product of linear factor over K̄ we see that:

Res(g1, g2) =
∏

α root in K̄ of g1

(with multiplicity)

∏
β root in K̄ of g2

(with multiplicity)

(α− β). (11.10)

As a consequence, exchanging the two products and replacing β−α by α−β,
we find that:

Res(g1, g2) = (−1)deg(g1) deg(g2)Res(g2, g1). (11.11)

Moreover, Res(g1, g2) is 0 if and only if g1 and g2 share at least one common
root.

A very important fact is that computing the resultant of g1 and g2 does
not require to compute the roots of either polynomial. Instead, it suffices to
construct a simple matrix formed from the coefficients of both polynomials
and to compute its determinant using classical linear algebra techniques. If
d1 is the degree of g1 and d2 the degree of g2, we construct a square matrix
of dimension d1 + d2. Writing:

g1(x) =
d1∑
i=0

g
(i)
1 xi and g2(x) =

d2∑
i=0

g
(i)
2 xi, (11.12)

© 2009 by Taylor and Francis Group, LLC

342 Algorithmic Cryptanalysis

As a sample system of bivariate equations, let us define:

f1(x, y) = y · x3 + (2y2 + y) · x2 + (y3 + y2 + 1) · x+ (y + 1) and
f2(x, y) = y · x4 + 2 y2 · x3 + (y3 + 1) · x2 + y · x.

Dividing f1 and f2 by y, we obtain unitary polynomials g1 and g2 in x whose
coefficients are rational fractions in y. Using Euclid’s GCD Algorithm 2.1
produces the following sequence of polynomials of decreasing degree in x:

g3(x, y) = (g2 − (x− 1)g1)/(y + 1) = x2 + y · x+
1
y
,

g4(x, y) = g1 − (x+ y + 1) · g3 = 0.

As a consequence, f1 and f2 are both multiples of g3. It is even possible to
clear the denominator and write:

f1(x, y) = (x+ y + 1) · (y x2 + y2 x+ 1) and
f2(x, y) = (x2 + y x) · (y x2 + y2 x+ 1).

Thus, solutions of the original system are either roots of y x2 + y2 x + 1 or
solutions of the lower degree system given by:

h1(x, y) = x+ y + 1 and h2(x, y) = x2 + y x.

Applying Euclid’s algorithm once more, we find that:

h3(x, y) = h2 − (x− 1)h1 = y + 1.

Thus, any solution to this system of equation has y = −1. Substituting
this value back into h1 and h2, we find that in addition x = 0. Since
(x, y) = (0,−1) is not a root of y x2 + y2 x+ 1, this illustrates the fact that
in the general case, the set of roots of algebraic systems of equations can
be decomposed into a union of simpler sets. The reader interested in the
theory behind these decompositions should look up the notion of primary
decomposition in a textbook about algebraic geometry, such as [Eis95].
For further characterization of the roots of y x2 + y2 x + 1, it is useful to
remark that this polynomial is symmetric in x and y. As a consequence,
when (x0, y0) is a root, so is (y0, x0). This polynomial can be rewritten as
sp+1, where s = x+y and p = xy are the elementary symmetric polynomials
in two variables. Note that there is a bijection between sets (x0, y0), (y0, x0)
and pairs (s0, p0). In the forward direction, one computes the sum and
product. In the backward direction, one solves the equation X2 − s0X + p0

whose roots are x0 and y0.

Figure 11.1: A sample algebraic system in two unknowns

© 2009 by Taylor and Francis Group, LLC

Polynomial systems and Gröbner base computations 343

we construct the matrix:

MS(g1, g2) =

g
(d1)
1 g

(d1−1)
1 g

(d1−2)
1 · · · g(0)

1 0 0 · · · 0
0 g

(d1)
1 g

(d1−1)
1 · · · g(1)

1 g
(0)
1 0 · · · 0

...
. · · ·

. · · ·
...

0 0 0 · · · · · · · · · g(i)
1 · · · g(0)

1

g
(d2)
2 g

(d2−1)
2 g

(d2−2)
2 · · · g(0)

2 0 0 · · · 0
0 g

(d2)
2 g

(d2−1)
2 · · · g(1)

2 g
(0)
2 0 · · · 0

...
. · · ·

. · · ·
...

0 0 0 · · · · · · · · · g(j)
2 · · · g(0)

2

(11.13)

This matrix, called the Sylvester matrix of g1 and g2 can be interpreted in the
following way: each column corresponds to some power of x, 1 for the first
column, x for the second and so on, up to xd1+d2−1 for the last column. Each
row corresponds to a polynomial, the first d2 rows are given by g1, xg1, . . . ,
xd2−1g1, the next d1 rows are given by g2, xg2, . . . , xd1−1g2. The resultant of
g1 and g2 is obtained as the determinant of the Sylvester matrix:

Res(g1, g2) = det(Ms(g1, g2)). (11.14)

The proof of this important result is out of the scope of this book and can,
for example, be found in [Lan05, Chapter IV]. Note that using the matrix
of Sylvester, the resultant is also defined for non-monic polynomials. In this
case, we have:

Res(g1, g2) =
(
g

(d1)
1

)d2
(
g

(d2)
2

)d1 ∏
α root in K̄ of g1

(with multiplicity)

∏
β root in K̄ of g2

(with multiplicity)

(α−β).

(11.15)

Prime factors of the resultant When g1 and g2 are monic polynomials
with integer coefficients, each prime p that divides the resultant is such that
g1 and g2 have at least a common root on the algebraic closure of Fp. Note,
however, that when a larger power of a prime, say pk, divides the resultant,
it does not imply that the polynomials have a common root modulo pk.

11.2.2 Application of resultants to bivariate systems

When g1 and g2 are bivariate polynomials in x and y, we can also use
resultants to solve the corresponding system of equations. To do this, we need,
as when considering GCDs, to view these polynomials as polynomials in x
whose coefficients are polynomials in y, i.e., polynomials in K[y][x]. With this
view, Sylvester’s matrix, given by Equation (11.13), is filled with univariate

© 2009 by Taylor and Francis Group, LLC

344 Algorithmic Cryptanalysis

polynomials in y and its determinant is another polynomial in y. In order to
specify which variable is eliminated from the system of equations during the
computation of the resultant, we say that we have computed the resultant of
g1 and g2 in the variable x. This resultant is a polynomial in y. Three cases
arise:

• If the resultant is the zero polynomial, the two polynomials g1 and g2

have a common factor. Using the example of the polynomials f1 and f2

from Figure 11.1, we may check that their Sylvester’s matrix (in x) is:

y 2y2 + y y3 + y2 + 1 y + 1 0 0 0
0 y 2y2 + y y3 + y2 + 1 y + 1 0 0
0 0 y 2y2 + y y3 + y2 + 1 y + 1 0
0 0 0 y 2y2 + y y3 + y2 + 1 y + 1
y 2y2 y3 + 1 y 0 0 0
0 y 2y2 y3 + 1 y 0 0
0 0 y 2y2 y3 + 1 y 0

Moreover, the determinant of this matrix is zero. Indeed, multiplying
MS(f1, f2) on the left by the vector (0,−1,−y, 0, 0, 1, y + 1) yields the
null vector.

• If the resultant is a non-zero constant polynomial, we learn that the
system of equations is incompatible over the field of complex numbers.
However, assuming that f1 and f2 are monic, then modulo prime divisors
of the resultant, they have a common factor. If f1 and f2 are not monic,
the conclusion only holds for prime factors of the resultant which divide
none of the leading coefficients.

• If the resultant is a polynomial of higher degree, say R(y) , then the y
coordinate of any solutions of the system of equations given by f1 and
f2 is a root of R. However, the converse is not true.

11.2.2.1 Using resultants with more variables

In theory, using resultants with more variables allows to solve arbitrary
systems of equations. However, with n polynomials in n unknowns, we see
that the computation quickly becomes difficult. A first problem, we have
too many possible choices, we can choose to eliminate any of the n variables
for any of the n(n − 1)/2 pairs of polynomials. Moreover, even if we decide
to eliminate a specific variable, it is unclear whether we should compute the
resultant of all pairs of polynomials or only keep a fraction of them. With
the next variable to eliminate, we have even more options and do not know
how to proceed. A second problem is that the degrees of the polynomials we
construct during computations of resultants grow too quickly.

As a consequence, resultants can only be used to solve systems of polyno-
mial equations with a reasonably small number of unknowns and a different
approach is needed to address more general cases.

© 2009 by Taylor and Francis Group, LLC

Polynomial systems and Gröbner base computations 345

11.3 Definitions: Multivariate ideals, monomial order-
ings and Gröbner bases

We now turn to the general case of multivariate systems of equations as in
system of equations (11.3). Clearly, any root of this system is also a root of
all polynomials in the ideal I generated by f1, . . . , fm. Recall that this ideal
is given by:

I = (f1, · · · , fm) =

{
m∑
i=1

hifi | ∀(h1, · · · , hm) ∈ K[x1, · · · , xn]m
}
. (11.16)

Given such an ideal I, we define the affine algebraic variety of I, as the set
V(I) of the common roots of all polynomials in I over the algebraic closure K̄ :

V(I) = {(α1, · · · , αn) | ∀ f ∈ I : f(α1, · · · , αn) = 0} . (11.17)

Clearly, V(I) does not depend on the exact choice of generating polynomials
f1, . . . , fm, but only on the ideal I. This is going to be a key property
for solving algebraic systems. In fact, the goal of the present chapter can
informally be rephrased into: Given a set of generating polynomials for an
ideal I, find a new set of generating polynomials better suited to determine
V(I) and its properties.

Conversely, we can ask whether I is uniquely determined by V(I). More
precisely, given a set of points V , let us define:

I(V) = {f ∈ K[x1, · · · , xn] | ∀ (α1, · · · , αn) ∈ V : f(α1, · · · , αn) = 0} .
(11.18)

We see that I(V) is an ideal and that I(V(I)) ⊂ I. However, equality does
not hold in general. To give an example with a single variable, we see that
I(V((x2))) = (x). Indeed, the only (double) root of x2 is 0 and it is also a
root of x. The generalization of this example relies on the definition of the
radical of an ideal. Given an ideal I, we define its radical √I as:

√
I =

{
f ∈ K[x1, · · · , xn]|∃t ∈ N; f t ∈ I

}
. (11.19)

A famous theorem of Hilbert, called the Nullstellensatz theorem relates I(V(I))
and √I:

THEOREM 11.1
If K is an algebraically closed field and I an ideal of K[x1, · · · , xn], then:

I(V(I)) = √I.

PROOF See [CLO07, Chapter 4].

© 2009 by Taylor and Francis Group, LLC

346 Algorithmic Cryptanalysis

11.3.1 A simple example: Monomial ideals

We recall that a monomial in a polynomial ring K[x1, · · · , xn] is a polyno-
mial of the form λxα1

1 · · ·xαnn . For conciseness, we denote it by λX~α, where
~α = (α1, · · · , αn). We say that an ideal I is a monomial ideal if I can be
generated by a family of monomials, i.e., I = (X

~α(1)
, · · · , X ~α(m)). Note that

since K is a field, the constants appearing in the monomials can be removed
after multiplication by their respective inverses.

Monomial ideals are easy to manipulate. First, a polynomial f belongs to a
monomial ideal I = (X

~α(1)
, · · · , X ~α(m)), if and only if all the monomials that

occur with a non-zero coefficient in f also belong to I. Moreover, a monomial
λX

~β , with λ 6= 0 is in I, if and only if, at least one monomial X
~α(i) divides

X
~β . Furthermore, testing divisibility for monomials is very simple, indeed,

X~α divides X ~β if and only if, for all 1 ≤ i ≤ n, we have αi ≤ βi.

11.3.2 General case: Gröbner bases

Since the case of monomial ideals is very simple, it is useful to link the gen-
eral case with this special case. For this purpose, we introduce order relations
between monomials. We call a monomial ordering, any total order relation �
on the set of monomials of K[x1, · · · , xn] which satisfies the following proper-
ties:

• Compatibility For any triple of monomials (X~α, X
~β , X~γ) :

X~α � X ~β implies X~αX~γ � X ~βX~γ .

• Well-ordering Any set S of monomials contains a smallest element
with respect to �, this element is denoted min�(S).

By abuse of notation, when X~α � X
~β , we may also write ~α � ~β. With this

convention, the compatibility property becomes:

• Compatibility For any triple (~α, ~β,~γ) :

~α � ~β implies ~α+ ~γ � ~β + ~γ.

To better understand the well-ordering property, let us introduce two order
relations on monomials:

• The lexicographic ordering �lex is defined by: ~α �lex
~β, if and only if

there exists an index 1 ≤ i0 ≤ n such that:

– For all i < i0, αi = βi.

© 2009 by Taylor and Francis Group, LLC

Polynomial systems and Gröbner base computations 347

– And αi0 > βi0 .

• The reverse lexicographic1 order relation�revlex is defined by: ~α �revlex
~β, if and only if there exists an index 1 ≤ i0 ≤ n such that:

– For all i > i0, αi = βi.

– And αi0 < βi0 .

We leave as an exercise to the reader to check that both of the above order
relations satisfy the compatibility property and that the lexicographic ordering
also satisfies the well-ordering property. However, the reverse lexicographic
order relation is not well ordered. Indeed, with a single variable, we see that
xi �revlex xj , if and only if j > i. As the consequence, the infinite set S of
monomials defined by:

S = {xi | i ∈ N} (11.20)

has no smallest element.
Thus, the reverse lexicographic order is not a proper monomial ordering.

On the contrary, the lexicographic ordering is admissible and is one of the
most frequent monomial orderings used with Gröbner bases.

Several other monomial orderings are also used in this context. To introduce
two of them, let us first define the total degree of a monomialX~α, as the sum of
the exponents, deg(X~α) =

∑n
i=1 αi. It is called the total degree by opposition

to the partial degree in each of the variables. When clear by context, the total
degree of a monomial is simply called its degree. With this notion of degree,
we can define two additional monomial orderings:

• The graded lexicographic ordering �deglex is defined by: ~α �deglex
~β

if and only if:

– Either deg(~α) > deg(~β)

– Or deg(~α) = deg(~β) and ~α �lex
~β.

• The graded reverse lexicographic ordering, often known as “grevlex”
�grevlex is defined by: ~α �grevlex

~β if and only if there exists an index
1 ≤ i0 ≤ n such that:

– Either deg(~α) > deg(~β)

– Or deg(~α) = deg(~β) and ~α �revlex
~β.

1As explained below, this is not a monomial ordering.

© 2009 by Taylor and Francis Group, LLC

348 Algorithmic Cryptanalysis

Both orderings satisfy the compatibility and well-ordering properties (left as
exercise). In the sequel, the expression graded ordering or total degree
ordering is used to collectively refer to these two orders.

Note that the three monomials ordering we have now defined are, in truth,
families of order parametrized by the order of the variables themselves. Since
n variables can be arranged in n! ways, there are n! monomial orderings in
each family. There exists more monomial orderings that can be used with
Gröbner bases. We do not describe these orderings and refer the reader to a
textbox on Gröbner bases such as [CLO07].

Given a monomial ordering � and a polynomial f , we define the head
monomial of f as the largest monomial that appear with non-zero coefficient
in f . We denote this head monomial of f by in�(f). When clear by context,
we omit � from the notation and simply write in(f). Using head monomials,
we can associate to any ideal I a monomial ideal in(I) generated by the head
monomials of all polynomials in I. When I already is a monomial ideal, we
see that in(I) = I. In the general case, in(I) can be used to define Gröbner
bases:

DEFINITION 11.1 A family of polynomials f1, f2, . . . , fm is a Gröbner
basis for I, if and only if:

I = (f1, . . . , fm) and (11.21)
in(I) = (in(f1), · · · , in(fm)). (11.22)

An important fact is that any ideal admits a Gröbner basis (see [CLO07,
Chapter 2]). Moreover, a Gröbner basis for an ideal I can be used to construct
a Euclidean division rule for I. More precisely:

THEOREM 11.2
If (f1, · · · , fm) is a Gröbner basis for the ideal I it generates, then any poly-
nomial g of K[x1, · · · , xn] can be written as:

g =
n∑
i=1

gifi + r, (11.23)

where none of the monomials with non-zero coefficient in r belong to in(I).
This remainder r is unique and does not depend on the choice of the Gröbner
basis but only on the ideal I and on the chosen monomial ordering. In par-
ticular, if g ∈ I then the remainder is always 0.

The remainder r is called the normal form of g with respect to the ideal I
(and monomial ordering �).

PROOF See [CLO07, Chapter 2].

© 2009 by Taylor and Francis Group, LLC

Polynomial systems and Gröbner base computations 349

As a direct consequence, Gröbner bases are often used to determine whether
a polynomial belongs to a given ideal or not. The algorithmic version of the
computation of a normal form by Euclidean division as described above is
given as Algorithm 11.1.

Algorithm 11.1 Computation of normal form
Require: Input polynomial g and Gröbner basis (f1, . . . , fm) of ideal I

Let r ←− 0
Let M ←− HM(g) {HM stands for Head monomial (with respect to mono-
mial order) with convention HM(0) = 0}
while M 6= 0 do

for i from 1 to m do
if HM(fi) divides m then

Let µ←− m/HM(fi)
Let λ←− HC(g)/HC(fi) {HM stands for Head coefficient}
Let g ←− g − λµ fi
Break from FOR loop

end if
end for
if M = HM(g) then

Let r ←− r +HC(g)M {M has not been reduced, transfer to r}
Let g ←− g −HC(g)M

end if
Let M ←− HM(g)

end while
Output r (Normal form of g)

11.3.3 Computing roots with Gröbner bases

Coming back to our initial motivation of finding roots of systems of algebraic
equations, we now consider this problem in the light of Gröbner bases. In fact,
Gröbner bases can be used to address a slightly more general problem, the
problem of unknowns elimination, based on the following theorem:

THEOREM 11.3

For any ideal I in the polynomial ring K[x1, · · · , xn] and any integer t ∈ [1, n],
let I(t) denotes the set of polynomials in I ∩ K[xt, · · · , xn]. Then, I(t) is an
ideal in K[xt, · · · , xn]. Moreover, if G = (f1, · · · , fm) is a Gröbner basis for I
with respect to the lexicographic order �lex, then the subset G(t) of polynomials
in G that belongs to I(t) is a Gröbner basis for I(t).

© 2009 by Taylor and Francis Group, LLC

350 Algorithmic Cryptanalysis

PROOF See [CLO07, Chapter 3].

Note that this theorem only holds for the lexicographic ordering. As a
consequence, the applications we now describe require a Gröbner basis with
respect to this specific ordering. If we are given a Gröbner basis for a differ-
ent ordering and want to perform elimination, we first need to convert it to
lexicographic ordering (see Section 11.6.4).

To find roots of an ideal using a Gröbner basis for the lexicographic ordering,
we start by eliminating all unknowns but one. Equivalently, we consider the
elimination ideal I(n). Since this ideal is univariate, we know how to find all
possible for xn. It remains to lift such a partial solution in xn to complete
solution(s) of the original system. We now distinguish several cases.

11.3.3.1 The case of incompatible systems

The simplest case occurs when the initial system of algebraic equations is
incompatible, i.e., when no solution for the system exists over the algebraic
closure K̄, the Gröbner basis for I contains a constant polynomial, say f1 = 1
after normalization. Note that in this special case, the elimination ideal I(n)

is also spanned by 1 and there are no partial solutions in xn either.
With incompatible system, the good news is that the Gröbner basis con-

tains 1, regardless of the monomial ordering that is used. Thus, the knowledge
of a Gröbner basis for I under any monomial ordering is enough to check that
no solution exists.

11.3.3.2 The case of dimension 0

When a system algebraic equations has a finite number of solutions over
K̄ (at least one), it is said to be of dimension 0. In this case, a Gröbner
basis G for I as in Theorem 11.3 has a very special form. Namely, for each
unknown xi, there is a polynomial in G whose head monomial is a power of xi.
In addition, if we are considering the lexicographic ordering, this polynomial
only involves the unknowns xi, . . . , xn. For simplicity, we let fi denote the
polynomial of the Gröbner basis with a power of xi as head monomial and
that only contains xi to xn. We might expect that I only contains these
polynomials; however, this is not true in general.

In any case, the roots of the system can be determined using a simple
backtracking algorithm. First, one finds the roots of fn, which is a univari-
ate polynomial in xn. Then plugging each possible value for xn in fn−1, one
computes the corresponding values of xn−1 by solving another univariate poly-
nomial. And so on, until the values of all unknowns back to x1 are computed.
In addition, if there are extra polynomials in the Gröbner basis, we should
check that they are satisfied by the candidate solutions. Note that the total
number of solutions can be quite large; counting multiple roots with their
multiplicities, the number of candidates before the final checking is equal to
the product of the degree of the head monomials in the polynomials f1 to fn.

© 2009 by Taylor and Francis Group, LLC

Polynomial systems and Gröbner base computations 351

Thus, except in the good case where many of the head monomials have degree
1, the total number of roots is at least exponential in n. As a consequence,
computing all these roots can be very costly. However, if we only ask for one
solution of the algebraic system or otherwise restrict the acceptable roots, this
process can become quite efficient.

Coming back to the problem of extra polynomials in addition to f1, . . . ,
fn as defined above, this, in fact, covers two different things. First, there
is a general fact that Gröbner basis can contain too many polynomials, this
can be addressed by using the notion of reduced Gröbner basis (see Defini-
tion 11.2 later). Second, somewhat surprisingly, even a reduced Gröbner basis
may contain extraneous polynomials, in addition to the polynomials f1 to fn
mentioned above.

11.3.3.3 The case of higher dimension

When the system of algebraic equations has an infinite number of solutions
over K̄, the system is under-determined and there are some (at least one)
degrees of freedom left. The dimension of the corresponding ideal is precisely
the number of degrees of freedom that are left. This can be determined from
the Gröbner basis of Theorem 11.3. We do not go into more details for this
case, because most cryptanalytic applications consider algebraic systems of
dimension 0. However, it remains possible in this case to find solutions of the
algebraic system.

11.3.4 Homogeneous versus affine algebraic systems

A very frequent special case which is encountered when working with Gröbner
bases is the case of homogeneous system of equations. To address this case,
we first need to define the notion of homogeneous polynomials. Given a mul-
tivariate polynomial F , we say that F is homogeneous, if and only if all the
monomials that occur in F with a non-zero coefficient have the same total
degree. For example, F1(x, y) = x2 + xy + y2 is a homogeneous polynomial.
An algebraic system of equations is said to be homogeneous, if and only if,
all the polynomials in the system are homogeneous. The definition of homo-
geneous ideals is more complicated. This stems from the fact that all ideals,
including homogeneous ideals, contain non-homogeneous polynomials. Going
back to our example, the ideal generated by the polynomial F1(x, y) con-
tains (x + 1)F1(x, y) which is not homogeneous. To get rid of this difficulty,
we say that an ideal is homogeneous, if and only if, there exists a family of
homogeneous generators for this ideal.

Homogeneous ideals satisfy many additional properties. They are often
considered when working with Gröbner bases because they are better behaved
and easier to analyze. In particular, given a homogeneous ideal I, it is very
useful to consider its subset Id containing only homogeneous polynomials of
degree d and the zero polynomial. This subset Id is a finite dimensional vector

© 2009 by Taylor and Francis Group, LLC

352 Algorithmic Cryptanalysis

space which naturally occurs in Gröbner basis computations.
In this book, for lack of space, we do not consider homogeneous systems

but deal with ordinary systems, usually known as affine systems of equations.
This choice is more natural for readers who do not already know Gröbner
basis; however, it induces many complications when going into the details. To
balance this, we sometimes remain imprecise in the following discussion.

To shed some light on the difference between homogeneous and affine sys-
tems in Gröbner basis computations, let us quickly mention the notion of
“degree fall.” This notion refers to the fact that the sum of two homoge-
neous polynomials of degree d is either a polynomial of degree d or 0. On
the contrary, with affine polynomials, this is no longer true, the sum of two
polynomials of degree d may be 0, a polynomial of degree d or a non-zero
polynomial of degree < d. In this last case, we say that a degree fall occurs
during the sum. While computing Gröbner basis, degree falls may occur dur-
ing the process and they greatly complicate matters. One consequence is that
in the affine case, in order to obtain vector spaces corresponding to Id for
homogeneous ideals, we need to consider the subset I≤d of all polynomials in
the ideal of degree at most d.

11.4 Buchberger algorithm

The first algorithm for computing Gröbner bases was proposed by Buch-
berger. To introduce this algorithm, let us consider a simple example of
an ideal with 2 generators in 2 unknowns, namely the ideal I generated by
f1 = x2y+ 1 and f2 = xy2− 2. We first remark that the basis (f1, f2) for I is
not a Gröbner basis (for any monomial ordering). Indeed, the ideal in(I) is
not generated by the head monomials x2y and xy2 of f1 and f2. In particular,
considering f3 = yf1 − xf2 = y + 2x, we see that its head monomial, which
is either x or y depending on the considered ordering, does not belong to the
ideal (x2y, xy2).

The method we used to construct f3 is the key ingredient of Buchberger’s
algorithm. This polynomial f3 is constructing by subtracting a multiple of f1

and a multiple of f2 in order to guarantee that the two multiples share the
same head monomial and that the contribution of this head monomial vanishes
in f3. Clearly, the resulting polynomial f3 is unique, up to multiplication by
a constant. It is called a principal syzygy or sometimes a S-polynomial for
f1 and f2. The principal syzygy of f1 and f2 is denoted by S(f1, f2). In the
sequel, we often write syzygy instead of principal syzygy. Note however that
in general, syzygy has a wider meaning.

The first application of syzygies is an algorithm, also due to Buchberger,
for testing whether a basis G for an ideal I is a Gröbner basis for I. This

© 2009 by Taylor and Francis Group, LLC

Polynomial systems and Gröbner base computations 353

algorithm takes all pairs of polynomials from G, constructs their principal
syzygies and computes the remainder of each syzygy modulo G using the
normal form Algorithm 11.1. A theorem of Buchberger states that G is a
Gröbner basis for I, if and only if the normal form obtained for each principal
syzygy with respect to G is 0. For a proof, refer to [CLO07, Chapter 2].

A simple version of Buchberger’s algorithm can be derived from this decision
algorithm. It suffices to add to the initial basis G any non-zero remainder that
appears and to repeat the process until the decision algorithm is happy with
the current basis. Since each of the computed remainders clearly belongs to
the ideal I, the final basis generates the correct ideal and it is a Gröbner basis.
This simple version is given as Algorithm 11.2. Note that it needs to compute
the GCD of two monomials M1 and M2, this is easily done by keeping for
each unknown the minimum of the two exponents in M1 and M2.

Algorithm 11.2 Basic version of Buchberger’s algorithm
Require: Input list of polynomials G {Throughout the algorithm |G| denotes

the current size of list G}
Let i←− 2
while i ≤ |G| do

Let g1 ←− G[i]
Let M1 ←− HM(g1)
Let λ1 ←− HC(g1)
for j from 1 to i− 1 do

Let g2 ←− G[j]
Let M2 ←− HM(g2)
Let λ2 ←− HC(g2)
Let M ←− GCD(M1,M2)
Let h←− λ2(M2/M)g1 − λ1(M1/M)g2

Let r be the normal form of h with respect to G {Algorithm 11.1}
if r 6= 0 then

Append r to G {This increments |G|}
end if

end for
Let i←− i+ 1

end while
Output Gröbner basis G

Buchberger’s algorithm can be improved from this basic version by adding
rules to avoid the computation of any principal syzygy, for which we can
predict a reduction to zero; see [CLO07, Chapter 2].

We now continue our example, using a monomial ordering such that y � x.
Thus y is the head monomial of f3. We see that the principal syzygy of f1

© 2009 by Taylor and Francis Group, LLC

354 Algorithmic Cryptanalysis

and f3 is S(f1, f3) = f1 − x2f3 = −2x3 + 1, since x3 is not a multiple of
the previously encountered head monomial, the remainder of this syzygy is
f4 = −2x3 + 1. Similarly, the syzygy of f2 and f3 is S(f2, f3) = f2 − xyf3 =
−2yx2−2, adding 2f1, we see that the corresponding remainder is 0. Next, we
turn to S(f1, f4) = 2xf1+yf4 = 2x+y, whose remainder is 0 since S(f1, f4) =
f3. We also see that S(f2, f4) = 2x2f2 + y2f4 = −4x2 + y2 = (−2x+ y)f3 has
remainder 0 and that S(f3, f4) = x2f3 + f4 = yx2 + 1 = f1 has remainder 0.
We conclude that (f1, f2, f3, f4) is a Gröbner basis for I.

However, let us remark that this Gröbner basis is too large. Indeed, f1 =
x2f3 + f4 and f2 = (xy − 2x2)f3 − 2f4, thus f1 and f2 can safely be removed
and (f3, f4) also is a Gröbner basis for I. This also shows that Gröbner bases
are not uniquely determined when an ideal and monomial ordering are fixed.
Should unicity be required, the notion of reduced Gröbner basis can be
used.

DEFINITION 11.2 A family of polynomials F = (f1, f2, · · · , fm) is a
reduced Gröbner basis for I, if and only if:

1. F is a Gröbner basis for I

2. For all fi in F , no monomial appearing in fi is a head monomial in the
subfamily F − {fi}.

3. The coefficient of the head monomial in each polynomial fi is 1.

It is easy to obtain a reduced Gröbner basis from a Gröbner basis with a
simple reduction procedure given as Algorithm 11.3. Moreover, any non-zero
ideal I has a unique reduced Gröbner basis; see [CLO07, Chapter 2].

11.5 Macaulay’s matrices

In Section 11.2, we saw that in the bivariate case, polynomial systems can
be computed using resultants, which rely on the computation of determinants
of Sylvester’s matrices. In the general case, this can be somehow generalized
by using Macaulay’s matrices.

Macaulay’s matrices are usually defined to represent homogeneous ideals
(see Section 11.3.4). Following our convention in this chapter, we adapt the
definition to the affine case. Given an ideal I, a Macaulay’s matrix of degree
d for I is a matrix that describes a basis for the vector space I≤d introduced
in Section 11.3.4).

Given a Gröbner basis for I, it is easy to construct a Macaulay’s matrix
M≤d(I) of I≤d. The columns of this matrix are labelled by the monomials

© 2009 by Taylor and Francis Group, LLC

Polynomial systems and Gröbner base computations 355

Algorithm 11.3 Reduction of a Gröbner basis
Require: Input Gröbner basis G as list of polynomials {Throughout the

algorithm |G| denotes the current size of list G}
Let i←− 1
while i ≤ |G| do

Let g ←− G[i]
Let r be the normal form of g with respect to G−G[i] {Algorithm 11.1}
if r = 0 then

Append G[i] from G {This decrements |G| and renumber polynomials}
else

Let λ←− HC(r)
Let r ←− r/λ
Replace G[i] by r
Let i←− i+ 1

end if
end while
Output reduced Gröbner basis G

of degree ≤ d. With n variables in degree at most d, there are
(
n+d
d

)
such

monomials. The rows of the matrix are labelled by simple multiples of the
polynomials in the Gröbner. For example, if f is a polynomial of degree d′ in
the Gröbner basis, for each monomial m of degree at most d−d′ there is a row
labelled mf . In particular, the matrix of Sylvester can be interpreted in that
way. Starting from f1 and f2 of respective degree d1 and d2 in x, the matrix
contains d1+d2 columns labelled from x0 to xd1+d2−1 and d1+d2 rows labelled
x0f1 to xd2−1f1 and x0f2 to xd1−1f2. The only noticeable difference is that
for Sylvester’s matrices, the highest degree monomials are traditionally the
leftmost columns, while for Macaulay’s matrices they are usually the rightmost
ones. Redefining the order of rows and columns in Sylvester’s matrices would,
depending on the degrees d1 and d2, affect the sign of resultants.

Conversely, Lazard showed in [Laz83] that by performing linear algebra on
Macaulay’s matrices of the ideal I, up to high enough a degree, it is possible
to obtain a Gröbner basis for I. This property is, in particular, used for the
algorithms presented in the next section.

11.6 Faugère’s algorithms

When computing Gröbner bases with Buchberger’s algorithm, the practical
limits are quickly encountered. As a consequence, many applications, espe-
cially in cryptanalysis need to use more advanced algorithms. Among those,

© 2009 by Taylor and Francis Group, LLC

356 Algorithmic Cryptanalysis

two algorithms by Faugère, called F4 and F5 (see [Fau99, Fau02]) are often
considered. The papers presenting these two algorithms focus on different
aspects of Gröbner basis computations. On the one hand, F4 considers how
to improve the computation of reduced syzygies that occurs in Buchberger’s
algorithm, by using (sparse) linear algebra algorithms on Macaulay’s matri-
ces. On the other hand, F5 focuses on the issue of avoiding reduction to
zero during the computation. Indeed, it is well known that a large fraction
of the syzygies considered during Gröbner basis computations yields the zero
polynomial after reduction modulo the current basis of the ideal.

The basic idea of the F4 algorithm is to use Macaulay’s matrices in order to
represent polynomial ideals, compute syzygies and speed up the computation
required by Buchberger’s algorithm. The basic idea of the F5 algorithm is to
organize the computation at the abstract algebraic level in order to predict and
remove many of the reductions to zero. For optimal performance of Gröbner
basis computations, it is best to use both the F4 and F5 ideas at the same
time.

11.6.1 The F4 approach

As said above, the F4 approach heavily relies on the use of Macaulay’s
matrices. Thus, it is useful to explicitly specify the correspondence between
polynomial ideals and matrices. If we restrict ourselves to polynomials of total
degree at most d within an ideal, we need to represent a vector space of finite
dimension.

Let us start by considering a vector space Vd be a vector space generated by
an arbitrary (finite) set Sd of polynomials of degree at most d. We can easily
describe Vd with a matrix if we label the columns of the matrix by monomials
and fill each row with a polynomial by placing in the column corresponding to
a monomial the coefficient of this monomial in the polynomials. In particular,
if we multiply this matrix by the vector formed of all monomials in the same
order, we obtain a vector whose coordinates are the polynomials of Sd. To
make sure that this encoding is meaningful in the context of Gröbner basis, the
mapping between monomials and columns should conform to the monomial
ordering for which the Gröbner basis is computed. Moreover, for the sake of
compatibility with the linear algebra algorithms, it is preferable to consider
that this mapping is in decreasing order starting from the leftmost column.
With this convention, the head monomial of a polynomial corresponds to the
leftmost non-zero entry in the corresponding row.

In the case of ideals, we encounter complications because a family of poly-
nomials which generates an ideal does not suffice to generate the full vector
space. Temporarily forgetting about the degree limit, we can construct an
infinite generating family simply by putting together all multiples of the orig-
inal polynomials. Putting back the degree limit, two very different cases arise.
With homogeneous ideals, it suffices to consider the multiples of the original
polynomials up to the degree limit. With affine ideals, because of degree falls,

© 2009 by Taylor and Francis Group, LLC

Polynomial systems and Gröbner base computations 357

this is no longer true and we might need additional polynomials.

To illustrate this by a basic example, let us consider the ideal generated by
f1(x, y) = x and f2(x, y) = x2 + y. Up to degree 1, there is a single multiple
to consider: f1 itself. However, the ideal generated by f1 and f2 contains the
polynomial f2 − f2

1 = y, which is of degree one.

Thus, we see that for fixed degree d, we are faced with two challenges.
First, we need to make sure that the matrix we construct truly covers all
polynomials of degree up to d. Second, we should represent this matrix in a
convenient form which allows us to quickly test whether a given polynomial
belongs to the vector subspace spanned by this matrix.

The second issue is quite easy to address, it suffices to transform the matrix
into row echelon form as described in Section 3.3.3 of Chapter 3. However,
in the context of Gröbner basis computations, we need to slightly change
the implementation of the linear algebra algorithm, in order to mix some
dense and some sparse rows within the same matrix. Indeed, on the one
hand, in some rows we simply need to store multiples of polynomials of lower
degree and it is preferable to store them in factored form. On the other hand,
in some rows we need to store polynomials which have been computed as
syzygies and it is often easier to store them in dense form. Note that in tuned
implementations, it can be very useful to use various techniques, described
in [Fau99], to also compress these polynomials.

The first issue is more complicated. Indeed, due to degree fall, when com-
puting the row echelon form of Macaulay’s matrix up to degree d, new poly-
nomials of degree smaller than d may appear due to a degree fall. In that
case, we should not only add this polynomial to the matrix but also all its
multiples. Due to this possibility, it is not enough to compute the multiples
of the initial polynomials up to degree d and to perform linear algebra in
order to make sure that Macaulay’s matrix is complete. Instead, the F4 ap-
proach couples this linear algebra approach with the notion of syzygy as in
Buchberger’s algorithm.

Still, the basic idea of constructing all multiples of the given polynomial
up to some degree d, putting them in a matrix and reducing this matrix
in row echelon form is a very useful thought experiment. Note that, if d is
high enough, this yields a Gröbner basis. The main problem is that, short of
taking an unreasonably high degree, we do not know beforehand how high d
should be. Moreover, the degree of monomials that needs to be considered
with such a direct approach is usually larger than the maximum degree that
occurs during more advanced Gröbner basis algorithm. In addition, except
for systems of equations with specific properties, in order to find the right
value of d, we essentially need to compute a Gröbner basis of the system.
Yet, we give for further reference an algorithmic version of this basic idea as
Algorithm 11.4. Note that this algorithm is essentially what has been called
linearization/relinearization in [KS99].

© 2009 by Taylor and Francis Group, LLC

358 Algorithmic Cryptanalysis

Algorithm 11.4 A basic linear algebra based Gröbner basis algorithm
Require: Number of unknowns n
Require: Input list of polynomials G
Require: Maximal degree D to consider

Let N ←−
(
n+d
d

)
{Number of monomials, see Exercise 6}

Create array A (with N columns)
for i from 1 to |G| do

for all M monomial of degree at most D − degG[i] do
Let h←−M ·G[i]
Add a new row in A encoding h

end for
Compute row echelon form for A
Let m denote the number of non-zero rows in A
Create empty list H
for i from m downto 1 do

Transform i-th row of A into polynomial h {This loop considers head
monomials in increasing order.}
if HM(h) not divisible by any head monomial of polynomial in H
then

Add h to H
end if

end for
end for
Output H

© 2009 by Taylor and Francis Group, LLC

Polynomial systems and Gröbner base computations 359

11.6.2 The F5 approach

With Buchberger’s algorithm and also when using the F4 approach, it has
been remarked that a large fraction of the polynomials that are constructed
reduces to zero. As a consequence, the algorithms spend a large fraction
of their running time computing and reducing polynomials which are then
discarded.

To analyze this problem, let us consider the thought experiment Algo-
rithm 11.4. Assume that f1 and f2 are two polynomials of degree d1 and
d2 in the initial system. If we construct the matrix containing all multiples
up to degree d1+d2, the identity f2f1−f1f2 = 0 is going to induce a reduction
to zero during the linear algebra. To see why, it is useful to label the rows we
are inserting in the matrix. Given an initial polynomial fk and a monomial m,
we label the rows containing a description of the polynomial mfk by the label
mFk. Once this is done, we can easily label a linear combination of rows, in
the following way: given a polynomial g =

∑N
i=1 αimi then gFk denotes the

linear combination of rows:
∑N
i=1 αi(miFk). With this convention, any linear

combination of rows can be described as a sum of products of the form giFi.
We now remark that the above identity implies that the linear combination
f2F1− f1F2 is equal to 0. This is a generic reduction to zero which occurs for
an arbitrary system of equations.

The goal of the F5 approach is precisely to avoid all such generic reductions
to 0. In the context of Algorithm 11.4, let us describe all possible generic
reductions to 0. Assume that the initial system contains polynomials from f1

to fk, labeled F1 to Fk and denote by I` the ideal generated by the initial
sequence of polynomial from f1 to f`. Let g be an arbitrary polynomial in
I`, which can be written as

∑`
i=1 gifi. Assuming that ` < k, we have an

identity gf`+1 − f`+1g = 0. From this identity, we easily see that the linear
combination

gF`+1 −
∑̀
i=1

(f`+1gi)Fi

is equal to zero. To avoid the corresponding reduction to zero, we should make
sure that at least one monomial involved in this combination is not included
in Macaulay’s matrix. Moreover, if we remove a single row for this reduction
to zero, we are not changing the vector space spanned by the matrix. Thus,
the row echelon form we obtain is unaffected2. In [Fau02], Faugère proposed
to remove the row mF`+1 corresponding to the product of the head monomial
m of g by the polynomial f`+1. Of course, this should be done for all possible
head monomials in I`. Faugère also proved in [Fau02] that for homogeneous
ideals, this approach removes all generic reduction to 0.

Up to now, we have described Faugère’s idea in the context of Algorithm 11.4.
However, we would like to use it with practical Gröbner basis algorithms. In

2More precisely, the only change to the row echelon form is the removal of a row of zeros.

© 2009 by Taylor and Francis Group, LLC

360 Algorithmic Cryptanalysis

order to do this, we need to be able to label all the polynomials that occur
during these computations. The problem is that, with these algorithm, we are
no longer inserting multiples of the initial polynomials but more complicated
combinations obtained from syzygies. Of course, we could always label the
linear combination as above with a label of the form

∑k
i=1 giFi. However, this

would be cumbersome to manipulate. The good news is that to remove generic
reduction to zero, it suffices to keep the “head term” of this complicated label.
More precisely, if g` is the first non-zero polynomial in the complete label and
m` is its head monomial, then we simply keep m`F` as simplified label. These
labels can be easily tracked during the computations of syzygies. Indeed, let
us consider a syzygy between f and g of the form αfmff−αgmgg and assume
that f and g are respectively labelled m`F` and m`′F`′ with `′ > `. Then the
syzygy is simply labelled by (mfm`)F`. If ` = `′, we should keep the largest
of the two monomials m` and m`′ in the label. Note that we cannot have
both ` = `′ and m` = m`′ because it would correspond to inserting twice the
same row in Macaulay’s matrix and lead to a generic reduction to zero.

11.6.3 The specific case of F2

A specific case which arises quite often in cryptography is the computation
of Gröbner basis over the finite field F2. Moreover, in this case, we usually
want to find solutions of the system over the finite field itself and not over its
algebraic closure. In order to make this information available to the Gröbner
basis, a traditional method is to add the so-called “field equations.” For an
unknown x, the field equation over F2 simply is x2+x = 0. It is clear that over
F2 both 0 and 1 satisfy this equation. Moreover, any value strictly belonging
to an extension field of F2 does not satisfy it. Thus, adding field equations let
us focus on the ground field solutions. Note that this can be generalized to
Fp by considering the equations xp − x = 0. However, when p becomes even
moderately large, the degree of the field equations is too big to be useful in
Gröbner basis computations. With F2, the field equations are only quadratic
and very helpful to speed up the computations of Gröbner bases.

However, this is not the only optimization which can be used over F2. We
can also improve the linear algebra as in Chapter 3 using low-level optimiza-
tion tricks. In fact, similar tricks can be used to add the field equations
implicitly, redefining multiplication to reflect the property that x2 = x. This
allows to represent the monomials in a more compact way. However, a bad
side effect is that the syzygies between a polynomial and an implicit field
equation should be addressed in a specific fashion.

For illustration purposes, a simple implementation of Gröbner basis com-
putation over F2 simultaneously using the F4 and F5 approaches is available
on the book’s website.

© 2009 by Taylor and Francis Group, LLC

Polynomial systems and Gröbner base computations 361

11.6.4 Choosing and changing monomial ordering for Gröbner
bases

In theory, all the algorithms that we have seen for computing Gröbner bases
can be applied with an arbitrary monomial ordering. However, in practice, it
has often been remarked that the choice of monomial ordering greatly impacts
the running time of the computation. As a general rule, total degree orderings
are to preferred. More precisely, the ordering grevlex is usually the best
possible choice. Depending on the specific problem at hand, one can also
fine-tune the order of the individual variables within the monomial ordering.

This becomes a problem when the application we have in mind requires
a specific monomial ordering. For example, we have seen that to solve a
algebraic system of equations, the lexicographic ordering should be preferred.
The good news is that, once we have computed a Gröbner basis of an ideal for
some monomial ordering, it is easier to derive from this a Gröbner basis for
another ordering than to recompute this second basis from scratch. Moreover,
specific algorithms have been proposed to address this problem. They are
called ordering change algorithms for Gröbner bases. In this section, we briefly
discuss these algorithms.

When considering ordering change, two cases need to be distinguished. For
ideals of dimension 0, i.e., ideals with finitely many solutions, there is a method
due to Faugère, Gianni, Lazard and Mora (see [FGLM93]), which is called
FGLM. This method is based on linear algebra and very efficient. We sketch
its main idea below in a simplified version. Thanks to this method, the best
approach to compute Gröbner bases in dimension 0 is usually to start by
computing a basis for the grevlex ordering and then to convert this basis to
the desired ordering. For ideals of larger dimension, there exists a technique
called the Gröbner Walk [CKM97] which can be used for conversion. However,
in practice, it is much less efficient than FGLM. Thus, problems which involve
ideals of positive dimension are often harder to solve than similar problems
in dimension 0. The details of the Gröbner Walk algorithm are out of the
scope of this book; however, it is useful to know that this algorithm is often
available in Gröbner basis computation packages.

11.6.4.1 A simplified variant of FGLM

Assume that we are given a reduced Gröbner basis G for some ideal I
and some monomial ordering, usually grevlex. We know that to solve the
algebraic system, it is useful to convert this to obtain a Gröbner basis G′ for
the lexicographic ordering. Moreover, if I has dimension 0, there exists in G′

a univariate polynomial f(x1) involving only the smallest variable x1 in the
lexicographic ordering.

To illustrate FGLM, we now present a simplified version of this algorithm,
whose goal is to efficiently recover f(x1) from G. In order to do this, we
first define the set B(G) of all monomials which are not divisible by a head
monomial of G, with respect to the monomial ordering used for computing G.

© 2009 by Taylor and Francis Group, LLC

362 Algorithmic Cryptanalysis

A very important fact is that, since I has dimension 0, B(G) is a finite set.
Let us also consider the set V (G) of all polynomials after reduction modulo
G. This set is a finite dimensional vector space and B(G) is a basis for V (G).

In the vector space V (G), we can consider the action of the multiplication
by x1. More precisely, starting from a polynomial P in V (G), we multiply it
by x1 and perform reduction modulo G. The result x1P (mod G) is a poly-
nomial in V (G). Since, V (G) is finite dimensional, any large enough family
of polynomials in V (G) is linearly dependent. In particular, the sequence of
monomials 1, x1, . . .xN1 reduced modulo G is linearly dependent when N is
large enough. Moreover, such a dependence relation can be translated into a
polynomial f such that f(x1) is equal to 0 modulo G. Thus, f(x1) belongs to
I. If f is minimal, i.e., if N is minimal, this polynomial is the first polynomial
of G′, that we were looking for.

From an algorithmic point-of-view, we need to consider two issues. First,
we need a fast method for multiplication by x1 in order to produce the se-
quence xi1. Second, we need to recover f from the expression of the monomials.
The first issue can be addressed by remarking that to multiply a polynomial
by x1, it suffices to multiply each of its terms by x1 and to sum the results.
For monomials, the multiplication by x1 is very easy and we only need to
study the reduction modulo G. For the monomial m, two cases arise: ei-
ther x1m is in B(G) and there is nothing to do, or x1m is divisible by the
head monomial of a polynomial g in G. In that case, we need to perform a
full reduction modulo G. An important improvement on this basic method
is proposed in [FGLM93] to replace this full reduction by a simple subtrac-
tion of a multiple of g, followed by the re-use of already computed monomial
multiplications. We do not fully describe this improvement which requires
to simultaneously compute the multiplication of monomials by each possible
variable xi.

The second issue is a simple matter of using linear algebra algorithms to
find a linear dependency between the reduced expressions for the monomials
xi1. The rest of the polynomials in G′ are found by computing extra linear
dependencies in other families of monomials.

11.7 Algebraic attacks on multivariate cryptography

To illustrate the use of Gröbner basis computations in cryptography, we are
going to consider attacks against a specific public key cryptosystem based on
multivariate cryptography and called HFE (Hidden Field Equations). This
section presents a description of HFE together with an account of Gröbner-
based attacks against this cryptosystem. Note that these attacks do not work
on all the variations of the HFE system as proposed in [Pat96], they target

© 2009 by Taylor and Francis Group, LLC

Polynomial systems and Gröbner base computations 363

the basic HFE scheme. For more information about multivariate public key
cryptography, the reader may refer to [BBD07, pages 193–242].

11.7.1 The HFE cryptosystem

The HFE scheme proposed by Patarin in [Pat96] is a multivariate crypto-
graphic scheme based on the hardness of solving quadratic systems of multi-
variate equations over finite fields. Its binary version uses quadratic systems
over F2. The rationale behind this scheme is that solving quadratic systems
over F2 is an NP-complete problem.

In order to describe the HFE cryptosystem, we are going to alternate be-
tween two different representations of the polynomial ring F2n [X]. In what
we call the secret view, we consider the finite field with its complete alge-
braic structure and take a univariate polynomial ring over this finite field. In
the public view, we strip a large amount of structure and consider the mul-
tivariate polynomial ring F2[x0, · · · , xn−1]. To link the two representations,
we choose a basis for F2n , for example a polynomial basis given by 1, α, . . . ,
αn−1, replace X by

∑n−1
i=0 xiα

i and take the coordinates of the result. Using
this link, any polynomial F in X is translated into n polynomials f0, . . . ,
fn−1 (with fi denoting the αi-coordinate). Moreover, if the degree of the
monomials appearing in F is well chosen, it is possible to make sure that the
coordinates fi are quadratic. Indeed, it suffices to remark that any monomial
X2i is obtained by iterating the Frobenius map i times and has a linear ex-
pression in the xis. As a consequence, any monomial X2i+2j with i 6= j leads
to a quadratic expression.

The key idea behind HFE is that in the secret view, evaluating F at a point
X is easy and solving the equation Y = F (X) for a given value of Y is also
easy. In the public view, evaluating n quadratic polynomials remains easy,
but solving a system of n quadratic equations is hard in general. Thus, F
is a candidate trapdoor one-way function, the knowledge of the secret view
being the trapdoor. Note that to make sure that F remains easy to invert,
we need to put an upper bound D on the degree of the monomials X2i and
X2i+2j appearing in F . In order to make the description of HFE complete,
a single ingredient is missing: how do we guarantee that the secret view is
hidden and not revealed by the public view? The answer proposed in [Pat96]
is astonishingly simple: perform two (invertible) linear changes, one on the
input variables and one on the resulting system of equations. Despite the
simplicity of this ingredient, no known simple attack can recover the secret
view from the public view of an HFE system.

To make the description of HFE more precise, we first fix the two parameters
n and D and choose a random polynomial F in F2n [X] of degree at most
D that only contains that constant monomial and monomials of the form
X2i and X2i+2j . We also choose two random invertible n × n matrices over
F2 and produce the public system of quadratic functions by considering the
composition T ◦ f ◦ S. In other words, we proceed as follows:

© 2009 by Taylor and Francis Group, LLC

364 Algorithmic Cryptanalysis

• Let x0, . . . , xn−1 be the input variables and first compute a linear change
of variables by writing:

x′0
x′1
...

x′n−1

 = S ·

x0

x1

...
xn−1

 . (11.24)

• Let X =
∑n−1
i=0 x

′
iα
i, consider the polynomial F (X) and take its coor-

dinates writing:

F (X) =
n−1∑
i=0

f ′i(x
′
0, · · · , x′n−1)αi. (11.25)

• Compute the second change of coordinates, letting:
f0

f1

...
fn−1

 = T ·

f ′0
f ′1
...

f ′n−1

 . (11.26)

After computing the polynomials fi, they are published as the public key of
the HFE scheme. Since these polynomials are quadratic in n variables over F2,
they can be described quite compactly. Indeed, there are n(n−1)/2 quadratic
monomials xixj , n linear monomials xi and a single constant monomial. All
in all, the n polynomials can be encoded using about n3/2 bits. The HFE
public operation simply consists of evaluating the n public polynomials on a
n-uple of bits. For encryption purposes, it is important to make sure that
each ciphertext has a unique decryption. Since this is not guaranteed for an
arbitrary function F , it is necessary in this case to add redundancy in the
encrypted n-uple, in order to allow unique decryption. We do not describe
this mechanism here.

A important remark about HFE is that inverting F , with knowledge of
the secret view, requires time polynomial in n and D. As a consequence, to
express this time in terms of a single parameter, it is natural to assume that
there exists a parameter γ such that D = O(nγ). Letting t denote log2(D),
this implies that t = O(log n). Note that t is an upper bound on the values
i and j that may appear in the monomials X2i and X2i+2j . In practice, a
value of D around 128 is frequently considered.

11.7.2 Experimental Gröbner basis attack

Clearly, in order to break HFE, it suffices to find a method that allows
inversion of an algebraic system of equations based on the polynomials fi

© 2009 by Taylor and Francis Group, LLC

Polynomial systems and Gröbner base computations 365

and on a target n-uple of bits. In general, for large values of n, currently
available algorithms completely fail to compute a Gröbner basis for n random
quadratic polynomials over F2. In particular, for n = 80 which is one of the
parameters proposed as a challenge by Patarin, random quadratic systems are
out of range of Gröbner algorithm.

However, quadratic systems based on the HFE trapdoor are not random.
In particular, this was illustrated by Faugère who was able to break an HFE
challenge for n = 80, see [FJ03]. The experimental fact is that, when faced
with HFE systems, the Gröbner basis algorithm only involves the computation
of polynomials and syzygies of surprisingly low degree. This degree is related
to the degree D of the secret polynomial, for example for 17 ≤ D ≤ 128 no
polynomial of degree higher than 4 appears. Moreover, the resulting Gröbner
basis contains a very large number of linear polynomials, almost n. As a
consequence, once the Gröbner basis is obtained for the grevlex ordering,
there is no need to perform a change of ordering, it suffices to compute all
the solutions of the linear system and test each of them against the original
system of equations.

This experimental result was published, together with a partial heuristic
explanation based on monomial count in [FJ03].

11.7.3 Theoretical explanation

The reason for the experimental behavior of HFE systems can be analyzed
in a much more precise fashion. The key argument is that the degree of
the polynomials and syzygies that appear in a Gröbner basis computation is
essentially unaffected by the two sorts of linear changes that are used when
constructing the HFE secret key.

As a consequence, it suffices to analyze the highest degree that can be
reached for a Gröbner basis computation, when the linear transforms are
omitted. Thanks to the use of normal bases, it is even possible to study
an even simpler system of equations over the extension field F2n . The idea
is to represent an element X in F2n in a redundant manner as a n-uple
(X,X2, X4, · · · , X2n−1

) containing X and all its copies by the Frobenius map,
i.e., by squaring. There is a linear change, with coefficients in F2n between
this n-uple and the coordinates of X in any fixed basis for F2n over F2. For
simplicity, we give a name to each unknown in the above n-uple and let Xi

denote X2i . With this representation of X, the polynomial F can be writ-
ten as a quadratic polynomial G(X0, X1, · · · , Xn−1). The good news is that,
when looking more precisely at the construction of G from F , this quadratic
polynomial only involves a subset of the unknowns (X0, · · · , Xt) where t is
the parameter t = log2D that we introduced earlier. Moreover, applying the
Frobenius maps i times to the equation G(X0, X1, · · · , Xn−1) = Y , we obtain
new equations:

G(Xi, Xi+1, · · · , Xi+n−1) = Y 2i , (11.27)

© 2009 by Taylor and Francis Group, LLC

366 Algorithmic Cryptanalysis

where the indices are reduced modulo n in case of overflow.
Of course, we also have extra quadratic equations that translate the Frobe-

nius relations, i.e., the equations Xi+1 = X2
i . Putting all this together, if

we take t copies of G by applying the Frobenius map up to t − 1 times, we
have a total of 3t− 1 quadratic equations in 2t unknows. Since the number of
equations in this system is 1.5 times the number of unknowns, it is possible
to use generic complexity analysis results on Gröbner bases computation to
show that the running time is bounded by tO(t); see [GJS06]. Note that our
specific use of this complexity result involves a heuristic argument. However,
it can be made rigorous if we only aim at constructing a distinguisher between
HFE public keys and random quadratic systems with equivalent parameters.

To summarize, the relative weakness of HFE schemes to Gröbner techniques
comes from the fact that the system hides by linear changes a system that
can be obtained from the secret view and that involves much fewer equations.

11.7.4 Direct sparse approach on Macaulay’s matrix

To conclude this chapter, it is important to mention that it is, sometimes,
possible to consider a very direct approach to Gröbner basis computations for
cryptographic applications, similar to Algorithm 11.4. To give a single exam-
ple, consider once again the case of HFE systems, we know that a Gröbner
basis computation only involves polynomial up to some predictable degree and
that the resulting Gröbner basis for the corresponding ideal contains many
linear polynomials.

Then, an option is to consider a matrix similar to Macaulay’s matrix defined
in Section 11.5 and to search for linear polynomials in the vector space spanned
by this matrix. To construct this matrix, we proceed exactly as in Section 11.5
or Algorithm 11.4. Note that, since we a not starting from a Gröbner basis
for our ideal, we obtain an incomplete copy of the Macaulay matrix of the
same degree. If we consider high enough a degree, we may hope, thanks to
degree falls, to find linear polynomials in the vector space spanned by this
matrix. Ignoring this difficulty for now, we may see that linear polynomials
in the space spanned by Macaulay’s matrix can be found by looking for kernel
elements of a truncated Macaulay’s matrix from which the columns labelled
by the constant and linear monomials have been removed. Clearly, such a
kernel element defines a linear combination of rows that is non-zero on all
monomials of degree 2 or more. This yields either the zero polynomial, the
unit polynomial or a non-trivial linear polynomial. Note the unit polynomial
can only occur if the algebraic system of equations generates the unit ideal,
in that case, the system of equations does not have any solutions.

Since we are looking for kernel elements in a matrix, we may use the al-
gorithms of Chapter 3. Moreover, looking more precisely at our variation of
Macaulay’s matrix, we may remark that it is a sparse matrix. Indeed, each
row in the matrix represents a multiple of a polynomial of low degree and,
thus, it cannot contain too many non-zero coefficients. As a consequence, we

© 2009 by Taylor and Francis Group, LLC

Polynomial systems and Gröbner base computations 367

can apply sparse linear algebra algorithms to find kernel elements. In fact,
we can do better than that. The key argument is to remember that, with
sparse linear algebra algorithm, the main requirement is to be able to effi-
ciently multiply vectors on the left by the matrix we are considering and also
by its transpose. Since Macaulay’s matrix is obtained by putting together
several shifted copies of the matrix encoding the initial polynomials, we can
implement multiplication of a vector by the complete matrix by executing
several multiplications of well-chosen subvectors by the original matrix and
by reassembling the results into a single vector. This yields a faster matrix
by vector multiplication than a straightforward sparse approach. Indeed, this
approach is compatible with bitslice operations and also cache-friendly.

11.8 On the complexity of Gröbner bases computation

The complexity of a specific Gröbner basis computation depends on several
parameters, the underlying field, the number of unknowns, the number of
equations and their degrees. However, the most important parameter is the
maximum degree of the polynomials that occurs during the computation.
This maximum degree may greatly vary even for similarly looking systems of
equations. In fact, this is the parameter which explains why HFE systems
can be solved, while random systems with similar specifications cannot.

When using F5 with the grevlex technique on homogeneous system, it is
possible by using sophisticated mathematical techniques to compute an upper
bound on a technical parameter called the degree of semi-regularity of the
system.

Without entering the technical details, let us simply mention that the de-
gree of semi-regularity provides a heuristic bound on the maximum degree of
polynomials occuring in the Gröbner basis computation.

A good reference for this, written in French, is the Ph.D. thesis of Bardet [Bar04].
Let us quote a few very useful theorems from [Bar04]. We start by two theo-
rems which hold for computing Gröbner bases over large finite fields.

THEOREM 11.4 Bardet 4.1.2

For a fixed value of k and n tending to infinity, the degree of semi-regularity
for a system of n+ k equations of degree D in n unknowns is asymptotically
upper bounded by:

n
D − 1

2
− αk

√
n
D2 − 1

6
+ o(
√
n), (11.28)

for some constant αk.

© 2009 by Taylor and Francis Group, LLC

368 Algorithmic Cryptanalysis

THEOREM 11.5 Bardet 4.4.1
For a fixed value of α > 1 and n tending to infinity, the degree of semi-

regularity for a system of αn quadratic equations in n unknowns is asymptot-
ically upper bounded by:

(α− 1/2−
√
β)n+

−a1

2β1/6
n1/3 −

(
2− 2α− 1

4β1/2

)
+ o(n−1/3), (11.29)

where β = α(α−1) and a1 ≈ −2.33811 is a constant (the largest root of Airy’s
Ai function).

For algebraic systems over F2, the results are slightly different. We have:

THEOREM 11.6 Bardet 4.4.3
For a fixed value of α > 1 and n tending to infinity, the degree of semi-

regularity reached for a system of αn quadratic equations in n unknowns over
F2 is asymptotically upper bounded by:(
−α+

1
2

+
1
2

√
2α2 − 10α− 1 + 2(α+ 2)

√
α(α+ 2)

)
n+O(n1/3). (11.30)

In this theorem, the field equations are implicitly counted and should not
be counted when determining the value of α. For large values of α, the
bound given by this theorem becomes close to the bound obtained by using
Theorem 11.5 for (α + 1)n equations. However, when α is small the specific
F2 bound is much tighter.

© 2009 by Taylor and Francis Group, LLC

Polynomial systems and Gröbner base computations 369

Exercises

1. Consider the monomial orderings described in this chapter and show
that they indeed satisfy the well-ordering and compatibility properties.
Show that the reverse lexicographic order relation is not a monomial
ordering.

2. Compute the resultant of x and x + 25. Also compute the resultant of
x2 and x2 + 5. Which of these two pairs of equations has a common
root modulo 25? Conclude that resultants only give information about
roots modulo prime, not prime powers.

3h. Let f be a polynomial of degree d. Recall that the reciprocal polynomial
of f is xdf(1/x). Given two polynomials f and g, what is the relation
between the resultant of f and g and the resultant of their reciprocal
polynomials?

4. Consider the polynomials xy + 1 and x2y + x + y and compute their
resultant, eliminating x. What are the roots of the resultant? Show
that they cannot be completed into solutions of the bivariate system.

5h. Construct an example of a bivariate ideal of dimension 0 whose Gröbner
contains more than 2 polynomials.

6h. What is the number of monomials of degree d in n unknowns? The
number of monomials of degree at most d? Write a program that assigns
a number to each monomial of degree at most d and explicitly computes
the bijection between a monomial and its number.

7. Let f(x) be a polynomial of degree d. Compute the resultant of f
and ax + b. This expression is especially useful for the algorithms of
Chapter 15.

This chapter can be a source for numerous implementations projects. A
good start is to implement the basic linear algebra approach given as Algo-
rithm 11.4. This can be completed by considering algorithmic techniques to
reduce the amount of memory: compressing the polynomial representations
or using iterative algorithms. An alternative approach is to add F5 criterias
to this algorithm to construct smaller matrices with very few reductions to
zero during the row echelon form computation.

© 2009 by Taylor and Francis Group, LLC

Part III

Applications

© 2009 by Taylor and Francis Group, LLC

Chapter 12

Attacks on stream ciphers

Stream ciphers are widely encountered in applications where resources are
limited and speed is critical. They come in two flavors: keystream generators
and self-synchronizing stream ciphers. However, keystream generators are
much more frequent and we only consider this kind of stream ciphers in this
chapter.

Before studying keystream generators, let us first recall Shannon’s one time
pad. In its binary version, each message is viewed as a sequence of bits and
encrypted by bitwise xoring each bit of message with a corresponding bit
of key. Despite its extreme simplicity, this encryption algorithm provably
ensures the confidentiality of encrypted messages. The only information that
can be learned by an eavesdropper is the length of the message. However,
the security proof of the one time pad requires a perfect key: each bit of key
should be generated at random from a uniform distribution and should be
independent from other key bits. In particular, it is well know that re-using
the key material with a one time pad yields a severely broken system; it is
known as the parallel message attack. As a consequence, using the one time
pad in practice is very challenging and rarely done.

Even with a perfect key, the security of the one time pad holds against
a very limited class of adversaries: passive eavesdroppers. If active attacks
are allowed, the one time pad is no longer secure. There are two main di-
rections that allow active adversaries to attack one time pad systems. The
first approach is to remark that encrypted strings are malleable and thus do
not protect the integrity of transmitted messages. The second approach is
to remark that from a plaintext/ciphertext pair, the encryption key can be
directly recovered. As a consequence, if the attacker can trick the receiver
into decrypting a fake message, he can obtain the key and decrypt the real
message later on.

Keystream generators can be seen as a practical way of using the one time
pad. Instead of using an extremely long key, the two parties of the encrypted
communication possess a common short secret key and use the keystream
generator to generate a large random looking string. This idea of random
looking strings can be formalized into polynomial time indistinguishability
from random, called IND$ in Chapter 1.

Note that encryption schemes based on keystream generators inherit the
weaknesses of the one time pad. The same keystream should never be re-

373

© 2009 by Taylor and Francis Group, LLC

374 Algorithmic Cryptanalysis

used to avoid the parallel message attack. Moreover, a secure integrity check
mechanism should be used together with the keystream generator is order to
protect the integrity of messages. For example, following the Encrypt-then-
MAC approach presented in Chapter 1, it suffices to add a MAC tag of the
encrypted message to avoid the malleability issue.

Another feature of practical keystream generators is that they usually ac-
cept on auxiliary input, the initial value or IV that allows the users to generate
different keystreams for different messages without requiring too much has-
sle to manage these keystreams and to avoid re-using key material between
messages.

12.1 LFSR-based keystream generators

Linear Feedback Shift Registers (LFSR) are often used as a basis for pseudo-
random generators. One important reason is that these generators have a long
period, in particular, when the feedback polynomial is primitive (see Chap-
ter 2, Section 2.5.2), the period of an LFSR with n cells is 2n − 1. However,
while directly using an LFSR as pseudo-random source in a video game or
in scientific computing is a good idea, where cryptographic applications are
concerned, this is not acceptable. Indeed, after observing 2n output bits, an
adversary can completely reconstruct the state and feedback polynomial of
the LFSR being observed, using either a simple linear algebra approach or
the more specific Berlekamp-Massey algorithm presented in Chapter 2.

However, the long period property, together with the good statistical prop-
erties of output sequences are highly desirable and it remains tempting to use
LFSRs as core components of keystream generators. Several basic construc-
tions are frequently used. They all aim at using the good properties of LFSRs
while hiding the linearity.

Throughout the rest of this chapter, we are mostly going to study the
security of one particular type of LFSR-based stream ciphers: filtered gen-
erators. However, several kinds of LFSR-based generators exist; let us now
review some of these constructions, starting with the filtered generator.

The filtered generator The filtered generator tries to hide the linearity of
a core LFSR by using a complicated non-linear output function on a few bits.
At each step, the output function takes as input t bits from the inner state
of the LFSR. These bits are usually neither consecutive, nor evenly spaced
within the register.

This output function produces a single bit, which is given as the LFSR
output. The main difficulty when using the filtered generator is to choose an
adequate function. It should not be too simple, otherwise the keystream gen-

© 2009 by Taylor and Francis Group, LLC

Attacks on stream ciphers 375

erator becomes weak; it should not be too complicated, otherwise it becomes
the bottleneck of the generator.

The function f is usually described either as a table of values or as a polyno-
mial. Note that, using the techniques of Section 9.2, f can always be expressed
as a multivariate polynomial over F2.

Non-linear output from multiple generators A variant of the filtered
generator is to run several LFSRs in parallel and to output at each clock
a non-linear function of bits coming from these generators. A particularly
simple version is the Geffe generator, it is constructed from three LFSRs,
one serves as a control LFSR and the other two as output LFSRs. When
the control LFSR produces a 0, the output of the keystream comes from the
first of the output LFSRs. When it produces a 1, the output comes from the
second generator. With each clock signal, all three LFSRs advance.

The Geffe generator can be generalized to the selection from one generator
among many, using a control value. Geffe’s generators are highly vulnerable
to correlation attacks.

Another variation on this idea is the shrinking generator. Here we only
have two LFSRs. The first one serves as a control LFSR, the second one as
an output generator. When the control LFSR produces a ‘0’, no keystream
output is generated. When the control LFSR produces a ‘1’, the output bit of
the output generator is added to the keystream. Once again, with each clock
signal, both LFSRs advance. Implementing the shrinking generator requires
special care to hide the irregular rhythm of the output production. Indeed,
if this rhythm can be precisely measured, then the state of both LFSRs can
easily be recovered through a basic side-channel attack.

Keystream generators with memory In order to obtain more complex
keystream generators, it is also possible to add memory that preserves some
non-linear information from one clock step to the next.

A typical example is the summation generator. From a mathematical point-
of-view, this generator views the output of each of its n internal LFSRs as the
binary representation of a large integer, with low bits coming first. Then, it
sums these n numbers and outputs the binary representation of the sum.

In practice, this is realized by using a small binary adder and a carry regis-
ter. Initially, the carry is initialized to 0. The carry register can store a small
integer in the range [0, n−1] and the binary adder computes the sum of the n
LFSR output and of the previous carry. The result of this sum S is a number
in the range [0, 2n − 1]. Its parity is the output of the keystream generator,
the high order bits of S, i.e., the value bS/2c is recycled as the next value of
the carry register to allow carry propagation.

Clock controlled generators Another way of combining LFSRs in a non-
linear fashion is to use the output of a control LFSR or of a simple keystream

© 2009 by Taylor and Francis Group, LLC

376 Algorithmic Cryptanalysis

p

p

1
−
p

1
−
p

0 0

1 1

xt zt

Figure 12.1: Noisy LFSR (Binary Symmetric Channel) model

generator to clock the output generator. For example, with a control LFSR
and two output LFSRs, we obtain the alternating step generator. As each step
in time, the output of the keystream is the XOR of the two output LFSRs.
However, at each step, only one of the two LFSRs states is advanced. When
the control bit is a ‘0’, the first output LFSR advances, when the control bit
is a ‘1’, the second one does.

12.2 Correlation attacks

12.2.1 Noisy LFSR model

A very convenient way of modeling LFSR based keystream generators is to
consider that the keystream is the output of a regular LFSR masked by some
noise. This approach is called the noisy LFSR model or the binary symmetric
channel model. In this model, if xt denotes the output of the LFSR at time
t, the keystream zt is constructed as follows:

zt =
{
xt with probability p,
xt ⊕ 1 with probability 1− p. (12.1)

This is often represented as in Figure 12.1.
In this model, when the probability p is equal to 1/2, zt is purely random

and carries no information about xt. When p is equal to 0 or 1, zt is simply a
(possibly inverted) copy of xt. Due to symmetry of the construction, we may
safely assume that p > 1/2. Otherwise, if suffices to flip zt in order to replace
p by 1− p. Under this assumption, it is convenient to write p = (1 + ε)/2 or
equivalently to let ε = 2p − 1. This value ε is called the bias of the binary
symmetric channel.

In order to see why this model is relevant in the case of the filtered genera-
tor, we can use the techniques of Chapter 9. Assume that the bit of keystream
zt is obtained from k bits of output as the LFSR as f(xt, xt−δ1 , · · · , xt−δk−1).
Then f is a function from {0, 1}k to {0, 1}. Using a Walsh transform based
approach, we compute the best possible linear approximation Lf of f , this

© 2009 by Taylor and Francis Group, LLC

Attacks on stream ciphers 377

linear function coincide with the output of f for some fraction p of the 2k

possible inputs. Let yt = Lf (xt, xt−δ1 , · · · , xt−δk−1) and remark that when
the k-uple on the right-hand side belongs to the set of input where f and Lf
agree, then yt = zt. Moreover, since yt is a linear combination of outputs of
the same LFSR, with shifted initial values, yt itself can be produced by the
LFSR when it is initialized with the XOR of all these initial values. Assuming
for simplicity that the k-uples (xt, xt−δ1 , · · · , xt−δk−1) are random and inde-
pendent, it should be clear that zt is the image of yt under a binary symmetric
channel with probability p and bias ε = 2p− 1.

Of course, this independence hypothesis is clearly false. However, k-uples
which are generated by LFSRs are well balanced and despite the dependence
between successive k-uples, attacks based on the binary symmetric channel do
work well in practice. Correlation attacks precisely work within this frame-
work, forget about the exact output function f and simply focus on the bias
of the best possible linear approximation.

12.2.2 Maximum likelihood decoding

Given a noisy LFSR with bias ε, a natural question is to ponder whether
the real output of the LFSR can be recovered from N bits of noisy output.
This question arises both in coding theory and in cryptography. It is very
useful to first solve the problem with unlimited computing power. Clearly,
if the LFSR is fully specified, then its feedback polynomial is already known
and recovering its exact output is equivalent to finding its initial state.

With unlimited computing power, it is possible to compute the LFSR out-
put on N bits for all initial states. Comparing all these sequences to the
noisy output z, we can measure the Hamming distance of each candidate to
the noisy output, i.e., the number of bits where the sequences differ. For
the correct guess, the average Hamming distance is (1 − p)N . For incorrect
guesses, assuming that they behave essentially like random strings, we expect
an average distance of N/2. The average distance for the correct guess simply
comes from the way the noise is generated. However, the exact behavior of
incorrect guesses is slightly harder to explicit. In fact, the difference between
the observed stream and an incorrect guess is the XOR of three terms, the
LFSR output for the guessed initial state, the LFSR output for the correct
initial state and the noise. By linearity, the two LFSR outputs can be grouped
into a single LFSR output whose initial state is obtained by xoring the two
initial states. As a consequence, the difference is a noisy copy of this LFSR
output. Thus, it is almost balanced, i.e., it contains about half 0s and half
1s. This implies that the average distance is N/2 as expected. However, since
there are exponentially many incorrect guesses, a few of these bad guesses
may be much closer to the observed strings.

One important question with maximum likelihood decoding is to determine
the parameters for which the correct guess is likely to correspond to the small-
est Hamming distance to the noisy output. Indeed, when this happens, it is

© 2009 by Taylor and Francis Group, LLC

378 Algorithmic Cryptanalysis

possible to determine the correct guess by keeping the candidate correspond-
ing to the minimal Hamming distance. Note that in some contexts, a weaker
condition may suffice. For example, if it is possible to test whether a likely
candidate is indeed correct, then we can be satisfied if the maximum likeli-
hood decoding produces a short list of candidates that contains the correct
one.

In practical cryptanalysis, this exhaustive approach can be used to cryptan-
alyze keystream generators made of several independent LFSRs together with
a non-linear output rule. Indeed, in this context, each LFSR has a small in-
ternal state compared to the complete cryptosystem and an exhaustive search
for the initial state of a single LFSR is much more efficient than a global ex-
haustive key search. As a consequence, if a correlation of bias ε can be found
between the output of the keystream generator and one of the internal LFSRs
with a state of length n, then the initial state of this register can be recovered
in time N2n using N ≈ 1/ε2 bits of keystream. In particular, this can be
applied to Geffe’s generators. This attack initially proposed in [Sie84, Sie85]
is called a correlation attack.

12.2.2.1 Necessary amount of keystream for correlation attacks

In order to determine the amount of keystream required for correlation
attacks, we need to determine how close to the observed string a wrong guess
can be. Assume that we are observing N bits of keystream, that the bias
for the correct guess is ε and that we are testing C incorrect candidates. We
need determine the probability of having an incorrect candidate closer to the
observed stream than the correct one. If we are interested by the setting where
seemingly valid candidates can be further tested, it also useful to determine
the average number of incorrect candidates closer than the correct one.

On average, the correct candidate agrees with the observed keystream in
(1+ε)N/2 positions, but the exact number can vary around this average. Simi-
larly, on average, each incorrect candidate agrees with the observed keystream
in N/2 positions, but the exact number can vary. Thus, to answer our ques-
tions, we need to understand these variations around the average.

We first consider a simpler case offering the choice between two candidates,
a correct and an incorrect one. In this case, the problem is equivalent to distin-
guishing between a perfect random generator1 and a slightly biased generator
which outputs 0 with probability (1 + ε)/2. For each of the two generators,
we first compute the probability that it outputs T zeros and N −T ones after
N measurement, taking into account the number of possible arrangements of
the zeros, this probability can be written as:

PT (p) =
(
N
T

)
pT (1− p)N−T .

1That is, a generator which outputs each successive bit independently, with probability 1/2
of giving a 0 and probability 1/2 of giving a 1.

© 2009 by Taylor and Francis Group, LLC

Attacks on stream ciphers 379

λ 1− 1
2erfc

(
λ/
√

2
)

0 1/2
0.1 0.5398
0.5 0.6915
1 0.8413

1.5 0.9332
2 0.9772

2.5 0.9938
3 0.9987

Table 12.1: Typical probabilities with binomial distributions

When we observe T zeros, it seems natural to compare PT (1/2) and PT ((1+
ε)/2) and to keep the candidate corresponding to the largest probability. In
fact, this is the best that can be done. When ε is small, PT (1/2) is the
larger probability for T < T0, where T0 = (1 + ε/2) · N/2. To determine
the probability of success of this strategy, we need to compute sums of PT (p)
for T in interval of the form [0, T0] and [T0, N]. The problem is that there
are no closed formulas for these sums. However, when N is large, there is a
standard way of approximating the formulas. Without going into the details,
the idea is to first view T as a random variable obtained by summing N values
0 or 1 (with probabilities p and 1 − p). By definition, T is said to follow a
binomial distribution. Then, the binomial distribution is approximated by a
Gaussian (or normal) distribution with average E = (1 − p)N and variance
σ2 = p(1−p)N . For a normal distribution, the probability to measure a value
smaller than E + λσ is:

Q(E + λσ) =
1√
2π

∫ λ

−∞
e−u

2/2du. (12.2)

Moreover, with most computer algebra systems, this probability can be com-
puted using the complementary error function, usually denoted by erfc, ac-
cording to the relation:

Q(E + λσ) = 1− 1
2
erfc

(
λ/
√

2
)
. (12.3)

We give some typical values in Table 12.1.
With this tool, computing the probability of successfully distinguishing the

correct and incorrect candidates becomes easy. Write the number of experi-
ments N as (2λ/ε)2, i.e., let

λ =
1
2
·
√
Nε2 (12.4)

and define a threshold T0 = (1 + ε/2)N/2. For the incorrect candidate, the
average value of T is Ti = N/2 and σi =

√
N/2 = λ/ε. As a consequence, T0−

© 2009 by Taylor and Francis Group, LLC

380 Algorithmic Cryptanalysis

Ti = λ2/ε is λσi. For the correct candidate, we have Tc = (1+ε)N/2 and σc =√
N/(1− ε2)/2. When ε is small, we can conveniently ignore the difference

between σc and σi and approximate T0 − Tc by −λσi. As a consequence, if
we predict that the observed distribution is the correct one when T ≥ T0 and
the incorrect one otherwise, the probability of success is obtained by looking
up λ in Table 12.1.

The more general case with C incorrect candidates and a correct one can
be viewed in several different ways which yield the same threshold T0. One
option is to regroup the candidates in two groups, a bad one that occurs
with probability C/(C + 1) and a good one that occurs with probability 1/C.
Using the previous notations, the probability of observing T zeros is PT (1/2)
in the bad case and PT ((1 + ε)/2) in the good case. Using this option, we
can apply Neyman-Pearson lemma which says that an optimal distinguisher
should predict that the good case occured, if and only if, PT ((1 + ε)/2) >
C · PT (1/2).

12.2.3 Fast correlation attacks

While correlation attacks are very effective against stream ciphers which
involve small LFSRs, they quickly become impractical as the size of the target
registers grows. With large LFSRs, we would like a different algorithm to
exploit the correlation without having to pay with exponential complexity in
terms of the LFSR’s length. Fast correlation attacks proposed by Meier and
Staffelbach (see [MS89]) offer this possibility.

Note that there exists a much wider variety of correlation attacks than
can be presented here. For example, conditional correlation attacks use the
fact that some specific configurations of output bits gives the value of some
linear combination of LFSR bits much more precisely than in the average
case. To use this fact, we need parity checks that only use bit positions where
these specific configurations occur. For more information, see [LMV05]. Let
us also mention iterative correlation attacks [MG90], multipass correlation
attacks [ZF06] and vectorial fast correlation attacks [GH05].

12.2.3.1 Binary symmetric channel with repetitions

In order to illustrate one essential idea needed to devise such a correlation
attack, we start with an easy case. This easy case can be formulated as a
learning problem. In this problem, we try to learn a secret sequence S of
length n. To this effect, we are given access to several independent noisy
copies of S obtained through a binary symmetric channel with bias ε. How
many copies are needed to recover S ?

We start by solving the case of a single bit s. After obtaining one mea-
surement of s through the binary symmetric channel, we can predict s with
probability p = (1 + ε)/2. With many measurements, the best we can do is
to use a majority rule in order to determine our prediction. If we see more 0s

© 2009 by Taylor and Francis Group, LLC

Attacks on stream ciphers 381

than 1s, we predict a 0 and similarly in the opposite case. In the unlikely case
where there are as many 0s and 1s, we output a random prediction. Following
the results of Section 12.2.2.1, the probability of correctly predicting 0 is thus:

P =

{∑N
t=(N+1)/2 Pt for odd N and∑N
t=N/2+1 Pt + 1

2 · PN/2 for even N .
(12.5)

Due to the symmetry between the cases s = 0 and s = 1, P is also the
overall probability of correct prediction. Once again, this probability can be
computed using the complementary error function. The only difference with
the previous case comes from the fact that since we have two opposite biases,
we now compute λ =

√
Nε2, i.e., rewrite Equation (12.4) without a factor

1/2. In the reverse direction, if we specify the desired probability of success,
this fixes λ and we need to make N = (λ/ε)2 measurement.

This is usually summarized by saying that a correlation attack with bias ε
requires O(ε−2) measurements.

12.2.3.2 A basic attack on LFSRs

With an LFSR-based keystream generator, unless the cryptosystem as a
whole presents some unexpected weakness, it is unlikely that the cryptanalysis
has access to many noisy copies of the same LFSR output. As a consequence,
we cannot directly use the above method. Instead, we need to exploit the
redundancy within the LFSR output in order to create such repeated copies of
individual bits. Note that we have encountered a similar problem in Chapter 9,
Section 9.3 with Goldreich-Levin theorem. However, with Goldreich-Levin
theorem, we could freely choose the noisy scalar products we wanted to learn.
Here, we no longer have this freedom and we need to work with noisy values
which are fixed by the LFSR specifications.

Remember that in order to know the complete state of an LFSR it suffices
to learn the exact values of n consecutive bits. Since n is a relatively small
number, we can first focus on the recovery of a single bit. The key idea is the
construction of parity check equations for the LFSR. A parity check equation
is simply a systematic linear equality of the form:

xi1 ⊕ xi2 ⊕ · · · ⊕ xit = 0. (12.6)

Here, systematic means that the equation is true regardless of the initial value
of the LFSR.

Each such parity check yields a biased prediction for xi1 :

xi1 = zi2 ⊕ · · · ⊕ zit . (12.7)

Since each value zi2 , . . . , zit is an approximation for xi2 , . . . , xit with bias ε
and since all these approximations involve independent random choices in the

© 2009 by Taylor and Francis Group, LLC

382 Algorithmic Cryptanalysis

binary symmetric channel model, we can show that we obtain an approxima-
tion for xi1 with bias εt−1. This can be proved by repeated application of the
following lemma.

LEMMA 12.1
Given two independent approximations x̂ and ŷ of x and y with respective
biases εx and εy, then x̂⊕ ŷ is an approximation of x⊕ y with bias εxεy.

PROOF We see that x̂ ⊕ ŷ is a correct approximation of x ⊕ y, if either
x̂ and ŷ are either both correct or both incorrect. The first event where both
are correct occurs, due to independence, with probability 1/4 ·(1+εx)(1+εy).
The second event occurs with probability 1/4 · (1− εx)(1− εy). Summing the
two probabilities, we find that the total probability of success is:

1
4
· (2 + 2εxεy) =

1
2
· (1 + εxεy). (12.8)

Thus the bias of the combined approximation is εxεy.

By repeatedly applying this lemma, we obtain the bias of any sum of inde-
pendent approximations simply by multiplying the elementary biases. This
can be applied to parity check involving t bits as above, called a parity check of
weight t, to obtain an approximation of one of the involved bits with bias εt−1.
As a consequence, if we obtain a large number of parity checks all involving the
same bit xi1 , we can predict this bit with high confidence thanks to a majority
vote between the individual predictions. Using the results of Section 12.2.3.1,
we see that this number is of the order of ε−2t+2.

To evaluate the performance of this basic attack, it is important to take
several parameters into account. The first parameter is, of course, the amount
of time needed to evaluate all the parity checks and perform the majority
vote. However, the amount of keystream required for the attack is also very
important. The other two important parameters are the initial bias ε and the
length n of the register. In order to understand the relationship between these
parameters, we now study the conditions of existence of enough parity checks
to perform the basic attack. For this analysis, we do not consider algorithms
for generating the parity checks, merely their existence.

Due to the linearity of the LFSR, for each output bit, there exists fixed
constants, which only depend on the feedback polynomial such that:

xj =
n−1∑
i=0

c
(j)
i xi. (12.9)

This allows us to express each output bit as a linear function of the bits
contained in the initial value of the LFSR. It is convenient to group the coeffi-
cients c(j)i in a vector ~c(j) and view the initial value of the LFSR as a vector ~X.

© 2009 by Taylor and Francis Group, LLC

Attacks on stream ciphers 383

With these notations, we can rewrite:

xj = (~c(j)| ~X). (12.10)

To construct parity checks of weight t, we look for sets of t vectors ~cj1 , . . . ,
~cjt such that:

t⊕
i=1

~c(ji) = 0. (12.11)

Indeed, by linearity of the scalar product, this implies:

t⊕
i=1

xji = (
t⊕
i=1

~c(ji)| ~X) = 0. (12.12)

To count the number of parity checks of weight t, all involving some fixed
position, say j1 = 0, we need to choose the remaining positions j2 to jt and
check that the sum of the n-bit coefficient vectors is 0. Assuming that we have
access to a noisy output of the LFSR of length N , each of the above positions
is bounded by N , and there are

∏t−1
i=1(N − i)/(t − 1)! unordered choices for

the t − 1 positions. We expect that a fraction 2−n of these choices sum to
zero. As a consequence, the average number of available parity checks for j1
is: (

N − 1
t− 1

)
· 2−n =

(N − 1)!
2n(t− 1)!(N − t)!

. (12.13)

With an elementary bias ε, we compute the probability of correct prediction
by letting:

λ =

√
(N − 1)!

2n(t− 1)!(N − t)!
ε2t−2 (12.14)

and by looking up λ in Table 12.1.
Note that, given a set of parity checks allowing recovery of xj1 , it is easy

to modify it to recover xj1+1 by shifting all indices by 1. Similarly, we can
obtain xj1+2, . . . , xj1+n−1. Of course, since the indices are shifted, the highest
required position is no longer N but can go up to N + n− 1. However, since
n is normally very small when compared to N , this issue can be neglected.

12.2.4 Algorithmic aspects of fast correlation attacks

The advantage of fast correlation attacks compared to basic correlation
attacks is that we no longer need to exhaustively search the 2n − 1 possible
initialization values. Instead, we need to find and evaluate all the necessary
parity checks. We address these algorithm issues in this section.

© 2009 by Taylor and Francis Group, LLC

384 Algorithmic Cryptanalysis

12.2.4.1 Computing parity checks

The first algorithmic problem we encounter is to find a large enough number
of parity checks for fast correlation attacks. This can be done in many ways.
However, a common pre-requisite is to express each output bit of a given
LFSR has a linear combination of the input bits, i.e., following the notation
of Section 12.2.3.2, to compute the vectors ~c(j). A very simple way to do this
is to initialize n copies of the LFSR, with the same feedback register, with n
initial values containing n − 1 zeros and a single 1. In the copy numbered i,
the only non-zero initial bit is in position 1. By linearity, the n bits of output
obtained at time j form the vector ~c(j). An easy way to speed up this process
is to use a bitslicing approach as in Chapter 5 and apply the LFSR recursion
to n-bit words, thus running the n copies in parallel. This is described in
pseudo-code as Algorithm 12.1.

Algorithm 12.1 Computing formal expression of LFSR outputs
Require: Input coefficients of LFSR (α0, . . . , αn−1)
Require: Bound on stream length N

Allocate array A of N words on n bits
Initialize A[0 · · ·n− 1] to 0
for i from 0 to n− 1 do

Set i-th bit of A[i] to 1
end for
for i from n to N do

Let A[i] =
∑n−1
j=0 αjA[i− n+ j]

end for
Output array A {A[i] contains the expression of the i-th bit of LFSR output
as a linear combination of bits 0 to n− 1.}

Once the n-bit vectors of coefficients are known, we need to form parity
checks of weight t, by summing together one fixed vector, corresponding with
a position we want to predict and (t−1) other vectors corresponding to other
positions.

Brute force. The first idea that comes to mind to solve this problem is
simply to exhaustively try all possible set of positions and keep the sets which

sum to zero. The running time is
(
N − 1
t− 1

)
and can be closely approximated

by N t−1/(t − 1)!, by ignoring the difference between N and N − i for small
values of i.

© 2009 by Taylor and Francis Group, LLC

Attacks on stream ciphers 385

Birthday approach. The next idea is to remark that each parity check can
be written as an equality between the vectors corresponding to two half parity
checks in two smaller lists. Indeed, it is possible to equate the expressions of
two sums of t/2 positions each. This method has been the method of choice
for constructing parity checks for a long time. Note that each parity check
can be split into two parts in many different ways and that we need to apply
some care in order to avoid generating the same parity check many times, one
for each different split.

Quadrisection approach. Going further, it is also possible to use the al-
gorithms presented in Chapter 8 to compute parity checks. This does not
change the running time compared to the birthday approach; however, it
greatly reduces the required amount of memory. Indeed, each parity check
can be viewed as a sum of 4 parts, each part containing (almost) t/4 values.
Thus, as in [CJM02], we obtain a four set sum problem over F2n which can be
directly addressed using the algorithms of Chapter 8. As with the birthday
approach, each parity check can be split into four parts in many ways and we
need to be careful to avoid generating the same parity check many times.

Rho approach. A natural question is to wonder whether we can get rid of
memory altogether when generating parity checks. After all, a parity check is
nothing but a collision in a function that maps t/2 different positions to the
sum of their expression in terms of the LFSR initial value. Since collisions
in functions can be found by cycle finding algorithms, it may appear that
such an approach can be used to find parity checks. However, it is not known
how to do this, unless we are ready to increase the value of t beyond the
value determined in Section 12.2.3.2. Since the bias of parity checks decreases
quickly when t increases, cycle finding algorithms are usually not used to
construct parity checks.

If we are ready to increase t, we can, as in Section 7.5.1, proceed by using a
function defined in the following way. First, any subset of t/2 positions can be
mapped to a n-bit string describing the corresponding linear combination of
bits of the initial value. This n-bit string can be viewed as an n-bit integer and
this number can in turn be interpreted to construct a new set of t/2 positions.
Any cycle finding algorithm can obtain a collision for this function. However,
the collision may occur in two different places, either when mapping sets to
bitstrings or when mapping bitstrings to sets. The first type of collision yields
a parity check. Unfortunately, the second type of collision is meaningless.
The problem is that when t is too small, there are much more bitstring values
than sets of t/2 positions. As a consequence, an overwhelming fraction of the
collisions is of the useless type. If we increase t, roughly doubling it, we can
make sure that the mapping from bitstrings to sets is injective and thus that
all collisions are of the useful type. Note that doubling t makes the rest of

© 2009 by Taylor and Francis Group, LLC

386 Algorithmic Cryptanalysis

the fast correlation attack very inefficient. Thus, it is best to avoid this Rho
based approach.

Discrete logarithm based approach. For parity checks involving t = 3
positions, Kuhn and Penzhorn proposed in [PK95] to compute the discrete
logarithm of 1 +αi in basis α in the finite field F2n , for i smaller than N , the
maximal amount of accessible keystream. Here, α is a root of the feedback
polynomial of the LFSR under attack. If the discrete logarithm j is also
smaller than N , we learn than 1 +αi +αj = 0, which can be converted into a
parity check x0⊕xi⊕xj = 0. An extension of this idea was recently proposed
in [DLC07].

12.2.4.2 Improving the basic attack

The basic attack described in Section 12.2.3.2 presents two main difficulties:

• When the length n of the LFSR increases, the number of parity checks
decreases and we need to increase t and/or N to implement the attack.
This is due to the 2−n factor in Equation (12.13).

• When t increases, the number of necessary parity checks increases ex-
ponentially with t and evaluating these parity checks on the observed
keystream takes a long time.

It is possible to reduce the impact of these two difficulties by using an
approach similar to the method used for the Goldreich-Levin theorem, in
Section 9.3. We isolate a subset S0 of n0 bits in the initial state of the
LFSR. These bits are going to be addressed separately using an exhaustive
search. As a consequence, when counting and constructing parity checks, we
only cancel the n − n0 other bits. For each acceptable parity check, we also
keep the linear expression specifying the contribution of the bits in S0. To
count these modified parity checks, we replace the factor 2−n by 2−(n−n0) in
Equation (12.13). This increases the number of available parity checks and
allows to reduce t and/or N . Note, however, that since the n0 bits are fixed
and cannot be shifted, we cannot use shifted parity checks this time and need
to compute them independently n − n0 times, once for each of the bits that
need to be recovered.

Without using the Walsh transform, recovering each of the n−n0 remaining
bits would require to evaluate and count the number of predictions 2n0 times.
Instead, we start by regrouping the parity checks that share the same linear
expression on S0. Then, within each group we partially evaluate these parity
checks and keep the difference between the number of 0 and 1 values. This
difference is stored in an array of 2n0 elements in the position given by the
binary encoding of the linear expression of the group. After applying a Walsh
transform to this array, position i contains the difference between the numbers
of 0 and 1 values for the corresponding guess of the bits of S0. As in the

© 2009 by Taylor and Francis Group, LLC

Attacks on stream ciphers 387

analysis of Section 12.2.2.1, we have 2n0 − 1 bad candidates and a single
good candidate. With well-chosen parameters, the position corresponding to
the good candidate contains the largest value in absolute value. Learning
this position gives the value of the n0 bits in S0. Moreover, the sign of this
largest value determines the value of the bit for which the parity checks were
constructed (see [CJM02] for more details).

12.3 Algebraic attacks

In addition to the binary symmetric channel model, the filtered generator is
also well-suited to a modelization by a system of algebraic equations. Indeed,
if in the basic expression:

zt = f(xt, xt−δ1 , · · · , xt−δk−1), (12.15)

we replace each bit of x by its linear expression in terms of the initial values
x1, . . .xn of the LFSR resulting from Algorithm 12.1, we obtain a transformed
equation:

zt = ft(x1, x2, · · · , xn). (12.16)

Assuming a known plaintext attack, the cryptanalyst knows the value of zt
and wants to recover the initial state. At this point, two important remarks
are needed. First, we can collect a large number of equations, one for each
bit of known plaintext. Second, the degree of each polynomial ft is the same
as the degree of f , since ft results from a linear change of variables.

As a consequence, the filtered generator can be vulnerable to algebraic
attacks when its parameters are badly chosen. It is especially important not
to have a low degree for f . For example, let us detail what happens when
f can be expressed as a quadratic polynomial. In that case, each equation
ft = zt can be rewritten as:

zt =
n∑
i=1

α
(t)
i xi +

n−1∑
i=1

n∑
j=i+1

β
(t)
i,j xixj . (12.17)

Using (re)linearization techniques, we can define yi,j as a new unknown
with value equal to xixj and substitute yi,j in the above. This yields a linear
equation in n(n+ 1)/2 unknowns. Collecting n(n+ 1)/2 (or a few more) such
equations, it suffices to solve a moderately large linear system of equations to
recover the initial state of the LFSR. Equivalently, we can use Algorithm 11.4
on this set of algebraic equations using a degree limit of 2.

© 2009 by Taylor and Francis Group, LLC

388 Algorithmic Cryptanalysis

12.3.1 Predicting an annihilator polynomial

Alternatively, one can also look for linear combinations of the zt such that
the contribution of all terms yi,j vanishes. Unless we are especially unlucky,
there are linear terms xi left and we obtain linear equations in the n ini-
tial unknowns. At first, this seems essentially equally costly as applying
Algorithm 11.4. However, it was shown recently by Rønjom and Helleseth
in [RH07] that this alternative can be made extremely efficient. In order to
see why, let us briefly recall Wiedemann’s algorithm from Chapter 3. In this
algorithm, there are two steps, the first one determines the minimal polyno-
mial of some linear sequence and the second one uses this minimal polynomial
to invert a linear system. In the case of an algebraic attack against filtered
LFSR, a multiple of the minimal polynomial can be predicted in advance
and the first step of Wiedemann’s algorithm can be skipped. Tweaking in a
modified second step, it is then possible to directly derive linear equations in
the n initial unknows, without performing linear algebra on a large system of
equations.

To understand the method of [RH07], it is best to view the current LFSR
state as a element of F2n and the advance step of the LFSR as a multiplication
by some element α in F2n . If the initial state is X0, the state at time t is
Xt = αtX0. With this notation, it is also possible to write the output bit xt
as a trace of βXt for some constant β in F2n . We recall that the trace of X
in F2n is defined as:

Tr(X) =
n−1∑
i=0

X2i . (12.18)

Let us now focus on an arbitrary quadratic term xtxt+δ. We can write:

xtxt+δ = Tr(βX0α
t) · Tr(βX0α

t+δ)

=

(
n−1∑
i=0

(βX0α
t)2i

)
·

(
n−1∑
i=0

(βX0α
t+δ)2i

)

=
n−1∑
i=0

n−1∑
j=0

(βX0)2i+2jα2jδ · (α2i+2j)t. (12.19)

Thus, each quadratic term is a linear combination with complicated but
fixed coefficients of powers of t. This powers are of the form α`t, where `
has at most two non-zero bits in its binary decomposition. We can regroup
the values α` by considering the difference ∆ = i − j modulo n and form
polynomials:

P∆(X) =
n−1∏
i=0

X − α2i+2(i+∆) mod n
. (12.20)

This polynomial is invariant under the action of Frobenius, thus, it has coeffi-
cients in F2. Note that P0(X) regroups the values α2i , thus it is the feedback
polynomial of the considerered LFSR.

© 2009 by Taylor and Francis Group, LLC

Attacks on stream ciphers 389

Following [RH07] and proceeding as with Wiedemann’s algorithm, we see
that P∆ annihilates all powers of values α2i+2i+∆

in Equation (12.19). As a
consequence, the product of all P∆ for ∆ 6= 0 annihilates all non-linear terms
of Equation (12.19). Unless we are extremely unlucky, the linear terms are not
canceled and it suffices to solve a system of n linear equations in n unknowns
to recover the initial state X0.

For monomials of higher degree d, it is possible to proceed similarly, by
considering products of term X − α` for values of ` with d non-zero bits in
their binary decomposition.

12.4 Extension to some non-linear shift registers

In order to avoid many of the weaknesses of linear feedback shift registers,
non-linear feedback shift registers were recently considered for cryptographic
uses. Non-linear shift registers (NLFSR) are very similar to LFSR, the only
difference is that the new bit entering the register at each step is computed
using a non-linear function instead of a linear one. One difficulty with these
registers is to make sure that the period is long enough for all initial values.
To overcome this difficulty, several approaches are possible. One option is
to use registers of small size, to make sure through exhaustive search that
all these registers have a long enough periods and to combine several into the
keystream generator. Another option is to consider registers of a specific form
that allow the period to be computed.

At first, it seems that algebraic and correlation attacks cannot apply to
non-linear shift registers. Indeed, concerning algebraic attacks, we see that
the iteration of the low degree feedback function quickly produces equations
of very high degree, which cannot be solved by the techniques of Chapter 11.
Concerning correlation attacks, getting biased prediction of inner bits of the
NLFSR remains easy. However, without linearity, we can no longer construct
parity checks.

Yet, in this section, we show that the correlation attacks presented in this
chapter can be directly applied to a specific subclass of non-linear shift register
based keystream generators. This subclass is formed of keystream generators
based on a non-linear shift register whose output is a linear combination of
the registers cells.

To make things more precise, we can view such a keystream generator as
built around an inner sequence xi defined from n initial bits x0 to xn−1,
together with a recursion formula:

xn+i = F (xi, xi+1, . . . , xi+n−1), (12.21)

for some efficiently computable non-linear function F , for example a low-

© 2009 by Taylor and Francis Group, LLC

390 Algorithmic Cryptanalysis

degree function. The output zi at time i is obtained by applying a fixed linear
function L to the inner sequence. Assuming, for simplicity of exposition, that
xi is always used when computing zi, we write:

zi = xi ⊕ L(xi+1, . . . , xi+n−1). (12.22)

Note that, depending on the choice of L, this construction can be trivially
broken. For example, if L = 0, zi simply is a copy of xi. In this case, it suffices
to collect n consecutive output bits to break the construction. Indeed, using
Equation (12.21), the rest of the sequence can then be predicted.

We now show that for any choice of L, this NLFSR based generator can
be vulnerable to correlation and algebraic attacks. The key argument is that
for each inner bit of the NLFSR, we have two different equations, the non-
linear Equation (12.21) and a linear equation which is obtained by rewriting
Equation (12.22) as:

xi = zi ⊕ L(xi+1, . . . , xi+n−1). (12.23)

Moreover, once the keystream z has been observed, we can substitute Equa-
tion (12.23) into itself for various values of i. As a consequence, each inner
bit xi can be expressed as a linear equation Li(x0, . . . , xn−1) of the initial
bits. The constant term in Li is obtained by linearly combining bits of the
output stream z. Substituting each bit of x by the corresponding linear ex-
pression in Equation (12.21) produces a low degree algebraic equation in the
unknown x0, . . . , xn−1. Since there are many such equations, we can use the
methodology of algebraic attacks.

Similarly, if we take the best linear approximation by the inputs of F and
its output, then after replacing in this linear expression each value of x by
its linear expression, we obtained a noisy linear equation in the bits of initial
state. Of course, we can apply the correlation methodology to the resulting
set of noisy linear equations.

12.5 The cube attack

A third class of attack against the filtered generator was recently proposed
by Dinur and Shamir [DS09]. It is called the cube attack, it is a new way to
use a well-known identity on multivariate polynomials over F2 and transform
it into an attack against some secret-key ciphers. In particular, this can be
applied to the filtered generator.

To explain the underlying identity, let us start with a univariate polynomial
F over F2. When x is in F2, we know that x2 = x. As a consequence, the
polynomial f obtained by keeping the remainder of the Euclidean division of

© 2009 by Taylor and Francis Group, LLC

Attacks on stream ciphers 391

F by f induces the same function as F on F2. Moreover, f is of degree at
most one, i.e., f(x) = ax⊕ b. We now see that:

f(0)⊕ f(1) = a. (12.24)

In fact, by summing on the two points 0 and 1, we are taking a derivative
of f and we can recover the coefficient of the term x in f . Note that this
is based on the same basic equation as differential cryptanalysis, but views
things from a different angle.

With more unknowns, we proceed similarly. Let F (x1, · · · , xk) be a poly-
nomial in k unknowns. After accounting for the identities x2

i = xi for each
unknown, we obtain a polynomial f , whose partial degree in each unknown is
at most one. Factoring x1 out where possible, we can write:

f(x1, · · · , xk) = a(x2, · · · , xk) · x1 + b(x2, · · · , xk).

As a consequence, the function f(0, x2, · · · , xk)⊕ f(1, x2, · · · , xk) is equal to
a(x2, · · · , xk).

The key idea of the cube attack is to repeat this process until we reach
easy-to-solve linear equations. For example, to repeat the approach on x1, x2

and x3, we first write:

f(x1, · · · , xk) = a7(x4, · · · , xk) · x1x2x3 ⊕ a6(x4, · · · , xk) · x1x2 ⊕
= a5(x4, · · · , xk) · x1x3 ⊕ a4(x4, · · · , xk) · x1 ⊕
= a3(x4, · · · , xk) · x2x3 ⊕ a2(x4, · · · , xk) · x2 ⊕
= a1(x4, · · · , xk) · x3 ⊕ a0(x4, · · · , xk).

Then, we remark that:

a7(x4, · · · , xk) = f(0, 0, 0, x4, · · · , xk)⊕ f(0, 0, 1, x4, · · · , xk)⊕
= f(0, 1, 0, x4, · · · , xk)⊕ f(0, 1, 1, x4, · · · , xk)⊕
= f(1, 0, 0, x4, · · · , xk)⊕ f(1, 0, 1, x4, · · · , xk)⊕
= f(1, 1, 0, x4, · · · , xk)⊕ f(1, 1, 1, x4, · · · , xk).

From this example, the reader can easily see that when we repeat the process
with t unknowns, we need to decompose f into 2t parts and to sum over 2t

points. The first t coordinates of these points cover all the possible values
that can be achieved by setting each coordinate to 0 or 1. These points are
the vertices of a hypercube in the t-dimensional space.

It is shown in [DS09] that for any polynomial f and any set of unknows S,
we can write:

f(x1, · · · , xk) =
∏
i∈S

xifS(x1, · · · , xk) + q(x1, · · · , xk),

where each monomial in q misses at least one unknown from S and fs is a
polynomial of the variables not in S. When summing on a hypercube induced

© 2009 by Taylor and Francis Group, LLC

392 Algorithmic Cryptanalysis

by S, we obtain a value for the polynomial fS . In [DS09], fS is called the
super-polynomial of S in f . Here, we instead called it the derived function of
f at S. The basic idea of cube attacks is very similar to a generalization of
differential cryptanalysis called higher order differential cryptanalysis [Knu94,
Lai94, MSK98]. However, it emphasizes a different attack scenario.

12.5.1 Basic scenario for the cube method

In order to use the cube attack, we need to be able to sum many evaluations
of the same polynomial along some hypercube. As a consequence, we need a
scenario where the attacker controls at least part of the unknowns entering
the polynomial. Since this process of summing produces values for a lower
degree polynomial derived from the first, it is natural to use this lower degree
polynomial to extract information about other unknowns. For this reason,
in [DS09], it is proposed to consider systems involving polynomials where
some unknowns are controlled by the attackers and some unknowns contain
secret key material. To simplify the extraction of information, the easiest is
to choose the hypercube we are summing on, in such a way that the derived
polynomial is linear in the secret unknowns. If this can be done, we obtain a
linear equation in the secret key. Repeating this with several hypercubes, we
obtain a linear system of equations, from which the secret key can hopefully
be recovered.

Since the cube attack is very recent, its scope of application is not yet
known. However, this attack seems to have a lot of potential. One very
surprising application is already given in [DS09]. This application allows to
break cryptosystems, which satisfy some specific criteria, in a black box way,
without even knowing the full details about these cryptosystems. The idea is,
in an initial phase, to choose hypercubes at random and look at the derived
function that we obtain, when running test copies of the system for which
the attacker controls the secret key. If the derived function is, or seems to
be, constant, the hypercube contains too many unknowns. If the derived
function is complicated, the hypercube contains too few unknows. If the
derived function is a simple linear function of the secret key, then we have
achieved the right balance and found one linear equation to be used later in
an attack phase. Note that there are several ways to test the linearity of the
derived function. One option is to check that if we add any of the secret key
unknowns to the hypercube variables, the resulting derived function becomes
a constant.

Among the possible applications of the cube attacks, it is proposed in [DS09]
to consider an extremely large filtered LFSR (on 10,000 unknowns) which
mixes IV and secret key variables in a complex way. The only real constraint
is that the degree of the output in terms of the variables is at most 16. The
cube attack successfully breaks this incredibly large filtered LFSR using 220

different IV values and a single bit of output for each. Note that this filtered
LFSR is completely of range for more conventional correlation or algebraic

© 2009 by Taylor and Francis Group, LLC

Attacks on stream ciphers 393

attacks.

12.6 Time memory data tradeoffs

In Chapter 7, we describe some time-memory tradeoffs against block ci-
phers. Since stream ciphers behave quite differently from block ciphers, it is
interesting to revisit these attacks in this different context. Let us start by
listing the relevant differences between the two kinds of ciphers. First, instead
of combining a key with a block of plaintext to get a block of ciphertext as
block ciphers do, stream ciphers generate a pseudo-random sequence from an
inner state, usually obtained by mixing together a key and an initialization
value. During the generation of the pseudo-random sequence, the inner state
takes many different consecutive values, where each value is obtained from
the previous one through an update function. At the same time, the output
sequence is obtained by applying an output function to each inner state. In
order to cryptanalyze the stream cipher, it suffices to recover one value of the
inner state at any point in time. Indeed, this suffices to predict the sequel
of the pseudo-random stream. Moreover, most of the time, the update func-
tion is in fact reversible and recovering a single inner state allows to find the
complete sequence of inner states. From this point, depending on the precise
cipher being considered, it might also be possible to recover the encryption
key. Thus, with a stream cipher, the goal of an attacker is slightly different;
instead of having to directly find the key, it suffices to recover one of the many
inner states taken during the encryption process.

From this remark, it is already possible to devise a simple attack that works
better than exhaustive search. To do this, we start by defining a function F ,
which takes as input an inner state and outputs a prefix of the corresponding
pseudo-random stream. For the size of the prefix, we choose either the size
of the inner or something slightly larger. Clearly, from some output of the
stream, we can deduce the image by F of the corresponding inner states of
the stream. As a consequence, if we know how to invert F we can recover
the inner state and break the cipher. Moreover, if we know how to invert F
only for a small fraction of the states, this already yields an attack. Indeed,
by observing the output of the stream cipher, we cannot only compute F for
the initial inner state, but also for most of the subsequent inner states taken
during the encryption process. In fact, we obtain F for all of these inner
states except the few final ones, for which we do not have enough keystream
available. To simplify the analysis of the attack, one generally assumes that
each inner state gives a new independent chance of inverting F . Of course,
successive states are not really independent, but from the cryptanalyst point-
of-view, the simplified modelization is a good rule of thumb. In this model,

© 2009 by Taylor and Francis Group, LLC

394 Algorithmic Cryptanalysis

this basic attack, independently discovered by Babbage and Golic, works as
follows. First, during a precomputation step, we compute F on some fraction
α of possible inner states and store these values in a sorted table. Then
to recover an unknown state, we obtain the corresponding pseudo-random
sequence. From this sequence, we deduce N different values of F for N of
the inner states seen during the construction of the pseudo-random sequence
(whose length is a little above N). If αN ≈ 1, we expect that one among the
F values can be found in our table and we deduce the corresponding inner
state.

This simple attack illustrates the fact that with stream ciphers, we have
many available targets instead of a single one and this helps the cryptan-
alyst. This was further extended by Biryukov and Shamir in [BS00] into
time/memory/data tradeoff attacks. By playing with three parameters in-
stead of two, it is possible to obtain a better compromise. For example,
assuming that the space of inner states contains N values, it is possible to
recover one state in time N2/3 using output sequences of length N1/3 and
memory of the order of N1/3. This is clearly more efficient than Hellman’s
usual compromise with time and memory N2/3. For more details, we refer
the reader to [BS00].

© 2009 by Taylor and Francis Group, LLC

Attacks on stream ciphers 395

Exercises

1h. Assume that the same one-time pad key is used twice to encrypt two
texts in English, M and M ′. Show how both texts can be recovered
from the encrypted strings.

2. Work out a scenario where the malleability of messages encrypted by
the one-time pad yields a major security hole.

3h. Consider a filtered LFSR where the input bits to the non-linear function
f are consecutive. Assume that f maps k bits to one. Show that
the best linear correlation between input and output can be improved
by considering several consecutive output bits. Try this approach for
randomly selected functions.

4. Consider a Geffe generator based on three LFSRs: a control LFSR C
on n bits and two outputs LFSR A and B on m bits each. How much
does exhaustive search on this generator cost? Given the initial value of
C, how can you efficiently recover the initial values A and B? Conclude
that n should not be too small.

5h. Continuing with the Geffe generator, assume that n is too large for
exhaustive search. Construct a correlation attack and recover A and
B. How much keystream is needed? What happens if A and B use
the same feedback polynomial? Once A and B are known, how do you
reconstruct C?

6. Recompute the necessary amount of keystream N required for a corre-
lation attack on a filtered LFSR with bias ε if we want the correct can-
didate to appear among the list of L candidates generating sequences
closest to the output stream.

7h. Write a program for computing parity checks. Try the birthday based
and the quadrisection approach. Let n denote the number of bits taken
in account in the parity checks. What values of n can you achieve with
each approach?

8. Following Section 12.3.1, consider a LFSR on n bits and the output
sequence x ⊕ y ⊕ xy, where x and y are two consecutive bits, then
construct a linear combination of output bits where all quadratic terms
vanish.

9h. This exercise considers non-linear shift registers on n bits. Show that
there are 2n possible shift registers of this sort. Study the possible struc-
ture of the oriented graph whose vertices are the inner states and whose
arrows are obtained by advancing the NLFSR. Which NLFSR would

© 2009 by Taylor and Francis Group, LLC

396 Algorithmic Cryptanalysis

you keep for cryptographic purposes? Write a program to enumerate
the possibilities and select the good ones.

Finally, here are possible implementation projects on this topic:

i. Write a complete set of programs for fast correlation attacks. Com-
pare the performance of using the Walsh transform or not during the
evaluation of parity checks. Look up and implement some advanced cor-
relation attack from the literature (conditional, iterative, . . . correlation
attacks).

ii. Generalize the method of Section 12.3.1 to polynomials of arbitrary
degree. Write a program that computes, given a feedback polynomial
and output function for a LFSR, a linear combination of output bits
such that the non-linear terms vanish. Show that for some badly chosen
output functions the method can work with short output sequences.
Construct such bad examples.

iii. Write a working implementation of the cube attack as presented in [DS09].
Compare this to other attacks against the filtered generator.

© 2009 by Taylor and Francis Group, LLC

Chapter 13

Lattice-based cryptanalysis

Lattice-based cryptanalysis uses lattice reduction algorithms in order to dis-
cover short linear relations between integer vectors that give a useful insight
into various cryptographic systems. They can roughly be classified into two
main classes: direct attacks, where the cryptanalytic problem at hand can
directly be expressed as a lattice reduction problem and Coppersmith’s based
attacks, which rely on several algorithms which can recover small roots of
polynomial systems of equations using lattice reduction.

Due to the complexity of lattice reduction algorithms, a frequent way of
analyzing lattice-based attacks consists of assuming the existence of a lattice
reduction oracle that solves some lattice problem such as the shortest vector
problem (see Chapter 10). Of course, no such oracle exists; however, it is a
very convenient heuristic based on the good practical performance of lattice
reduction algorithms. In some cases, the analysis can be refined to reflect
the proved properties of available lattice reduction algorithm. This can be
necessary either to obtain a proved attack or when faced with lattice reduction
problems that are out of reach of current lattice reduction programs.

13.1 Direct attacks using lattice reduction

13.1.1 Dependence relations with small coefficients

One very important family of lattice reduction attacks makes use of lattices
to find linear relations with relatively small coefficients between numbers or
vectors. These relations may be considered over the integers or in some modu-
lar ring. Before addressing this problem, it is nice to look at its combinatorial
properties and determine for which instances we should expect small linear
relations.

13.1.1.1 Combinatorial properties

When searching short linear dependency between elements of a family of
numbers or vectors, two cases occur. We can either be looking for an “abnor-
mally” small relation whose existence is guaranteed by the specific properties

397

© 2009 by Taylor and Francis Group, LLC

398 Algorithmic Cryptanalysis

of the family and may, for example, reflect the existence of a trapdoor in a
cryptographic scheme, or we may simply desire an ordinary relation whose
existence is generically guaranteed. The goal of this section is to analyze the
expected size of such generic relations.

LEMMA 13.1
Let ~v1, . . . , ~vn be a family of vectors with integer coefficients in t coordinates

with t < n. Let M denote an upper bound for the absolute values of all
coefficients of the various ~vis. Then there exists a non-zero integer relation

n∑
i=1

λi~vi = ~0, (13.1)

such that max |λi| ≤ B, where B is given by

log2B = t · log2M + log2 n+ 1
n− t

(13.2)

PROOF Consider all possible linear combinations
n∑
i=1

µi~vi (13.3)

with 0 ≤ µi < B. There are Bn such relations and the resulting vectors
have all their coordinates upper bounded by nBM . Since there are less than
(2nBM)t such vectors, two distinct relations have to compute the same value,
as soon as (2BM)t ≤ Bn, which amounts to the relation given in Equa-
tion (13.2). This collision gives

n∑
i=1

µi~vi =
n∑
i=1

µ′i~vi, (13.4)

with 0 ≤ µi < B and 0 ≤ µ′i < B. After regrouping both sides by subtraction,
we find a non-zero relation as per Equation (13.1).

Note that in this proof, we do not invoke the birthday paradox, because the
various linear combinations are related and highly dependent.

Of course, for a specific instance of the problem, the shortest dependence
relation (say w.r.t. the Euclidean length) can be much shorter than the generic
bound stated in the above lemma. A similar lemma exists in the case of
modular relations:

LEMMA 13.2
Let ~v1, . . . , ~vn be a family of vectors with integer coefficients in t coordinates

with t < n. Let N be an integer. Then there exists a non-zero integer relation

© 2009 by Taylor and Francis Group, LLC

Lattice-based cryptanalysis 399

modulo N :
n∑
i=1

λi~vi = ~0 (mod N), (13.5)

such that max |λi| ≤ min(B,N/2), where B is given by

B = N t/n. (13.6)

PROOF As before, consider all possible linear combinations

n∑
i=1

µi~vi (mod N) (13.7)

with 0 ≤ µi < B. There are Bn such relations and that the resulting vectors
are expressed modulo N . Thus, there are less than N t possible vectors and
two distinct relations have to compute the same value, as soon as N t ≤ Bn,
which is equivalent to Equation (13.2). This collision gives

n∑
i=1

µi~vi =
n∑
i=1

µ′i~vi (mod N), (13.8)

with 0 ≤ µi < B and 0 ≤ µ′i < B. Once again, this yields a non-zero relation.
Moreover, using reduction modulo N , this relation can be expressed with
coefficients in the range [−N/2, N/2].

13.1.1.2 Lattice reduction based search for short relations

Given a family of integer vectors on t coordinates ~v1, . . . , ~vn as above, we
now form the integer lattice generated by the columns of the following matrix:

L(~v) =

K~v1 K~v2 · · · K~vn

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 , (13.9)

where K is a constant that is determined in the sequel.
Any linear relation as per Equation (13.1) can be mapped into a lattice

point:
>(0 · · · 0λ1λ2 · · ·λn),

whose first t coordinates are equal to 0. Conversely, any lattice point starting
with t zeros corresponds to a linear relation. As a consequence, the main
restriction when choosing K is that this constant should be large enough to
ensure that the first vector in a reduced basis of the lattice has zero compo-
nents in its upper part consisting of the first t coordinates that correspond

© 2009 by Taylor and Francis Group, LLC

400 Algorithmic Cryptanalysis

to the contributions of the ~vis. Indeed, when the contribution of the first t
coordinates is not all zero, then the Euclidean norm of the lattice vector is at
least K.

To make the choice of K more precise, it is important to specify the lattice
reduction process that is used. With a lattice reduction oracle, it suffices to
choose a value K larger than the norm of the expected linear relation. Using
the expected size of generic relation as in the previous section, it suffices to
take:

K =
⌈√

n(2M)
1
n−t

⌉
. (13.10)

When using the L3 lattice algorithm, K should be multiplied by a safety
coefficient 2n/2, to account for the fact that the first vector of the reduced
basis may be larger than the shortest lattice vector by a factor up to 2n/2.

With this choice for K, the lattice reduction process outputs short vectors
whose upper part is guaranteed to be zero and these vectors clearly corre-
spond to linear relations with small coefficients. As pointed out above, the
coefficients of the linear relation appear as coordinates of rank t+ 1, · · · , t+n
of the output vector.

13.1.1.3 Generalization to approximate relations

In some cases, instead of searching for exact relations between the vectors,
we may look for approximate relations, where

∑n
i=1 λi~vi is no longer ~0 but a

vector of small norm. A typical application of approximate relations occurs
when the values of the vectors ~vis correspond to approximations of vectors
with real-valued coordinates.

In the case of approximate relations, one option is to choose K = 1. With
this choice output vectors are short but there is no special reason to obtain
an upper part formed of zeros. This clearly corresponds to approximate de-
pendencies with small coefficients.

Other choices for K are possible and the choice of K allows to control the
balance between the quality of the approximate relation and the size of the
coefficients. When K is larger, the linear relation is more precise but the
coefficients are larger.

13.1.1.4 Modular relations

Another possible extension is to consider linear relations which are no longer
exact but, instead, hold modulo some integer N . In other words, we need to
modify the lattice that is considered to deal with modular relations. Assuming
that N is large enough, the answer is very simple and consists of adding to
the lattice basis a few columns that ensure modular reduction. This is done

© 2009 by Taylor and Francis Group, LLC

Lattice-based cryptanalysis 401

by considering the lattice generated by the columns of the following matrix:
K~v1 K~v2 · · · K~vn KNI

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

... 0
0 0 · · · 1 0

where I is a t×t identity matrix. Thanks to the additional columns, a modular
relation

∑n
i=1 λi

~i = ~0 (mod N) corresponds to a lattice point given by the
vector:

>(0 · · · 0 λ1 λ2 · · · λn).

Of course, this is not sufficient, we also need to make sure that such a
vector corresponding to a modular linear relation may appear as the result
of lattice reduction. To discuss this question, it is important to remark that
the above lattice includes short vectors which are not related to the existence
of any linear relation. These vectors can be obtained by multiplying any
of the first n vectors in the initial basis by a factor N and then by reducing
upper part modN . This process yields vectors whose coordinates are all zero,
with the exception of a single coordinate with value N . Applying the above
construction to all ~vis, we get a family of n vectors of norm N that are
mutually orthogonal. Experiments show that, if N is too small, this family
appears in sequence as the first output vectors of a reduced basis, and thus
completely masks any useful information about linear relations.

Clearly, assuming a lattice reduction oracle, we need to check that the
short vector that corresponds to the linear relation coming from Lemma 13.2
is shorter than these systematic vectors of norm N . Since the short vector
associated with the linear relation has norm at most

√
nB, we need to check

that
√
nN t/n < N or equivalently that:

N > n
n

2(n−t) . (13.11)

If the reduction is done using L3, an additional factor of 2n/2 is required to
guarantee that the first vector of the reduced basis corresponds to a genuine
linear relation.

An interesting special case is the binary case where N = 2. In this case,
any linear relation with four or more non-zero coefficients yields a vector with
norm greater than the systematic vectors of norm N . Thus, we cannot hope
that a lattice reduction approach finds a linear relation with more than 3 non-
zero coefficients. Moreover, relations with 3 coefficients or fewer can easily be
found using exhaustive search or birthday based algorithms. For this reason
no known lattice reduction algorithms are used for attacking binary problems,
such as finding short codewords in linear codes.

© 2009 by Taylor and Francis Group, LLC

402 Algorithmic Cryptanalysis

13.1.2 Some applications of short dependence relations

13.1.2.1 Knapsack problems

Solving knapsack problems is an interesting special case of finding linear
relations between given numbers. Historically, breaking knapsack problems
was one major application of lattice based cryptanalysis in the 80s and 90s.
In addition to this historical role, solving a knapsack problem requires more
involved techniques than the general case, because the expected relations have
all their coefficients in {0, 1}. In cryptographic scenarios, we know that such
a relation exists between the given elements of the knapsack a1, . . . , an and
the target sum s =

∑n
i=1 εiai. Moreover we know that the Euclidean norm

of the vector that encodes this relation is
√
αn, where α is the proportion

of ones in the relations. Depending on the considered cryptosystem, α may
or may not be known to the cryptanalyst but, in many practical examples it
is a part of the cryptographic system itself. Furthermore α is an important
parameter when trying to analyze the performances of lattice-based attacks
against knapsack problems. When each coefficient of ε is chosen uniformly at
random, the number of ones is close to n/2 with high probability and we can
assume that α = 1/2.

Another important parameter with knapsack problems is their density d
defined as:

d =
n

log2(maxi ai)
. (13.12)

Since this parameter is the ratio between the number of elements in the knap-
sack and the number of bits in each element, it controls the expected size of
“parasitical” linear relations of short norms between the ai, with coefficients
not restricted to {0, 1}.

It was shown in [LO85], that, when the density is low, parasitical vectors are
large and, thus, the shortest vector gives the solution to any random instance
of the knapsack problem. If we use the lattice from Equation (13.9), for
vectors on one coordinate only, and if we assume that shortest lattice-vectors
can be efficiently computed (even if this is not totally accurate), then low
density means d < 0.6463. Later in [CJL+92], this condition was improved to
d < 0.9408. In order to reach that bound, either of the two following lattices
(generated by columns) can be used:

Ka1 Ka2 · · · Kan −Ks
n+ 1 −1 · · · −1 −1
−1 n+ 1 · · · −1 −1
...

...
. . .

...
...

−1 −1 · · · n+ 1 −1
−1 −1 · · · −1 n+ 1

Ka1 Ka2 · · · Kan Ks

1 0 · · · 0 1/2
0 1 · · · 0 1/2
...

...
. . .

...
...

0 0 · · · 1 1/2

 .

Before we close this section, let us warn the reader on the meaning of the
low-density attacks. The inequality d < 0.9408, provides a provable guarantee

© 2009 by Taylor and Francis Group, LLC

Lattice-based cryptanalysis 403

that, from a shortest vector for a lattice computed from the problem one
can, with high probability, solve a random instance of the original knapsack
problem. Note, however, that in some cases, even lattice with larger density
can sometimes be solved using the approach. Moreover, the critical density
given here is for knapsack problems where the solution is balanced, with about
half zeros and half ones. For knapsacks with an unbalanced solution, i.e., when
the parameter α given above differs from 1/2, the critical density can be much
higher.

13.1.2.2 Polynomial relations

Finding the minimal polynomial of a real algebraic number x of degree d
corresponds to searching a linear dependency between 1, x, x2, . . . , xd. Since
we are working with integer lattices, we choose a large integer K and we try
to find an approximate relation between the closest integers to K, Kx, Kx2,
. . . , Kxd. More precisely, we reduce the following lattice, given by columns:

K bKxe bKx2e · · · bKxde
1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

The first vector of the reduced lattice can be written as:

>(ε a0 a1 · · · ad).

Since we wish to interpret a0, . . . , ad as the coefficients of the minimal poly-
nomial of x, i.e., we want to conclude that a0 + a1x+ a2x

2 + · · ·+ adx
d = 0.

The most important parameters here are K and d. If d is smaller than the
degree of the minimal polynomial of x then this technique cannot succeed.
Likewise, if K is too small, then it cannot succeed either. To see this, assume
for example that x is between 0 and 1 and apply Lemma (13.1): this yields a
linear combination of the elements on the first row of the above matrix with
coefficients bounded above by B, where B satisfies:

logB =
logK + log d+ 1

n− 1

If K is small, this relation is much more likely to appear as an output to lattice
reduction algorithms than the one corresponding to the minimal polynomial.
In fact, a reasonable choice is to take K ≥ (max |ai|)2d. In other words, K
should be much larger than the expected size of the coefficients of the minimal
polynomial. If d is not exactly known, for example if we only know an upper
bound on the degree of the minimal polynomial of x, then the following trick
can be applied: take the first two or three vectors appearing in the output

© 2009 by Taylor and Francis Group, LLC

404 Algorithmic Cryptanalysis

reduced lattice, transform them into polynomials and compute their GCD. If
K was large enough the minimal polynomial of x is usually obtained.

It is very important to know that the heuristic procedure we just described
can give positive results, i.e., it can find a minimal polynomial, but cannot
give a negative result. Moreover, if the method succeeds, we have a candidate
for the minimal polynomial; we can then check this candidate either up to
arbitrary large precision or formally if the situation permits.

13.1.2.3 NTRU lattices

Another kind of lattices has been an important source of progress for practi-
cal lattice reduction, lattice obtained from the NTRU cryptosystem. Without
entering into the details of this cryptosystem, let us simply state that the re-
sulting lattices have some very specific properties. In fact, they are very simi-
lar to knapsack lattices, except that we are considering modular knapsacks on
vectors. Depending on the exact version of the NTRU system, these knapsack
instances contain 0, 1 and also −1 values; moreover, the exact number of 1
and −1 values is usually known. The modulo used in these knapsacks is very
small, for example, 64 is a typical value. In addition, there is some extra
structure coming from the fact that the vectors in this modular knapsack are
rotated copies of each other. Another difference with pure knapsack systems
is that the sum of vectors we are searching does not exactly sum to zero but
instead to a vector with a fixed proportion of 1 and −1 values.

More precisely, starting from a vector with n coordinates, we are considering
a lattice spanned by the columns of a 2n× 2n matrix of the following form:

a1 a2 · · · an q 0 · · · 0
a2 a3 · · · a1 0 q · · · 0
...

...
. . .

...
...

...
. . .

...
an a1 · · · an−1 0 0 · · · q
1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 0

This lattice has many interesting properties:

• Starting from any vector in the lattice and rotating the coordinates of
the first and of the second half by the same amount, we obtain another
lattice vector.

• The short vectors corresponding to the NTRU secret key contain a small
number of 1 and −1 values and have a very short norm.

• The initial lattice basis given above already contains short vectors, of
norm q, corresponding to the reduction modulo q rule.

© 2009 by Taylor and Francis Group, LLC

Lattice-based cryptanalysis 405

Despite these extra properties, fully reducing the NTRU lattice in large di-
mension in order to recover the secret key is a real challenge. This shows
that even when working with small numbers, lattice reduction is not an easy
task. A state-of-the-art of lattice reduction methods applied, in particular, to
NTRU lattices is given in [GN08].

It is also worth mentioning that combined attacks mixing lattice reduction
and birthday paradox methods can be devised for NTRU (see [HG07]).

13.1.2.4 Cryptanalysis of Damg̊ard’s hash function

In [Dam90], among other options, Damg̊ard proposed to base a hash func-
tion on a knapsack compression function using 256 (non-modular) numbers ai
of size 120 bits. His idea was to divide the message to be hashed into blocks
of 128 bits, and to apply the following process:

• Start with a fixed initial value on 128 bits. Appending the first 128-bit
block of the message, one gets a block B of 256 bits.

• (Compression phase.) Compute the knapsack transform of these 256
bits, i.e., starting from zero, add up all ais whose index corresponds to
the position of a one bit of B. The resulting number can be encoded
using 128 bits.

• Append the next block to get 256 bits and iterate the compression phase.

In order to find a collision for this hash function, it is clearly enough to
find two different 128-bit blocks that, when appended to the initial value,
yield the same hash value. This clearly corresponds to finding a collision in
a knapsack transform based on 128 numbers of 120 bits. In the sequel, we
study how collisions in such a knapsack transform can be found using lattice
reduction, and we show that it is feasible to build collisions for Damg̊ard’s
hash function. A completely different kind of attack against this construction
has already appeared in the work of P. Camion and J. Patarin ([CP91]). Still,
it has never been implemented, and besides, it could only find collisions for
the compression function rather than for the hash function itself. In contrast
to this approach, our attack runs on a computer and actually outputs collision
for the size of the parameters suggested by Damg̊ard.

Unfortunately, our attack cannot be proven, even in the lattice oracle setting
described in Section 13.1.2.1. Nevertheless, for a slightly weaker notion of
a collision, which we call pseudo-collision, a correct mathematical analysis
can be carried through. A pseudo-collision for Damg̊ard’s hash function
consists of two messages whose hash values coincide except for the 8 leading
bits. The practical significance of pseudo-collisions is obvious since pseudo-
collisions have a non-negligible chance of being actual collisions.

13.1.2.4.1 The basic strategy In this section, we associate a lattice to
any given knapsack-based compression-function in such a way that collisions

© 2009 by Taylor and Francis Group, LLC

406 Algorithmic Cryptanalysis

correspond to short vectors. Before describing the reduction, we make our
definitions and notations a bit more precise: we fix a sequence of integers,
a = a1, . . . , an. The knapsack-compression function Sa, which we simply
denote by S, takes as input any vector x in {0, 1}n and computes

S(x) =
n∑
i=1

aixi

A collision for this function consists of two values x and x′ such that S(x) =
S(x′).

In order to search collisions, we reduce the lattice given by the columns of
the following matrix:

B =

Ka1 Ka2 · · · Kan

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

Note that this lattice is exactly the lattice used in the original Lagarias-
Odlyzko attack for solving knapsack problems (see [LO85]). Let us consider
the possible output of lattice reduction. Since K is large, it is clear that the
first coordinate of a short vector is 0. As for the other coordinates, we expect
them to be all 0, 1 or −1. Indeed, if this happens we clearly get a collision:
from an element of the lattice

e = >(0 ε1 ε2 · · · εn).

with all coordinates 0, 1 or −1, we find that
n∑
i=1

εiai = 0

and thus obtain a collision: ∑
εi=1

ai =
∑
εi=−1

ai.

Analysis of the attack With the attack as was stated above, finding a
collision for Damg̊ard’s hash function can be done in practice, using L3 to
compute collisions for a knapsack compression function based on 128 numbers
with 120 bits each. This was described in [JG94].

Surprisingly, despite these practical results, a theoretical analysis shows
that asymptotically, the attack as presented does not work. However, it is
possible to slightly modify the attack and obtain an exponential attack with
complexity around 2n/1000. This explains why the attack works for the values
of n suggested in [Dam90].

© 2009 by Taylor and Francis Group, LLC

Lattice-based cryptanalysis 407

13.2 Coppersmith’s small roots attacks

13.2.1 Univariate modular polynomials

In general, the problem of finding a root of a univariate polynomial f(x)
modulo an integer N of unknown factorization is a difficult problem. Indeed,
it is well known that finding a root of x2 − r2 (mod N) for a random value
r, usually yields a (partial) factorization of N ; see Section 2.3.3.1. On the
contrary, when the factorization of N is known, it is easy to find roots of f
modulo each prime factor and paste them together with the Chinese remainder
theorem, using a Hensel lifting step to deal with multiple factors of N . On
the other hand, when f has roots over the integers, it is easy to find them and
use them as roots modulo N . For example, finding a root of x2 − 4 modulo a
large integer N is easy. This example can be generalized to any polynomial
f with small enough coefficients. Write f(x) =

∑d
i=0 f

(i)xi and denote by
|f | the polynomial defined by |f |(x) =

∑d
i=0 |f (i)|xi whose coefficients are

the absolute values of the coefficients of f . If B is a positive integer such
that |f |(B) < N , then for all integers x such that −B ≤ x ≤ B, we have
−N < f(x) < N . As a consequence, any root x of f modulo N that lies the
interval [−B,B] is also a root of f over the ring of integers. As a consequence,
it can be easily found.

The first small root algorithm of Coppersmith extends this idea beyond its
initial range. It plays on the two sides of the inequality |f |(B) < N in order
to allow larger values for B. On the right-hand side, N is replaced by some
power of N ; on the left-hand side, f is replaced by another polynomial F with
smaller coefficients. One basic remark behind Coppersmith’s construction is
that if we denote by Fi,j,k the polynomial Fi,j,k(x) = xif(x)jNk, then any
root r of f modulo N is also a root of Fi,j,k modulo N j+k. Let us choose a
parameter t and look at polynomials of the form Fi,j,t−j ; they all share the
root r modulo N t. In addition, the degree of Fi,j,t−j is i + j · deg(f). It is
convenient to choose a bound D on the allowed degree and consider a set of
polynomials Fi,j,t−j of degree at most D.

13.2.1.1 Howgrave-Graham’s variation

In fact, it is easier to first describe a variation of Coppersmith’s first small
root algorithm, as presented in [HG97]. In this version, we use the fact that
since all polynomials, in the set of polynomials Fi,j,t−j of bounded degree, have
the common root r modulo N t, any linear combination of these polynomials
also has the same root modulo N t. Our goal is now to find such a linear
combination F that maximizes the possible bound B satisfying the constraint
|F |(B) < N t. Invoking our early remarks, we can then find the root r under
the condition |r| < B. Once again writing, F (x) =

∑D
i=0 F

(i)xi, we can see

© 2009 by Taylor and Francis Group, LLC

408 Algorithmic Cryptanalysis

that |F |(B) is the ‖ · ‖1 of the row vector:

~VF = (F (0), BF (1), B2F (2), · · · , BDF (D)). (13.13)

Thus, the best possible polynomial that can be obtained from a family of
polynomials Fi,j,t−j corresponds to the shortest non-zero vector in norm ‖ · ‖1
in the lattice generated by the row vectors ~VFi,j,t−j .

Finding this best possible polynomial is not possible for two reasons: first
available lattice reduction algorithms work on the Euclidean norm and not the
‖ · ‖1 norm; second, even considering the Euclidean norm, we do not generally
obtain the shortest non-zero vector in the lattice. However, the good news
is that the shortest vector that can be found using existing lattice reduction
algorithms suffices to obtain a polynomial F with |F |(B) < N t for a large
value of B. We now analyze this lattice in order to establish the relationship
between the bound B, the parameters t and D, the size of the coefficients of
f and of the modulus N .

13.2.1.1.1 Properties of the lattice of Howgrave-Graham Through-
out the analysis, we assume that the bound B is a fixed parameter. We assess
the largest value of B that can be obtained at the very end of the analysis.

We start from a set of integer pairs S and we construct a lattice LS(f)
generated by the family of vectors VFi,j,t−j defined as in Equation (13.13)
from the polynomials Fi,j,t−j , for (i, j) ∈ S. When choosing S, it is useful to
make sure that this generating family is in fact a basis of LS(f), thus avoiding
trivial dependencies between the vectors. For example, if S contains (0, 2) and
(0, 1), (1, 1), . . . (d, 1) such a trivial dependency occurs. Indeed, assuming that
t = 2, these pairs correspond to the polynomials, f2, Nf , Nxf , . . . , Nxdf
which are related by:

N · f2 =
d∑
i=0

f (i)(Nxif). (13.14)

Thus, it is a good strategy to keep the parameter i below the degree d of the
starting polynomial f . With this in mind, a natural choice for the set S is
the direct product [0 . . . d − 1] × [0 . . . t]. With this choice, we have d(t + 1)
polynomials of degree at most D = d(t + 1) − 1 and the generating family
of LS is a square matrix of dimension D + 1 = d(t + 1). The next step to
obtain information about the lattice is to compute the determinant of the
square matrix. To do this, remark that since the lattice is generated by using
the encoding described in Equation (13.13) we can factor B out of the second
column of the matrix, B2 out of the third and so on. All in all, this implies
that BD(D+1)/2 can be be factored out of the determinant. Similarly, we can
factor N t out of each polynomial Fi,0,t, N t−1 out of Fi,1,t−1 and so on. The
total contribution to the determinant is Ndt(t+1)/2 = N (D+1)t/2. After this,
there remains a triangular matrix whose diagonal entries are powers of the
highest degree coefficient of f .

© 2009 by Taylor and Francis Group, LLC

Lattice-based cryptanalysis 409

At that point, we need to mention that multiplying f by the modular inverse
of its high degree coefficient, we can always assume that f is unitary. The only
way this could fail is by revealing of factor of N ; in that case, we can work
modulo each of the revealed factors1. When f is unitary, the determinant
of the lattice LS as above is N (D+1)t/2BD(D+1)/2. Using Equation (10.24)
from Section 10.3.2, we see that we can thus find a short vector ~V in LS of
Euclidean norm satisfying:

‖~V ‖ ≤ 2D/4N t/2BD/2. (13.15)

Since ‖~V ‖1 ≤
√
D + 1‖~V ‖ we associate to ~V a polynomial F such that:

|F |(B) ≤
√
D + 1 · 2D/4N t/2BD/2. (13.16)

In order to make sure that |F |(B) < N t we need to choose t and D that
satisfy: √

D + 1(
√

2 ·B)D/2 < N t/2. (13.17)

Ignoring the
√
D + 1 factor and taking logarithms, the largest value of B that

can be achieved satisfies:
(
√

2 ·B)D ≈ N t. (13.18)

Letting t grow, we find that asymptotically, we can achieve B ≈ N1/d/
√

2.
It is nice to note that in this context of Coppersmith’s attack, the 2D/4

approximation factor only changes the bound B by a factor
√

2 compared to
an ideal lattice reduction oracle. Since a constant factor on B can be gained
by exhaustively trying a small number of bits of the root we seek, we see that
where Coppersmith’s attack is concerned, the L3 algorithm is essentially as
satisfactory as a lattice reduction oracle.

13.2.1.2 Coppersmith’s original method

Starting from the same set of polynomials Fi,j,t−j of degree at most D,
Coppermith proceeds differently. He remarks that, since r is a common root
of all these polynomials, the vector:

W (r) = (1, r, r2, . . . , rD)

is orthogonal to the vectors representing each of these polynomials. As in
Chapter 11, we map vectors to polynomials and vice versa using a monomial
ordering. Moreover, with univariate monomials, it is clear that monomials
are simply sorted by degree.

Thus, instead of looking for a short vector in the lattice generated by
the vectors corresponding to the polynomials Fi,j,t−j , Coppersmith’s method

1In fact, in many cases, if the factorization is revealed, the attacker succeeds and can abort
his attack.

© 2009 by Taylor and Francis Group, LLC

410 Algorithmic Cryptanalysis

looks for the vector W (r) which belongs to the orthogonal of this lattice.
As with Howgrave-Graham’s variation, ad-hoc multipliers should appear in
each coordinate to guarantee that we look for a short vector. To choose the
multipliers, recalling that |r| < B it suffices to remark that:

W ′(r) =
1√
D + 1

· (1, r/B, (r/B)2, . . . , (r/B)D)

is a short vector of norm less than 1, since all of its D + 1 coordinates are
smaller than 1/

√
D + 1 in absolute value.

More precisely, Coppersmith let δ = 1/
√
D + 1 and considers the lattice L

generated by the rows of the following matrix:

δ 0 0 · · · 0 [x0]F0,0,t [x0]F1,0,t · · · [x0]Fd−1,t,0

0 δ ·B−1 0 · · · 0 [x1]F0,0,t [x1]F1,0,t · · · [x1]Fd−1,t,0

0 0 δ ·B−2 · · · 0 [x2]F0,0,t [x2]F1,0,t · · · [x2]Fd−1,t,0

...
...

...
. . .

...
...

...
. . .

...
0 0 0 · · · δ ·B−D [xD]F0,0,t [xD]F1,0,t · · · [xD]Fd−1,t,0

0 0 0 · · · 0 N t 0 · · · 0
0 0 0 · · · 0 0 N t · · · 0
0 0 0 · · · 0 0 0 · · · N t

,

where [xi]F denotes the coefficient of xi in F . Clearly W ′(r) is a short vector
in the sublattice of L with zeros everywhere on the right coordinates. In fact,
the matrix given in [Cop96b] is obtained by factoring out extra powers of N
in the right-hand part of the matrix. Indeed, it is possible to factor N t−j out
the coefficients of Fi,j,t−j .

One important feature of Coppersmith’s attack is that instead of looking
at the first vector of the L3 reduced basis in order to find W ′(r), it focuses on
the last vector of the lattice. If the norm of the Gram-Schmidt orthogonalized
of this last vector is large enough, then it cannot appear in the decomposi-
tion of W ′(r). As a consequence, W ′(r) is orthogonal to this orthogonalized
vector. In other words, the orthogonalized vector can be transformed into a
polynomial with r as a root over Z.

In [HG97], it is shown that the original approach of Coppersmith and
Howgrave-Graham’s method are related through lattice duality. Following
Section 10.5, this relationship explains why we need to consider the first vec-
tor with one lattice and the last one with the other.

13.2.2 Bivariate polynomials

Another difficult problem is to find integral solutions of polynomial equa-
tions in two unknowns. For example, if we could find the roots of xy−N , we
could clearly factor N . The second small root algorithm of Coppersmith pre-
cisely addresses this case. Assume that we are given an irreducible polynomial

© 2009 by Taylor and Francis Group, LLC

Lattice-based cryptanalysis 411

f(x, y) with integer (or rational) coefficients and an integral root (x0, y0) such
that |x0| ≤ Bx and |y0| ≤ By for some bounds Bx and By. We would like to
determine a method that recovers (x0, y0) assuming that Bx and By are small
enough. Note that this notion of “smallness” can no longer be related to the
modulus; instead, we need to relate Bx and By with the size of coefficients
occuring in f . More precisely, writing f(x, y) =

∑d
i=0

∑d
j=0 fi,jx

iyj , the rele-
vant parameter is M(f) = maxi,j BixB

j
y|fi,j |. Let Fi,j denote the polynomial

xiyjf(x, y). Of course, (x0, y0) is a common root of all polynomials in this
family. Let us choose a set S of pairs of non-negative integers. We say that a
polynomial g(x, y) has its support in S if and only if all monomials xiyj that
appear with non-zero coefficients in g are such that (i, j) ∈ S. When g has
its support in S, we can write:

g =
∑

(i,j)∈S

g(i,j)xiyj , (13.19)

in this case, we let |g| denote the polynomial:

|g| =
∑

(i,j)∈S

|g(i,j)|xiyj , (13.20)

We can now encode g into a vector, following a graded monomial ordering:

~V (S)
g = (g(0,0), Bxg

(1,0), Byg
(0,1), · · · , BixBjyg(i,j), · · ·). (13.21)

In fact, the order of coefficients of g in this vector is unessential, as long as we
make the same choice for all polynomials that we encode. However, following
a monomial ordering makes things easier to write down. When S is clear from
the context, we omit it and write ~Vg.

In parallel, based on the same order, we may encode the (unknown) root
(x0, y0) into an (unknown) vector:

~W
(S)
(x0,y0) =

1√
|S|
· (1, x0/Bx, y0/By, · · · , (x0/Bx)i(y0/By)j , · · ·). (13.22)

When g has its support in S and when (x0, y0) is a root of g, we see that:

(~V (S)
g |

√
|S| · ~W (S)

(x0,y0)) =
∑

(i,j)∈S

g(i,j)BixB
j
y(x0/Bx)i(y0/By)j

=
∑

(i,j)∈S

g(i,j)xi0y
j
0 = g(x0, y0) = 0. (13.23)

Thus, the vector ~W
(S)
(x0,y0) is orthogonal to ~V

(S)
g .

Now, given a set S, we construct a lattice LS(f) as follows:

• Consider all polynomials Fi,j with support in S and construct the cor-
responding vector V SFi,j .

© 2009 by Taylor and Francis Group, LLC

412 Algorithmic Cryptanalysis

• Let LS(f) be the lattice spanned by the above vectors.

If (x0, y0) is a root of f , it is also a root of each Fi,j , thus WS
(x0,y0) is orthogonal

to the lattice LS(f). In addition, if |x0| ≤ Bx and |y0| ≤ By, we see that
‖WS

(x0,y0)‖ ≤ 1. As a consequence, WS
(x0,y0) is a short vector in the orthogonal

of the lattice LS(f).
Of course, (x0, y0) can be recovered from WS

(x0,y0), thus a natural approach
to solve the equation f(x, y) = 0 is to use lattice reduction to find a short
vector in the orthogonal lattice. However, as with Coppersmith’s first algo-
rithm, to provably obtain the solution (x0, y0), we need to make sure that no
other short vector can hide the solution. To avoid this difficulty, Coppersmith
instead proves that, under some conditions, WS

(x0,y0) belongs to the sublattice
obtained by removing the final vector in a L3 reduced basis. As a conse-
quence, the Gram-Schmidt vector corresponding to this final basis element is
orthogonal to WS

(x0,y0); thus, it encodes a bivariate polynomial h(x, y) that
vanishes at (x0, y0). Since f is irreducible, it suffices to prove that h is not a
multiple of f in order to make sure that the system of equation f(x, y) = 0,
h(x, y) = 0 has a finite number of solution over the complex field C and thus
to guarantee that (x0, y0) can be recovered from the knowledge of f and h.

In [Cop96a], Coppersmith studied the case of polynomials of degree d in
each variable. In that case, (x0, y0) can be recovered as long as BxBy <
M(f)2/(3d). He also considered the case of bivariate polynomials of total
degree d. In this other case, the corresponding bound is BxBy < M(f)1/d.
The method can be generalized to many different shapes of polynomials, for
a survey, refer to [BM05].

In [Cor04] and [Cor07], Coron proposed a variation of Coppersmith’s algo-
rithm for bivariate polynomials using a modular approach similar to Howgrave-
Graham’s method.

13.2.2.1 Coppersmith’s algorithm with more variables

Coppersmith’s second algorithm can be extended to polynomials with more
variables. It suffices to choose an appropriate set of monomials S. With this
adaptation, we easily obtain a second polynomial h from the initial polynomial
f . However, using the results of Chapter 11, we know that with more than
two unknowns, two polynomials do not suffice to determine a zero-dimensional
ideal. So, the key question in this context is to obtain extra polynomials with
the same root. A simple heuristic method consists of taking several vectors in
Coppersmith’s reduced lattice instead of one and to construct a polynomial
from each of these vectors. The same heuristic idea also works with modular
polynomials with more than a single variable. The problem with this method
is that it does not guarantee algebraic independence of polynomials. However,
many cryptographic attacks, such as the one presented in Section 13.2.4 are
based on this heuristic method and work extremely well in practice.

© 2009 by Taylor and Francis Group, LLC

Lattice-based cryptanalysis 413

In some cases, it is possible to replace this heuristic method by a different
approach which mixes lattice reduction and Gröbner basis techniques [BJ07].

13.2.3 Extension to rational roots

A natural question concerning Coppersmith’s algorithm is to ask whether
it can also discover “small” rational roots. Of course, we need to define the
meaning of the word “small” in this context. The easiest is to define the size
of a fraction p/q in irreducible form as max(|p|, |q|). With this definition of
size, finding a small rational root of a polynomial f(x1, . . . , xk) is equivalent
to finding a small integer root of F (X1, Y1, X2, Y2, . . . , Xk, Yk), where F is
derived from f by independently homogenizing each of the k variables in f .
The algorithms of Coppersmith can then easily be adapted. We now detail
the case of Coppersmith’s first algorithm, using Howgrave-Graham’s method,
to show how this affects the bound on the size of the root. Let f be a
univariate polynomial of degree d, with a rational root r = x0/y0 modulo
N satisfying |x0| < B and |y0| < B. After homogenization, we obtain an
homogeneous polynomial in two variables, x and y, namely ydf(x/y). Given
a fixed degree bound D, we can define the family of polynomials Fi,j,k(x, y) =
yD−ixif(x/y)jNk. Each polynomial in the family is homogeneous of degree
D in x and y. Then, we construct a lattice as in Section 13.2.1.1 but instead
of using the encoding of Equation (13.13) we instead use:

~VF = (F (0), F (1), F (2), · · · , F (D)). (13.24)

The only difference with Equation (13.13) is that we omit the factor B used to
balance the size of different power of x when searching integer roots. Indeed,
with a homogeneous polynomial and the same bound on x and y, this is no
longer needed.

With this change, the determinant of the lattice adapted from Howgrave-
Graham’s is N (D+1)t/2. We can guarantee that the shortest vector in the
adapted lattice corresponds to a polynomial with the exact rational root r
if the sum of the absolute values of its coefficients are smaller than N t/BD.
Thanks to the L3 bound, the sum of coefficients can be bounded by

√
D + 1 ·

2D/4 ·N t/2. Ignoring the factor
√
D + 1, we find that the largest value of B

we can obtain satisfies:
(4
√

2 ·B)D ≈ N t/2. (13.25)

Asymptotically, we can achieve:

B ≈
√
N1/d/

√
2.

In other words, in this case, the bound on the numerator and denominator x0

and y0 of the rational root is the square root of the original bound for integer
roots.

© 2009 by Taylor and Francis Group, LLC

414 Algorithmic Cryptanalysis

13.2.4 Security of RSA with small decryption exponent

One typical application of Coppersmith’s method in cryptography is the
Boneh-Durfee attack for recovering the secret key of an RSA instance, when
the decryption exponent is small. Let N = pq be an RSA modulus and
φ(N) = (p − 1) · (q − 1). We know that the encryption exponent e and the
decryption exponent d are related by the following equation:

ed = 1 + kφ(N). (13.26)

In the sequel, we assume that d is normalized in the interval [−φ(N)/2, φ(N)/2)]
and we say that d is α-small when |d| ≤ φ(N)α. We also assume that e is
in the interval [0, φ(N)]. Clearly, in this setting, if d is α-small then so is k.
Moreover, since φ(N) = N − (p+ q) + 1, it is possible to write φ(N) = N − z,
with a value of z below a small multiple of

√
N . Thus, Equation (13.26) can

be rewritten as:
ed− kN − kz − 1 = 0. (13.27)

In this equation, the term kz is smaller than the terms ed and kN . This
remark was used by Wiener in [Wie90]. It means that the equation can be
rewritten as e/N ≈ k/d. As a consequence, if d and k are small enough, the
fraction k/d naturally arises as an approximation of e/N using the techniques
presented in Section 2.2.2. Using a continued fraction algorithms, Wiener
showed in [Wie90] that this allows recovery of the decryption exponent d
under the condition d < N1/4.

In [BD99], in order to increase the bound to Nα with α > 1/4, Boneh and
Durfee rewrite Equation (13.27) as a bivariate modular equation kN+kz+1 =
0 (mod e). In this equation, we search a solution with z of the order of N1/2

and k of the order of Nα. Using the heuristic extension of Coppersmith
univariate modular algorithm to the bivariate modular case adapted to the
shape of this polynomial, they first obtain a new bound α ≈ 0.285. With a
specific improvement, involving rectangular matrices, they derive an improved
bound α ≈ 0.292.

© 2009 by Taylor and Francis Group, LLC

Lattice-based cryptanalysis 415

Exercises

1. Consider the floating point number:

x = −8.44311610583794550393138517.

Show that x is a close approximation of a real root of a polynomial of
degree 3, with coefficient bounded by 20 (in absolute value).

2h. Let p be a large prime such that the polynomial f1(x) = x3 + 2 has a
root X0 modulo p. Find a polynomial f2(X) of degree 2 with coefficients
of the order of p1/3 and such that f2(X0) = 0 (mod N). What can you
say about the resultant of f1 and f2.

3h. Generalize the above method for a polynomial f1 of degree d with small
coefficients.

4h. Show that the polynomials f1 and f2 from the two previous exercises
can serve as a basis for a number field sieve computation modulo p (see
Chapter 15). Compare with the bound given in Section 15.4.3.

5. Assume that a positive integer x has been encrypted under 3 different
RSA keys, N1, N2 and N3 (x is smaller than these three values to allow
decryption), under the public exponent 3. Show that x can be recovered
from the three encrypted values c1, c2 and c3.

6h. Consider an RSA number N = pq, with
√
N/2 ≤ p ≤

√
N . Assume

that a fraction of the high order bits of p are known. In that case, we
can write p = p0 + x.

• Give an upper bound on x.

• Show that the high order bits of q are also known.

• When can Coppersmith’s method be used to solve N = (p0 + x) ·
(q0 + y)?

7. Consider Equation (13.26). Check that by using the methods for ap-
proximating fractions given in Chapter 2, it is possible to recover the
RSA secret key as long as it remains below N1/4.

8. Consider a variation of Equation (13.26), namely:

ed = r + kφ(N).

Assuming that d and r are both small, under which condition can these
numbers be recovered?

© 2009 by Taylor and Francis Group, LLC

Chapter 14

Elliptic curves and pairings

Elliptic curves are an essential tool in today’s cryptography. They are often
used to construct cryptosystems but there are also some cryptanalytic appli-
cations where the use of elliptic curves is necessary. In this chapter, we give
a self-contained introduction to elliptic curves, together with a description of
the Weil pairing. This pairing was initially introduced in cryptography as a
cryptanalytic tool to attack the discrete logarithm problem on some special
elliptic curves. It is interesting to note that the Weil pairing1 has now become
an essential tool for constructing new cryptosystems.

The constructions and proofs given in this chapter are often ad-hoc short-
cuts which hide deeper and nicer theory. In particular, we only consider
elliptic curves over finite fields of characteristic p ≥ 5. In order to learn more
about elliptic curves and their cryptographic applications, interested readers
should refer to more specific textbooks such as [CF05, JN08, Sil86].

14.1 Introduction to elliptic curves

Over a finite field Fq = Fpn , with p ≥ 5, an elliptic curve is described by a
Weierstrass equation:

y2 = x3 + ax+ b, (14.1)

where a and b are elements of Fq. For this equation, it is essential to be able
to define the tangent line to the curve at every point on the curve. If it is not
the case, we say that the curve is singular and not really an elliptic curve. The
tangent line at a point P of coordinates (xP , yP) is given by the equation:

2yP (y − yP) = (3x2
P + a)(x− xP). (14.2)

It is well defined unless 2yP = 3x2
P + a = 0. Since we also have y2

P =
x3
P + axP + b, the tangent is well defined unless both 3x2

P + a = 0 and

1Together with a few cousins which can be computed faster, such as the Tate, Ate or Eta
pairings.

417

© 2009 by Taylor and Francis Group, LLC

418 Algorithmic Cryptanalysis

x3
P + axP + b = 0. Put together, these two conditions imply:

(6ax2
P −9bxP +4a2) · (3x2

P +a)+(−18axP +27b) · (x3
P +axP +b) = 0. (14.3)

The reader can easily check that the above quantity is equal to ∆(a, b) =
4a3 + 27b3, it is called the discriminant of the curve. The above discussion
shows that the curve is non-singular (or smooth) if and only if ∆(a, b) 6= 0.

Given an elliptic curve E in Weierstrass equation, we can clearly define the
set of points on this curve:

E(Fq) =
{
P = (xP , yP) | (xP , yP) ∈ F2

q, y
2
P = x3

P + axP + b
}⋃
{O}. (14.4)

The additional point O is called the point at infinity on the elliptic curve.
Similarly, for any extension of the finite field, we can define E(Fqe), by taking
points with coordinates in the extension field.

14.1.1 The group structure of elliptic curves

The fundamental property of elliptic curves is that we can add a group
structure to these sets of points. This group structure is denoted additively
and the point at infinity is the zero element in the group. This group structure
can be introduced in several ways. Here, we give an algebraic construction in
order to define other mathematical objects that are needed for the introduc-
tion of the Weil pairing.

14.1.1.1 Divisors

The first step of the construction is to define the divisor group of the elliptic
curve. This divisor group Div is the group of maps from the curve to the
set of integers Z which are equal to zero except on a finite2 set of points.
Clearly, if we define the sum of two maps D1 and D2 as the map D1 + D2

whose value at a point P is D1(P) + D2(P), we obtain an additive group.
The zero element is the zero mapping and the opposite of a map D is −D,
with value −D(P) at P . Furthermore, this group is abelian, since addition of
integers is commutative. To represent these maps in the divisor group, it is
traditional to write them as formal sums

∑
D(P) (P). For example, the map

D with value 3 at P , −3 at O and equal to zero elsewhere is represented as
3(P)− 3(O). From now on, an element from the divisor group will simply be
called a divisor.

Given any divisor D, we define its degree as the (finite) sum of the values of
D at all points. For example, deg(2(P) + 2(Q)− 3(O)) = 1. Since deg(D1 +
D2) = deg(D1) + deg(D2), deg is a group morphism from the divisor group
Div to Z. As a consequence, its kernel is a subgroup, called the subgroup of
degree 0 divisors and denoted by Div0.

2Of course, since E(Fq) is already a finite set, this restriction is irrelevant in our case.

© 2009 by Taylor and Francis Group, LLC

Elliptic curves and pairings 419

14.1.1.2 Functions

The second step of the construction is to define functions on the elliptic
curve. We start from an arbitrary polynomial F (x, y). Clearly, for any point
P = (xP , yP) other than O on the elliptic curve E(Fq), we can define F (P) =
F (xP , yP). Note that F (P) is an element of Fq. If F (P) = 0, we say that P is
a zero of F . Unless F is multiple of y2−x3−ax−b, the set of zeros of F is finite.
In fact, adding any multiple of y2 − x3 − ax− b to a polynomial F preserves
the values F (P) and the set of zeros. As a consequence, if we so wish, we can
replace y2 by x3 + ax+ b in F and write F (x, y) as F0(x) + yF1(x). When P
is a zero of F , we can define its order or multiplicity denoted by ordP (F). It
is the largest integer o such that some multiple FH of F , with H(P) 6= 0 can
be written as a product (modulo y2−x3−ax− b) of o polynomials, each with
value 0 at P . When P is not a zero of F we say that ordP (F) = 0. With this
definition, we have the nice property that P is a zero of a product GH if and
only if it is a zero of either G or H, in addition:

ordP (GH) = ordP (G) + ordP (H). (14.5)

To make this notion of order of a function at P more precise, let us analyze
in detail the zeros of F (x, y) = F0(x) + yF1(x). Let P = (xP , yP) be a zero
of F . If yP = 0, it is always possible to factor y out of F (after potentially
multiplying by a polynomial H(x, y) with H(P) 6= 0). If F0(x) = 0 this is
clear. Otherwise, since xP is a root of x3 + ax+ b, x−xP divides x3 + ax+ b,
e.g., there exists a polynomial H(x) such that x3 + ax + b = H(x)(x − xP).
Moreover, xP is a root of F0(x) and (x−xP) divides F0(x). As a consequence,
x3 +ax+b divides H(x)F0(x). Thus, replacing x3 +ax+b by y2 we can factor
y out of H(x)F (x, y).

Similarly, if yP 6= 0, it is always possible to factor x − xP out of F after
potential multiplication by H. First, remark that x− xP divides either both
F0(x) and F1(x) or none of them. If x − xP divides both, the conclusion
follows. If x − xP divides none, then letting H(x, y) = F0(x) − yF1(x), we
see that H(P) 6= 0. Moreover, H(x, y) · F (x, y) = F0(x)2 − y2F1(x)2 can be
written as a polynomial in the single unknown x by replacing y2 by x3+ax+b.
Since xP is a root of this polynomial, we can factor x− xP .

The two polynomials y or x − xP that occur in the above discussion are
called uniformizers at P . With this notion in mind, the order of F at P can
be equivalently defined as the maximal power of the uniformizer at P that
can be factored out of F . Using uniformizers, we can more easily analyze the
zeros of F (x, y) = F0(x) + yF1(x) and their orders. When F1(x) = 0, this
reduces to finding the points P such that F0(xP) = 0 and their multiplicity.
Clearly, we need to factor F0 as a univariate polynomial. If xP is a root of
F0 with multiplicity o, two cases arise. In the first case, x3

P + axP + b 6= 0
and we find two zeros of F : P = (xP , yP) and P ′ = (xP ,−yP), each of these
two zeros has order o. Indeed, in that case x − xP is a uniformizer both at
P and at P ′. In the second case, x3

P + axP + b = 0 and we find a single zero

© 2009 by Taylor and Francis Group, LLC

420 Algorithmic Cryptanalysis

P = (xP , 0), with order 2o. To understand why the order is doubled, let us
again write x3 + ax + b = H(x)(x − xP). Thus, modulo the curve equation,
y2o divides H(x)oF0(x). Since y is the uniformizer at P in this case, the
conclusion follows.

Continuing the analysis, we now turn to the case F0(x) = 0 and are left
with yF1(x). Clearly, we already know how to find the zeros of F1(x) and
simply need to look at the zeros of y. In fact, y has three zeros, one for each
root of x3 + ax + b. Note that, since the curve has a non-zero discriminant,
the three roots are distinct. Moreover, since y is a uniformizer at these three
points, the order of y at each point is 1.

Finally, let us look at F (x, y) = F0(x) + yF1(x) when neither F0 nor F1

is zero. Factoring out the greatest common divisor of F0 and F1, we see
that it suffices to deal with the case where F0 and F1 are coprime. Assume
that P = (xP , yP) is a root of F . If yP = 0, then ordP (F) = 1 indeed we
know that P is a root of order at least 2 of F0. Thus, if we had ordP (F) >
1, we could write yF1(x) = F0(x) − F (x, y) with F1(P) 6= 0 and conclude
that ordP (y) > 1, this would contradict the above analysis which says that
ordP (y) = 1. Finally, if P is a root of F with yP 6= 0, we see that neither
F0(xP) nor F1(xP) can be 0, otherwise both would be and F0 and F1 would
not be coprime. Thus, multiplying F by H(x, y) = F0(x) − yF1(x), we find
that the order of P at F is equal to the multiplicity of x−xP in the univariate
polynomial F0(x)2 − (x3 + ax+ b)F1(x)2.

When looking at the zeros of a polynomial F , it is important to remember
that the zeros are not necessarily points with coordinates in Fq. In many cases,
the zeros have their coordinates in some extension field. If we construct all
the zeros of a non-zero polynomial F (x, y) = F0(x) + yF1(x) including zeros
over extension fields, it is possible to prove that the sum of their orders is
max(2 deg(F0), 3 + 2 deg(F1)), using the usual convention that deg(0) = −∞.
It is useful to define the order of F at the point at infinity O as ordO(F) =
−max(2 deg(F0), 3 + 2 deg(F1)). With this convention, we now define the
divisor of a non-zero polynomial F as:

div(F) =
∑
P

ordP (F)(P), (14.6)

where the sum includes points over extension fields and the point at infinity.
We see that div(F) is a divisor of degree 0.

The above definitions can easily be extended to quotients F/G letting:

ordP (F/G) = ordP (F)− ordP (G) and
div(F/G) = div(F)− div(G). (14.7)

When ordP (F/G) > 0 we say that P is a zero of F/G and when ordP (F/G) <
0 we say that P is a pole of F/G. Any fraction F/G is called a function on the
elliptic curve. Note that functions are determined modulo the curve equation
y2−x3−ax−b and can thus be represented by several possible fractions. Any

© 2009 by Taylor and Francis Group, LLC

Elliptic curves and pairings 421

divisor which can be written as the divisor of a function is called a principal
divisor.

14.1.1.3 Principal divisors and the group structure

Looking at the set of principal divisors, we may easily see that it is a sub-
group of the group Div0 of degree 0 divisors. Indeed, each principal divisor
has degree 0; the empty3 divisor is principal and equal to div(1) since the
constant function 1 has neither zeros nor poles; the opposite of a principal
divisor is principal since div(F/G) = −div(G/F); and the sum of two prin-
cipal divisors is principal, div(F1/G1 · F2/G2) = div(F1/G1) + div(F2/G2).
It is thus possible to form a quotient group by considering degree 0 divisors
modulo principal divisors. It is usual to say that two divisors which differ by
a principal divisor are linearly equivalent. We are now going to see that
this quotient group and this notion of linear equivalence can be used to give
a group structure to the elliptic curve itself.

The key ingredient is to show that any degree zero divisor D can be writ-
ten as D = (P) − (O) + div(f) for some point P on the elliptic curve and
some function f . In fact, this can be done in a completely effective and
computationally efficient manner. Clearly, since any divisor is a finite sum
of points, it suffices to show how to compute the sum and the difference of
D1 = (P1) − (O) and D2 = (P2) − (O) in the above form. To compute the
sum, we write P1 = (xP1 , yP1), P2 = (xP2 , yP2) and we consider the following
cases:

1. If P1 = O, then D1 is the empty divisor and D1 + D2 = D2 already is
of the correct form. If P2 = O this remark also applies.

2. If xP1 = xP2 and yP1 = −yP2 then:

div(x− xP1) = (P1) + (P2)− 2(O) = D1 +D2, (14.8)

thus D1 +D2 is linearly equivalent to the empty divisor (O)−(O). Note
that this also covers the special case where P1 = P2 and yP1 = 0.

3. If P1 = P2 and yP1 6= 0 then let L(x, y) be the equation of the tangent
to the elliptic curve at P1. More precisely:

L(x, y) = (y − yP1)− λ(x− xP1),

with λ =
3x2
P1

+a

2yP1
.

From our general analysis, we know that the sum of the orders of the
zeros of L(x, y) is 3 and thus that:

div(L(x, y)) = 2(P1) + (P3)− 3(O), (14.9)

3Remember that the empty divisor is the group neutral element.

© 2009 by Taylor and Francis Group, LLC

422 Algorithmic Cryptanalysis

for some point P3. Moreover, the coordinates of P3 are in the same field
as the coordinates of P1. We can explicitly write:

xP3 = λ2 − xP1 − xP2 and (14.10)
yP3 = yP1 + λ(xP3 − xP1). (14.11)

This shows that D1 +D2 is linearly equivalent to (O)− (P3). However,
we are not done because this divisor does not have the expected form.
We now write:

div(x− xP3) = (P3) + (P4)− 2(O), (14.12)

with P4 = (xP3 ,−yP3). As a consequence,

D1 +D2 = (P4)− (O) + div
(
L(x, y)
x− xP3

)
. (14.13)

4. If xP1 6= xP2 , let L(x, y) be the equation of the line passing though P1

and P2. More precisely:

L(x, y) = (y − yP1)− λ(x− xP1),

with λ = yP2−yP1
xP2−xP1

. The very same reasoning as above apply and once
again:

D1 +D2 = (P4)− (O) + div
(
L(x, y)
x− xP3

)
,

where P3 is the third point on the line of equation L(x, y) with coordi-
nates as in Equations 14.10 and 14.11, and where P4 is its symmetric
with coordinates (xP3 ,−yP3).

To compute differences, it suffices to use the above formula that transform
(O) − (P3) into a linearly equivalent divisor (P4) − (O) repeatedly. As a
consequence, iterating these formulas we are able to reduce any divisor D to
a linearly equivalent divisor (P)− (O). In fact, we even recover an expression
for a function f such that:

D = (P)− (O) + div(f). (14.14)

In order to turn the elliptic curve itself into a group, it now suffices to interpret
any point P as the divisor (P)− (O) and vice versa. To make sure that this
interpretation is unequivocal, we need to check that two different points P1

and P2 yield two different group elements. Thus, we need to verify that
D = (P1) − (P2) is not a principal divisor when P1 6= P2; see Exercise 3
or refer to [Was03, Lemma 11.3]. Using this interpretation, we obtain the
following properties for the group structure:

© 2009 by Taylor and Francis Group, LLC

Elliptic curves and pairings 423

• The point at infinity O is the neutral element in the group. Indeed,
(O)− (O) is the empty divisor.

• The opposite of a point P = (xP , yP) is its symmetric −P = (xP ,−yP).
Indeed, (P)− (O) + (−P)− (O) = div(x− xP) is principal.

• The sum of P1 and P2 is the symmetric of the third point of intersection
P3 of the line through P1 and P2 and the elliptic curve. When P1 = P2,
we take the tangent at P1 as the line through P1 and P2.

14.1.2 Double and add method on elliptic curves

With the above addition law, it is possible to compute xP for any point
P on the elliptic curve E and any integer x. When x is zero, the result is
the point at infinity O. When x < 0, we replace the computation of xP
by the computation of (−x)P ′ where P ′ is the symmetric, i.e., opposite, of
P . By definition, xP with x > 0 is obtained by adding together x copies of
the point P . However, for large values of x this is not efficient. To speed
up the computation of xP , it suffices to generalize the square and multiply
algorithms used for exponentiation of modular integers to the case of elliptic
curve. Adapted to this specific case, the basic idea is simply to remark that
the sequence P , 2P , 4P , . . . 2tP can be efficiently computed by writing each
term as the sum of the previous term in the sequence with itself, i.e., as the
double of the previous term. Moreover, from the binary decomposition of x,
we can rewrite xP as the sum of the terms 2iP such that 2i appear in the
decomposition of x. Thus, xP can be computed using log2(x) doublings and
at most log2(x) additions. We leave the adaptation of Algorithms 2.9 and 2.10
as an exercise to the reader.

14.1.3 Number of points on elliptic curves

In order to use an elliptic curve over a finite field as the basis for a discrete
logarithm based cryptographic problem, it is useful to know the cardinality
of this elliptic curve. This is not mandatory and there are systems that work
with groups of unknown cardinality. However, the most frequent cryptosys-
tems over elliptic curves require knowledge of the cardinality. In addition, it
is useful to describe the group structure, i.e., to find an isomorphic group,
written as a product of cyclic groups of the form Z/rZ. With elliptic curves
over a finite field Fp, a lot of information is known about the cardinality and
the group structure. In particular, we have the following theorem:

THEOREM 14.1
Let E be an elliptic curve over Fp and let CE be the number of points of E
with both coordinates in Fp, including the point at infinity O. Then we have:

p+ 1− 2
√
p ≤ CE ≤ p+ 1 + 2

√
p. (14.15)

© 2009 by Taylor and Francis Group, LLC

424 Algorithmic Cryptanalysis

Moreover, there exist two positive integers r1 and r2 such that:

1. r2 divides r1.

2. The number of points CE is equal to r1r2.

3. The group structure of the elliptic curve E is Z/r1Z× Z/r2Z.

PROOF See [Sil86, Chapter III], Corollary 6.4 and [Sil86, Chapter V],
Theorem 1.1.

We do not develop point counting algorithms here and refer the reader
to [CF05, Part IV]. For the Schoof-Elkies-Atkin point counting method, the
noisy Chinese remainder reconstruction algorithm discussed in Section 8.4.1
can be used to speed up the final phase.

14.2 The Weil pairing

14.2.1 Weil’s reciprocity law

Since we have already defined divisors and functions, we are almost ready to
go forward and define pairings. Before that, we need to learn how to evaluate
a function on a divisor. Let f = F/G be a function on an elliptic curve E and
let D be an arbitrary divisor. We define the support of D to be the finite set of
points of E that appear with non-zero coefficients in D. When the support D
contains none of the zeros or poles of f , writing once again D =

∑
D(P)(P)

we can define:
f(D) =

∏
f(P)D(P). (14.16)

Note that we have already defined f(P) as F (P)/G(P) for all points P not
equal to the point at infinity (O). If the support of D does not contain O,
nor any zero or pole of f , f(D) is a well-defined and non-zero value. We shall
determine, later on, the precise finite field where this value is defined. For
now, let us simply say that it clearly belongs to some extension of Fp. To
define f(D) in all cases, we need to define f(O) when O is neither a zero nor
a pole of f . In fact, this can be done by looking only at high order terms.
More precisely, if we define the degree of a monomial ydyxdx in the function
field as 3dy + 2dx and the degree of a polynomial F as the maximum of the
degrees of the monomials in F , looking back at Section 14.1.1.2 we see that
the order of f at O is then equal to the degree of F . Thus, saying that O is
neither a zero nor a pole of f means that the degrees of F and G are equal.
In that case, we define f(O) as the quotient of the coefficients in front of the
highest degree monomials in F and G.

© 2009 by Taylor and Francis Group, LLC

Elliptic curves and pairings 425

With this definition of f(D), we easily remark that when D is of degree
0, f(D) is equal to (λf)(D) for any constant λ. This is extremely interest-
ing because if we only consider f up to a multiplicative constant, we are in
fact looking at an object which is determined by the divisor div(f). This
connection is emphasized by the following theorem:

THEOREM 14.2 Weil’s reciprocity
Let f and g be two functions in the function field of an elliptic curve E. If

div(f) and div(g) have disjoint support, or equivalently if the zeros and poles
of f and g do not intersect, then:

f(div(g)) = g(div(f)). (14.17)

We give here an elementary proof using resultants; for a shorter proof, the
reader may refer to [BSS05, pages 212–213].

PROOF Since f and g need only be defined up to multiplicative constants,
we may assume the polynomials at the numerators and denominators of f
and g are normalized, i.e., that the coefficients in front of the highest degree
monomials are everywhere 1s.

Under this hypothesis, all evaluations at O yield 1. As a consequence,
we can consider a simplified variation of Weil’s reciprocity that ignores the
point at infinity. For this variation, let us take two polynomials on the curve
F (x, y) = F0(x) + yF1(x) and G(x, y) = G0(x) + yG1(x), with no common
zeros. We know that div(F) can be written as DF − ordO(F)(O), where
DF describes the zeros of F . Similarly, div(G) can be written as DG −
ordO(G)(O). We now claim, that:

F (DG) = ±G(DF). (14.18)

Moreover, the ± sign in the above equation is uniquely determined by the
degrees of F and G.

Weil’s reciprocity law easily follows from Equation (14.18). Indeed, thanks
to the normalization we chose, if we write f = F/H and g = G/K then we
see that:

f(div(g)) =
F (DG)H(DG)
F (DK)H(DK)

= g(div(f)), (14.19)

since all evaluations at O are equal to 1. The only tricky part is to verify that
the signs really cancel out. We leave the verification to the reader. Anyway,
since we only intend to define the Weil pairing on `-torsion points where ` is
an odd prime, this verification is not even required here.

In order to prove Equation (14.18), we need to consider three elementary
possibilities for F and G. For F , the options are F (x, y) = F0(x), F (x, y) = y
and F (x, y) = F0(x) + yF1(x) with F0 and F1 coprime. Indeed, any other

© 2009 by Taylor and Francis Group, LLC

426 Algorithmic Cryptanalysis

case can be obtained by multiplication of these elementary cases and of course
Equation (14.18) is preserved by multiplication, since clearly for F = F (1)F (2),
if Weil’s reciprocity is satisfied by (F (1), G) and (F (2), G) we have:

F (DG) = F (1)(DG) · F (2)(DG) = G(DF (1))G(DF (2)) = G(DF), (14.20)

since the divisor of a product is the sum of the divisors of each term.
Combining all possibilities for F andG, there is a total of 9 cases to consider.

Taking into account the symmetry betwen F and G, this is reduced to 6 cases.
In addition, since F and G have no common zero, we can ignore4 the case
F (x, y) = G(x, y) = y. As a consequence, there are five remaining cases to
consider. It is important to remember that all highest degree coefficients are
1s. This allows us to replace some expressions by resultants as defined in
Chapter 11. This makes these expressions easier to manipulate and greatly
simplifies the proof. The five cases are:

1. When F (x, y) = F0(x) and G(x, y) = G0(x), for each root α of F0 in
the algebraic closure of the field of definition of E, there are either two
corresponding points (α, yα) and (α,−yα) or a point (α, 0). In the first
case, the order at each point is equal to the multiplicity of α in F0. In
the second case, the order is equal to twice the multiplicity. Thus:

G(DF) =
∏

α root of F0

(with multiplicity)

G0(α)2 = Res(F0, G
2
0) = Res(F0, G0)2.

Clearly, by symmetry, we also have:

F (DG) = Res(G0, F0)2.

Moreover, since Res(F0, G0) = ±Res(G0, F0), both expressions are
equal.

2. When F (x, y) = F0(x) and G(x, y) = y, once again we can look at the
roots α of F0. If there is a corresponding point of the form (α, 0), then
F and G have this point as a common zero and DF (G) = DG(F) = 0.
Otherwise, we see that:

G(DF) =
∏

α root of F0

(with multiplicity)

−y2
α

= −
∏
α

α3 + aα+ b = −Res(F0, x
3 + ax+ b)

4Anyway, it is clear in that case that DF (G) = DG(F) = 0.

© 2009 by Taylor and Francis Group, LLC

Elliptic curves and pairings 427

Letting (β1, 0), (β2, 0) and (β3, 0) denote the three distinct points with
y coordinate 0, i.e., letting β1, β2 and β3 be the roots of x3 + ax+ b, we
also have:

F (DG) = F0(β1)F0(β2)F0(β3) = Res(x3 + ax+ b, F0).

As a consequence, we conclude that DF (G) = ±DG(F).

3. When F (x, y) = F0(x) and G(x, y) = G0(x) + yG1(x), with G0 and G1

coprime, once more, we start by looking at the roots α of F0. If a point
of the form (α,±yα) is a zero of G, then F and G have this point as a
common zero and DF (G) = DG(F) = 0. Otherwise, we first compute
G(DF) as:

G(DF) =
∏

α root of F0

(with multiplicity)

(G0(α) + yαG1(α))(G0(α)− yαG1(α))

= Res(F0,G),

where G denotes the polynomial G(x) = G0(x)2 − (x3 + ax+ b)G1(x)2.
Indeed, we can group the zeros of F in pairs (α, yα) and (α,−yα). Note
that this also holds when yα = 0, since in that case the order of the
point is twice the multiplicity of α in F0.

To evaluate the second term F (DG), we remark that each zero (β, yβ)
of G with order e corresponds to a root β of G of multiplicity e. Also
note that from β, we can obtain yβ as −G0(β)/G1(β). Since F does not
depend on y, we do not need this expression of yβ for this case, but it
will be useful for the next cases. Thanks to this remark, we can write:

F (DG) =
∏

β root of G
(with multiplicity)

F0(β) = Res(G, F0).

Clearly, the two expressions we obtain for G(DF) and F (DG) are equal,
up to sign. This concludes the third case.

4. When F (x, y) = y and G(x, y) = G0(x) + yG1(x), with G0 and G1

coprime, let us denote G(x) = G2
0(x)− (x3 + ax+ b)G2

1(x) as above, we

© 2009 by Taylor and Francis Group, LLC

428 Algorithmic Cryptanalysis

find:

F (DG) =
∏

β root of G
(with multiplicity)

yβ =
∏
β

−G0(β)
G1(β)

=
Res(G,−G0)
Res(G, G1)

=
Res(−(x3 + ax+ b)G2

1(x),−G0)
Res(G2

0(x), G1)

= Res((x3 + ax+ b),−G0) · Res(−G2
1(x),−G0)

Res(G2
0(x), G1)

= ±Res((x3 + ax+ b), G0).

For the other expression, recalling that the zeros of y correspond to the
roots of x3 + ax+ b, we write:

G(DF) =
∏

α root of x3 + ax+ b

G0(α)

= Res((x3 + ax+ b), G0).

This concludes the fourth case.

5. Finally, we need to address the most complicated case where F (x, y) =
F0(x) +yF1(x) and G(x, y) = G0(x) +yG1(x), with F0, F1 coprime and
G0, G1 coprime. For this case, it is useful to define G as above, F in the
same way and to write the rational fraction F1/G1 in irreducible form
as f1/g1. We then write:

G(DF) =
∏

(α, yα) zero of F
(with order)

(G0(α) + yαG1(α))

=
∏

(α,yα)

G0(α)− F0(α)G1(α)/F1(α)

=
Res(F ,∆)
Res(F , f1)

.

where ∆ = f1G0 − F0g1.

By symmetry:

F (DG) =
Res(G,−∆)
Res(G, g1)

.

© 2009 by Taylor and Francis Group, LLC

Elliptic curves and pairings 429

We can now prove that:

Res(F ,∆) = ±Res(∆,F) = ±Res(∆, F0(x)2 + (x3 + ax+ b)F1(x)2)

= ±Res(∆, F0(x)2 + (x3 + ax+ b)G1(x)2

(
f1

g1

)2

)

= ±Res(G,∆) ·
(

Res(∆, f1)
Res(∆, g1)

)2

.

We also have:

Res(F , f1) = ±Res(f1,F) = ±Res(f1, F0(x)2 + (x3 + ax+ b)F1(x)2)

= ±Res(f1, F0(x)2 + (x3 + ax+ b)G1(x)2

(
f1

g1

)2

)

= ±
(

Res(f1, g1F0)
Res(f1, g1)

)2

= ±
(

Res(f1,∆)
Res(f1, g1)

)2

.

And by symmetry:

Res(G, g1) = ±
(

Res(g1,∆)
Res(g1, f1)

)2

.

Putting everything together concludes the final case.

14.2.2 The Weil pairing on `-torsion points

Using Weil’s reciprocity, it is now possible to define the Weil pairing of two
`-torsion points P and Q on an elliptic curve E. Remember that a point P is
said to be an `-torsion point when `P = O on the elliptic curve. In that case,
`(P) − `(O) is a principal divisor and we can express it as div(fP). More
generally, for any divisor DP which sums to P , `DP is principal. To define
e`(P,Q) the Weil pairing of P and Q, we choose two arbitrary divisors DP and
DQ with respective sums P and Q and with distinct supports. Then, we define
the two functions fP and fQ such that div(fP) = `DP and div(fQ) = `DQ.
Finally, we define:

e`(P,Q) =
fP (DQ)
fQ(DP)

. (14.21)

THEOREM 14.3
The Weil pairing is a well-defined function of P and Q, i.e., it is independent
of the choice of DP and DQ. It satisfies the following properties:

1. For all `-torsion points P and Q, e`(P,Q) is an `-th root of unity, i.e.,
e`(P,Q)` = 1.

© 2009 by Taylor and Francis Group, LLC

430 Algorithmic Cryptanalysis

2. For all `-torsion points P and Q: e`(P,Q) = e`(Q,P)−1.

3. In particular, for all `-torsion point P : e`(P, P) = 1.

4. For all `-torsion points P, P ′ and Q: e`(P+P ′, Q) = e`(P,Q)·e`(P ′, Q).

5. For all `-torsion points P, Q and Q′: e`(P,Q+Q′) = e`(P,Q)·e`(P,Q′).

6. For all `-torsion points P, Q and all integers a, b: e`(aP, bQ) = e`(P,Q)ab.

7. The pairing e` is non-degenerate, i.e., there exists `-torsion points P
and Q, such that e`(P,Q) 6= 1.

PROOF To show that e` is well defined, let us see that for two different
choices of divisor summing to P , say DP and D′P we obtain the same value
for e`(P,Q). Since, DP and D′P both sum to P , their difference is principal
and we can write D′P = DP + div(h) for some function h. Thus:

fQ(D′P) = fQ(DP) · fQ(div(h)).

If we let fP and f ′P be the functions corresponding to `DP and `D′P , we see
that f ′P = h`fP . Evaluating at DQ, we find:

f ′P (DQ) = fP (DQ) · h(DQ)`

= fP (DQ) · h(`DQ)
= fP (DQ) · h(div(fQ)).

Thanks to Weil’s reciprocity, we know that h(div(fQ)) = fQ(div(h)). Thus,
after dividing the numerator by the denominator, we find equality for our two
expressions of e`(P,Q). Clearly, the same reasoning also applies for DQ and
Weil pairing does not depend on the chosen divisors, only on the points P
and Q. A frequently encountered choice is to take:

DP = (P)− (O) and
DQ = (Q+X)− (X) for an arbitrary point X 6= P,−Q. (14.22)

In order to verify that e`(P,Q) is an `-th root of unity, let us look at the
value of the numerator raised to the power `:

fP (DQ)` = fP (`DQ) = fP (div(fQ)).

Thanks to Weil’s reciprocity, we see that this is equal to the denominator
fQ(DP)`, as a consequence e`(P,Q)` = 1.

To check that e`(P +P ′, Q) = e`(P,Q)e`(P ′, Q), we first remark that DP +
D′P is a possible choice for the divisor DP+P ′ . With this choice, we clearly
have:

fQ(DP+P ′) = fQ(DP)fQ(DP ′) and
fP+P ′ = fP fP ′ . (14.23)

© 2009 by Taylor and Francis Group, LLC

Elliptic curves and pairings 431

Thus the property follows. The same argument also implies e`(P,Q + Q′) =
e`(P,Q)e`(P,Q′).

The bilinearity e`(aP, bQ) = e`(P,Q)ab follows by induction for positive
values of a and b. For a = 0, it suffices to check that e`(O,Q) = 1. Similarly,
for b = 0. For negative a and b, we first remark that e`(−P,Q) = e`(P,−Q) =
e`(PQ)−1 and conclude by induction.

For the proof of non-degeneracy, we refer the reader to [Sil86, Proposi-
tion 8.1].

In [Mil04], it is shown that by choosing normalized functions fP and fQ
with highest degree coefficients equal to one, such that div(fP) = `(P)−`(O)
and div(fQ) = `(Q)−`(O), then the computation of the Weil pairing e`(P,Q)
can be simplified to fP (Q)/fQ(P).

14.2.2.1 Miller’s algorithm for the Weil pairing

In [Mil04], Miller describes a very useful algorithm generally known as
Miller’s algorithm for computing pairing or more precisely to evaluate a func-
tion fP at a point Q. Note that using this algorithm is essential for con-
structive application of pairings. Trying to compute fP itself rather than
evaluating it on the fly is doomed because, even in factored form, storing this
function is very costly.

Miller’s algorithm considers intermediate functions, f (i)
P specified by:

div(f (i)
P) = (i)(P)− (iP)− (i− 1)(P).

Note that the divisor on the right-hand side is principal. Remark that div(f (0)
P)

and div(f (1)
P) are both empty. Thus, we can choose f (0)

P = f
(1)
P = 1. Moreover,

f
(`)
P = fP .
We now remark that it is easy to compute f (i+j)

P from f
(i)
P and f (j)

P . Indeed:

div(f (i+j)
P) = div(f (i)

P) + div(f (j)
P) + (iP) + (jP)− ((i+ j)P)− (O).

Moreover, following Section 14.1.1.3, we know that there exists a linear poly-
nomial L(x, y) such that:

div(L(x, y)) = (iP) + (jP) + (−(i+ j)P)− 3(O).

Moreover, if x0 is the x coordinate of (i+ j)P , we have:

div(x− x0) = ((i+ j)P) + (−(i+ j)P)− 2(O).

It follows that:

div(f (i+j)
P) = div(f (i)

P) + div(f (j)
P) + div(L(x, y))− div(x− x0). (14.24)

© 2009 by Taylor and Francis Group, LLC

432 Algorithmic Cryptanalysis

As a consequence, we can choose:

f
(i+j)
P = f

(i)
P · f

(j)
P ·
L(x, y)
x− x0

. (14.25)

Miller’s method can be incorporated into any efficient algorithm for comput-
ing `P , such as the double and add method, see Algorithm 14.1. To optimize
the efficiency of this algorithm, the reader should refer to [CF05].

Algorithm 14.1 Miller’s algorithm with double and add
Require: Input integer ` > 0, points P and Q of `-torsion
Require: Finite field Fq

Write ` in binary n =
∑k−1
i=0 `i2

i

Let R←− P
Let y ←− 1
for i from k − 1 down to 0 do

Let L be the tangent line at R
Let R←− 2R
Let y ←− y2 · L(Q)/(xQ − xR) in Fq
if ni = 1 then

Let L be the line through P and R
Let R←− R+ P
Let y ←− y · L(Q)/(xQ − xR) in Fq

end if
end for
Output y {Value of fP (Q)}

14.3 The elliptic curve factoring method

Another interesting use of elliptic curves in cryptography is the elliptic curve
factoring method (ECM) which can be used to detect small enough factors
of large integers. This method is closely related to Pollard’s p − 1 factoring
algorithm. Thus, for simplicity, we start by describing this method.

14.3.1 Pollard’s p− 1 factoring

Pollard’s p − 1 factoring algorithm can efficiently find factors of a special
form in composite numbers. Its name comes from the fact that a factor p can
be efficiently found with this method when p− 1 is a product of small enough

© 2009 by Taylor and Francis Group, LLC

Elliptic curves and pairings 433

primes. Here, small enough means that all prime factors of p− 1 are smaller
than some bound B specified in advance. Alternatively, we say that p − 1 is
B-smooth. Given p and B, let us define:

P (p,B) =
∏

q prime, q≤B

qd
log(p)
log(q)e. (14.26)

This product is constructed in a way that guarantees that p− 1 is B-smooth
if and only if p− 1 divides P (p,B).

As a consequence, when p − 1 is B-smooth, for any invertible element x
modulo p, we have xP (p,B) = 1 (mod p). Thus, if a composite N has a factor
p with a B-smooth value of p − 1, we see that p divides the GCD of N and
(xP (p,B)−1) (mod N) for any invertible x modulo N . Moreover, this GCD is
not N itself, except when all factors of N satisfy the p− 1 property. This last
case is quite unlikely. Moreover, from a practical point-of-view, it is better to
work with a sequence of exponents P (p,B′) for values of B′ that increase up
to B. This practical adaptation makes the exceptional bad case even rarer.
In pseudo-code, this is described as Algorithm 14.2. In the code, since p is
not known in advance, we upper bound P (p,B) by P (N,B).

Algorithm 14.2 Pollard’s p− 1 factoring algorithm
Require: Input composite N and smoothness bound B

Choose random element x modulo N
if GCD(x,N) 6= 1 then

Print ‘GCD(x,N) is a factor’ and Exit
end if
for All primes q from 2 to B do

Let Q←− qd
log(N)
log(q) e

Let x←− xQ mod N
if GCD(x− 1, N) 6= 1 then

Print ‘GCD(x− 1, N) is a factor’ and Exit
end if

end for
Print ‘No factor found’

14.3.2 Elliptic curve factoring

To generalize Pollard’s p − 1 to elliptic curves, it is useful to study the
behavior of the group law of an elliptic curve E when considered modulo a
composite integer N . Assume that we are given points modulo N on the ellip-
tic curve and that we try to apply the usual additions formulas to these points.
We would like to look at the behavior that these formulas induced modulo

© 2009 by Taylor and Francis Group, LLC

434 Algorithmic Cryptanalysis

a factor p of N . Since the formulas for addition are algebraic expressions, it
is clear that when we apply an addition formula modulo N , we are in fact
applying the same formula modulo p. As a consequence, adding two points
modulo N usually induces an addition of the same point modulo p. Indeed, in
most cases, we need to use the same formula modulo each factor of N . How-
ever, there are some exceptional cases where the point addition would require
different formulas modulo the prime factors. Typically, if neither of the points
P and Q to be added is the point at infinity, this means that modulo a factor q
the two points P and Q are neither equal nor opposite and modulo another
factor p they are equal or opposite, i.e., xP = xQ (mod p). When the points
are considered modulo N , it is clear that xP 6= xQ (mod N), thus we use the
formula for unrelated points and start by computing λ = (yQ−yP)/(xQ−xP).
However, since p divides xQ−xP , it is not possible to invert this value modulo
N and λ is not defined. The good news is that when trying to compute the
inverse of xQ−xP modulo N using the extended Euclidean algorithm, we are
going to detect the problem and to discover the factor p of N . Similarly, when
trying to double a point P with yP = 0 (mod p), the doubling rule tries to
invert y and discovers p.

From this preliminary discussion, we see that most of the time, it is possible
to add points and double points by computing the classical addition formulas
modulo N . Moreover, when this fails, it yields a factor of N . In truth, it is
even possible to define an addition law on the curve moduloN that works in all
cases. However, this is not required for ECM since the goal is to factor N . As
a consequence, a failure of the addition formula becomes our goal. Putting the
cases of failure together, we see that addition/doubling fails when the result
is the point at infinity modulo some factor of N but not modulo N . Thus,
the question becomes: “How can we reach the point at infinity modulo some
factor p of N using point addition?”

Since an elliptic curve modulo p is a group, we know that multiplying any
point on the curve by the cardinality of the group yields the point at infinity.
Thus, in a nutshell the ECM algorithm works by choosing an elliptic curve
modulo N , a point P on the curve and by multiplying P by a multiple of the
cardinality of the curve when taken modulo a factor p of N . At first, this idea
may seem unworkable. A first obstruction is that given an elliptic curve E
modulo N , finding a point P on E seems to be a difficult problem, indeed if
we fix the x coordinate, we need to compute the square root of x3 + ax + b,
a hard problem modulo a composite. Similarly, if we fix y, we need to solve
a polynomial equation of degree 3 modulo N , which we do not know how to
achieve in general. A second obstruction is that there is no known algorithm
to compute the cardinality of E modulo N or modulo a factor of N .

To remove the first obstruction, the key argument is to remark that we are
free to choose any convenient curve E. Thus, in practice, instead of choosing
E first, we may decide to first choose a point P and then to take a curve E
going through P . An even simpler alternative is to choose curves of the form
y2 = x3 + ax + 1 and remark that the point P = (0, 1) belongs to all these

© 2009 by Taylor and Francis Group, LLC

Elliptic curves and pairings 435

curves. Moreover, since the parameter a can still be freely chosen, there are
enough possible choices of curve that remain.

The second obstruction says that we do not know how to determine a good
multiplier k to ensure that kP goes to infinity modulo a factor p of N . Instead,
we are going to choose multipliers that maximizes the probability of going to
infinity. The core remark is that when the number of points k on E modulo
p is a product of primes smaller than some bound B, then we can choose for
k as in Pollard’s p − 1. More precisely, we can take for k a value P (·, B), as
we did in Algorithm 14.2. The missing parameter in this expression needs to
be replaced by an upper bound on the number of points of an elliptic curve
modulo the smallest prime factor of N (see complexity analysis below).

14.3.2.1 Complexity analysis

In order to minimize the average running time of the ECM algorithm, we
assume that we are given a (tight) upper bound on p, say P . From this bound,
we can derive an upper bound P̃ = P + d2

√
P e+1 on the number of points of

an elliptic curve modulo p. We need to find the best value for the smoothness
bound B. The cost of the ECM is the product of two contributions, the
number of curves to try times the individual cost of each trial. On each
curve, we compute a multiplication by k = P (P̃ , B) for a cost of O(B log(P̃))
arithmetic operations. Moreover, the expected number of curve to try is the
inverse of the probability that the number of points on the curve modulo p is
B-smooth.

Plugging in the smoothness probabilities given in Chapter 15 and ignoring
the logarithmic factors, we can optimize the complexity by balancing the
individual cost of each trial and the number of trials. Thus, we need to
achieve:

B ≈ e
log P̃
logB ·log

“
log P̃
logB

”
.

Choosing B of the form:

B = eα
√

log P̃ log log P̃ ,

we can achieve the balance when α = 1/
√

2. The expected runtime is B2+o(1).
Moreover, we can forget the distinction between P̃ and p without affecting
the expression of the complexity. For this reason, the complexity of ECM is
usually given as:

e
√

2 log p log log p,

where p is the smallest factor of N .
The practical efficiency of ECM can be improved by adding a second phase

in the algorithm, often called ECM Step 2. This phase allows the algorithm to
succeed when the cardinality of the chosen curve has one prime factor larger
than the bound B, but not too large. This is discussed in details in [Mon92].

© 2009 by Taylor and Francis Group, LLC

436 Algorithmic Cryptanalysis

Exercises

1h. Implement elliptic curve operations over a small finite field, say F65521.
Do experiments with the group operation, check that it is indeed a
group, compute the order of points for several curves. Determine the
group structure of each curve. It is also interesting to consider a singular
curve, i.e., a curve with 4a3 + 27b2 = 0. Can you use the addition
formulas in this case? Try to find out whether there is a group and, if
so, what its structure is.

2. Write a program to work with small functions of the form F0(x) +
yF1(y) on an elliptic curve over a small finite field. This should compute
the zeros of a function and be able to evaluate a function at a point.
Experiment Weil’s reciprocity with your program.

3. Assuming that a divisor (P1)−(P2) is principal, show that you can write
it as:

(P1)− (P2) = div
F1(x) + yF2(x)

G(x)
.

Show that this expression can be simplified until G is a polynomial of
degree at most 1. Prove that in that case, F2 = 0 and conclude.

4h. Program a simple implementation of Miller’s algorithm to compute
fP (Q) for a well-chosen elliptic curve and some well-chosen points. Try
to write explicitly fP in expanded form as F0(x)+yF1(x) on a computer
algebra system. For which size is this approach successful?

5. Find out how to compute the order of a point on an elliptic curve using
a birthday algorithm. Can you do it without using a large amount of
memory?

6h. Assume that you are given an elliptic curve together with a pairing
e`(·, ·) from G1 ×G2 to the group of `-th roots of unity in a finite field
Fpk . Each of the groups G1 and G2 is a subgroup of `-torsion points
containing exactly ` element. Let Q be a point in G2 and assume that
there exists an efficient algorithm e−1 that given a `-th root of unity ξ
outputs a point P in G1 such that e`(P,Q) = ξ. Further assume that
` − 1 is a product of small primes, show that there exists an efficient
algorithm that makes use of e` and e−1

` to compute discrete logarithms
in G1. How would you proceed for general values of `?

7. Let N = pq be an RSA number and E be an elliptic curve. Consider E
modulo N . Show using the Chinese remainder theorem that this forms
a group and determine the full structure of this group. There are some
“exceptional” points on this curve, what are they?

© 2009 by Taylor and Francis Group, LLC

Elliptic curves and pairings 437

8h. Now consider the curve E modulo p2 where p is a prime.

• Determine the structure of the curve in the general case. Show
that the exceptional points (as in the previous exercise) form a
group. Determine the order of this group. Write the group law
on the exceptional points. Can you simplify the expression of this
group law?

• In the special case where the cardinality of the curve is p, what
are the possible group structures. Given a point P , not the point
at infinity, on the curve modulo p, show that there are p different
points modulo p2 whose reduction modulo p is equal to P . Let P1

and P2 be two such lifts of P , what can you say about pP1 and
pP2?

• In the same special case, let P and Q be two points on the elliptic
curve modulo E. We would like to solve the discrete logarithm
problem Q = λP . Let P1 be a lift of P and Q1 a lift of Q, what
can you say about the relation between pP1 and pQ1? Under
which condition can you break the discrete logarithm problem?

• Sometimes the above condition is not satisfied. How can you pro-
ceed to make the method work despite that?

© 2009 by Taylor and Francis Group, LLC

Chapter 15

Index calculus algorithms

15.1 Introduction to index calculus

Index calculus is a rich area of research in number theory and cryptography.
This technique is common to a large family of algorithms that can be used for
many applications. From a number theoretic point-of-view, these algorithms
allow to factor large integers, to compute discrete logarithms in finite fields,
to compute the class numbers of number field and even apply to discrete
logarithms on the jacobians of some algebraic curves. From a cryptographic
perspective, the above applications are directly interesting but in addition,
index calculus techniques have recently been used to undermine the security
of several cryptographic primitives in some specific contexts. With these
cryptographic primitives which, at the present time, include the plain RSA
e-th root extraction problem [JNT07] and the static Diffie-Hellman problem,
an adversary learns enough to solve the problem on his own after asking a
large number of questions about well-chosen instances of the problem. The
total cost of index calculus in these cryptographic applications is less than
the cost of the corresponding index calculus algorithm against the underlying
number theoretic problem: factoring or computation of discrete logarithms.

To tackle this large scope, we are going to dive into index calculus algo-
rithms carefully. Indeed, some of these algorithms require much more math-
ematical machinery than others. Thus, to better focus on the key ideas, we
mostly study a typical but simple example about the computation of discrete
logarithms in finite fields with a well-chosen structure.

Before that, let us have a quick bird’s-eye view of the general principle of
index calculus algorithms. This principle puts two basic ideas into play. First,
in order to learn information about a mathematical structure A, we enlarge
this structure in two different but compatible ways. More precisely, we try to
construct a commutative diagram:

A
↙ψ1 ↘ψ2

A1 A2

↘φ1 ↙φ2

A

(15.1)

439

© 2009 by Taylor and Francis Group, LLC

440 Algorithmic Cryptanalysis

With such a diagram, any element x inA can be sent into A along two different
paths, either going through A1 or through A2. In both cases, we reach the
same value, i.e., φ1(ψ1(x)) = φ2(ψ2(x)).

The second idea is to choose A1 and A2 in a way that allows a non-negligible
fraction of elements of either set to be written as a product of mathematical
objects belonging to reasonably small sets. The values which can be written in
this way are usually called smooth. And the sets used to write the products
are traditionally called the smoothness bases for A1 and A2. Combining the
two ideas means that if both ψ1(x) and ψ2(x) can be written as products over
their respective smoothness bases, then we get an “equality” between these
two products. Note that for some index calculus algorithms, some functions
among the ψi or φi are either the identity function or some other natural map
and the above diagram can be simplified, by removing some of the arrows or
sets that are involved.

In this setting, index calculus algorithms create and collect many “equal-
ities.” Once these equalities are constructed, they need to be combined in
specific ways, in order to solve the problem at hand. The way of combining
the equalities greatly vary from one problem to the next, as we show in the
sequel. However, linear algebra always plays a role in this process.

In addition to the basic structure described above, index calculus algorithms
also have their asymptotic complexities in common. Indeed, they all have
complexities expressed as

LN (α, c) = exp
(

(c+ o(1)) log(N)α log log(N)1−α
)
, (15.2)

where N is the number that characterizes the problem being considered and
where 0 < α < 1 and c > 0 are two constants. The notation LN (α) is
frequently used as a shorthand when c is left unspecified. Moreover, when N is
clear from the context, we simply write L(α). These strange looking functions
arise from the probability for values to be smooth. Two values of α are widely
encountered in index calculus algorithms, they usually have complexity either
L(1/2) of L(1/3). The reader should be aware that a change from α = 1/2 to
α = 1/3 means much more in terms of complexity than a similar change for the
value of the second parameter c. Indeed, complexity of the type L(α) becomes
polynomial in log(N) when α tends to zero and exponential in log(N) when α
tends to one. Between these two extreme values of α, the complexity is called
subexponential. Thus, α controls the change from polynomial to exponential,
and it clearly has much more impact than c which, in the polynomial case,
merely controls the degree of polynomial. Note that log(N) is the bitsize of
the value N which characterizes the problem and thus the relevant parameter
to use to define polynomial or exponential complexity.

© 2009 by Taylor and Francis Group, LLC

Index calculus algorithms 441

15.2 A simple finite field example

15.2.1 Overview

To describe in details the principle of index calculus, without having to
tackle too many mathematical obstructions, we start by considering the prob-
lem of computing discrete logarithms in a finite field Fpn , where the relative
values of p and n are chosen to make things as simple as possible. More
precisely, we let Q denote pn and consider the case where:

p = LQ(1/3, θ) and (15.3)

n =
log(Q)
log(p)

=
1
θ
·
(

log(Q)
log log(Q)

)2/3

,

where θ is a constant to be determined later on. We let d = d
√
n e and choose

two polynomials of degree d: f1 and f2. These two polynomials are used to
implicitly define the finite field FQ. The idea is to fix two polynomial relations
modulo p between two variables x and y:

y = f1(x) and x = f2(y). (15.4)

For these two relations to hold, we need to have x = f2(f1x)). Thus, x needs
to be a root of f2(f1(x)) − x. Assume that this polynomial, whose degree is
d2 ≥ n has an irreducible factor of degree n and denote this factor by Ix. Then
Ix can be used to define the finite field FQ. Let α denote the image of x in the
finite field using the canonical projection, i.e., α is the class of the polynomial
x modulo Ix (and of course modulo p). Let β = f1(α), then in the finite field,
we also have α = f2(β). Indeed, by construction, f2(β) = f2(f1(α)) is equal
to α plus a multiple of Ix(α). And, by definition of the finite field, Ix(α) = 0
in FQ.

The element β of the finite field has a characteristic polynomial Iy of degree
n. Indeed, the degree is at most n, since β belongs to Fpn , and if the degree is
less than n, then β belongs to a proper subfield and so does α = f2(β). Since
by definition α generates FQ, this is not possible. Thanks to the relation
β = f1(f2(β)), we see that Iy is a divisor of degree n of the polynomial
f1(f2(y))− y modulo p.

As a consequence of the existence of Ix and Iy, we have two different rep-
resentations of the finite field FQ, one with generator α and the other with
generator β, together with explicit low degree isomorphisms between the two
representations, given by β = f1(α) and α = f2(β). Putting these two repre-

© 2009 by Taylor and Francis Group, LLC

442 Algorithmic Cryptanalysis

sentations together, we obtain the following commutative diagram:

Fp[x, y]
↙y→f1(x) ↘x→f2(y)

Fp[x] Fp[y]
↘x→α ↙y→β

FQ

(15.5)

Using this commutative diagram, we now take polynomials of the form
xy + ax + by + c for arbitrary values of a, b and c in Fp. Each polynomial
of this form is transformed into a univariate polynomial in x of degree d + 1
when we substitute f1(x) for y and into a univariate polynomial in y of degree
d+ 1 when we substitute f2(y) for x. Thus, we obtain the following equality
in the finite field Fq:

αf1(α) + aα+ bf1(α) + c = βf2(β) + af2(β) + bβ + c. (15.6)

We only keep a fraction of these equalities. More precisely, we focus on the
equations where both sides factor into linear polynomials. To obtain these
equations, at least three different approaches can be considered. The first
method is to simply factor L(x) = xf1(x) + ax + bf1(x) + c and R(y) =
yf2(y) + af2(y) + by+ c and to check that both only contain factors of degree
1. Recalling the algorithm for factoring polynomials over a finite, this can be
slightly improved by checking that xp ≡ x (mod L(x)R(x)), in Fp[x]. The
second method is to use a sieving algorithm as in Chapter 4. The third
method is to use Bernstein’s algorithm for avoiding sieving, also presented in
Chapter 4. For implementations of the methods, please refer to the book’s
website.

Each equation left after selection can be rewritten as a multiplicative equal-
ity between d+1 linear polynomials α−u for constants u in Fp and d+1 linear
polynomials β− v for constants v in Fp. Given any multiplicative generator γ
of FQ, the multiplicative equalities can be transformed into additive relations
between the logarithms in base γ. As a consequence, each equation becomes:

d+1∑
i=1

logγ(α− ui) ≡
d+1∑
i=1

logγ(β − vi) (mod Q− 1), (15.7)

where the modulus is the order of γ. Clearly, the total number of unknowns,
i.e., of discrete logarithm values, to determine is 2p. Thus, given 2p equa-
tions, we hope to be able to obtain the logarithm values. However, there is
a simple obstruction that prevents this method from working directly. This
obstruction stems from the fact that our system of equation possesses a par-
asitical solution. Indeed, each equation has d + 1 unknowns on each side.
As a consequence, setting every unknown to 1 gives a solution to the system
of equations. To remove this parasitical solution, it suffices to find a single
equation of a different type. This can be done by considering the polynomial

© 2009 by Taylor and Francis Group, LLC

Index calculus algorithms 443

x+ a for a value of a such that f2(y) + a splits into linear factors. This yields
an equation with a single unknown on the left-hand side and d unknowns on
the right-hand side. Once this is done, there are no more evident parasitical
solutions. Moreover, in practice, with a few extra equations thrown in as a
precaution, the system of equations has a kernel of dimension 1. As a con-
sequence, up to an arbitrary multiplicative factor, the system has a unique
solution. In fact, to each different choice of the logarithm’s base γ corresponds
a different choice of a multiplicative constant. Note that trying to solve the
linear system modulo Q − 1 is often a bad idea. The problem is that Q − 1
may contain small factors, which can lead to trouble when the linear algebra
is done using an iterative algorithm. Instead, we should, if possible, factor
Q−1 and work modulo each factor, solving the above system for large factors
and using a baby step, giant step or another birthday paradox based algo-
rithm for the small factors. Note that we already know that p− 1 is a factor
of Q − 1. When Q − 1 is hard to factor, we can still obtain the logarithm
by using an iterative algorithm to solve the linear system modulo composite
factors of Q− 1 after eliminating the small factors of Q− 1.

15.2.1.1 Individual logarithms

After solving the linear system, we obtain the discrete logarithms of all the
values α − u or β − v in the finite field. However, the work is not complete.
Indeed, we would like to be able to compute the discrete logarithms of arbi-
trary values in FQ. The key to this is to use a descent algorithm, where the
discrete logarithm of an arbitrary polynomial is expressed in terms of discrete
logarithms of polynomials with smaller degrees. This idea is used iteratively,
until we reach the point where everything is expressed as a function of discrete
logarithms of linear polynomials, which are already known. To express the
logarithm of a polynomial q(x) of degree dq on the left-hand side in terms
of polynomials of lower degree, we consider bivariate polynomials T (x, y) of
degree t, separately in each variable, such that q(x) divides the left-hand side
projection T (x, f1(x)). Constructing these polynomials can be done using
linear algebra modulo p. More precisely, we build a matrix whose columns
are indexed by monomial xdxydy with 0 ≤ dx ≤ t and 0 ≤ dy ≤ t. Each
of the (t + 1)2 columns gives the representation of the projection xdxf1(x)dy
(mod q(x)) of the corresponding monomial. In the first row, we find the con-
stant coefficients of these polynomials, in the second row the x coefficient and
so on. Since q(x) has degree dq, there are dq rows in the matrix. Now, an
element of the kernel of the matrix can be interpreted as a polynomial in x
and y whose projection is equal to 0 modulo q. Reciprocally, each polyno-
mial T (x, y) of degree at most t in x and y, whose projection is a multiple of
q, belongs to the kernel of the matrix. As a consequence, to enumerate the
polynomials T (x, y) it suffices to compute a basis of the kernel and to look at
all the possible linear combinations of the kernel elements.

Polynomials q(y) on the right-hand side are treated in the same way, re-

© 2009 by Taylor and Francis Group, LLC

444 Algorithmic Cryptanalysis

versing the roles of x and y. Note that during the descent algorithm, we
alternatively encounter both cases.

At each step, we find a relation between a polynomial q and several poly-
nomials of lower degree. As a consequence, the descent produces a tree of
computation. The root of the tree is the original values whose discrete loga-
rithm is desired. The leaf of the tree are the linear polynomials. To make sure
that the descent is feasible, we need to ensure that each step of the descent
can be performed quickly enough and that the tree of descent has a reasonable
number of nodes. To satisfy this condition, we need to carefully balance the
speed of the descent. If we try to descend too quickly, then each individual
step is too costly. If we descend too slowing, the size of the tree becomes too
large and the complete computation cannot be done. The complexity analysis
below shows how to balance the speed of the descent adequately.

15.2.1.2 Complexity analysis

To perform the complexity analysis, we need to know the probability for a
polynomial of degree ∆ to split into irreducible factors of degree δ. In fact,
in the early steps of the computation, we only need the case where δ = 1.
With this case, the analysis is quite simple, the total number of (monic)
polynomials of degree ∆ is p∆, while the number of polynomials that split is
approximately p∆/∆!. Thus, the probability that a given polynomial splits is
1/∆!. For the analysis, it is convenient to write that the logarithm in base p
of the probability is close to −∆ logp(∆). We discuss smoothness probabilities
in more details in Section 15.5.

For arbitrary δ, the result generalizes into the following theorem from
[PGF98].

THEOREM 15.1
Let P be a random polynomial of degree ∆ over a finite field Fp. Let pr(∆, δ)
be the probability that P factors into a product of irreducible polynomials of
degree at most δ.

Then:
− logp(pr(∆, δ)) ≈ −(∆/δ) logp(∆/δ)

For completeness, we prove the lower bound part of this theorem in Sec-
tion 15.5. Indeed, such a lower bound suffices for the complexity analysis.

In our analysis, as in many index calculus algorithms, we make an essential
heuristic hypothesis. When we generate the equations, we simultaneously
consider two related polynomials L(x) = xf1(x) +ax+ bf1(x) + c and R(y) =
yf2(y) + af2(y) + by + c, and ask for both to be smooth. When the two
polynomials are related in this fashion, it is not known how to analyze the
probability for both to factor in the right way. Instead, we make the heuristic
assumption that L(x) and R(y) behave as random independent polynomials
in this respect. We need a similar hypothesis during the descent phase.

© 2009 by Taylor and Francis Group, LLC

Index calculus algorithms 445

With this hypothesis, the probability that both L(x) and R(y) split is ((d+
1)!)−2 since both have degree d + 1. Taking the logarithm, we find 2(d +
1) log(d + 1). Another way to state the heuristic is to say that L(x)R(x)
behaves as a random polynomial with respect to the splitting property. This
yields a probability 1/(2d+2)! and taking logarithm we find 2(d+1) log(2(d+
1)). We can check asymptotically that both expressions are equivalent and
can be written as 2d log(d)(1 + o(1)).

Complexity of finding and solving the linear system of equations.
Here, there are two important parameters to take into account:

p = LQ(1/3, θ) and d =
1√
θ
·
(

log(Q)
log log(Q)

)1/3

. (15.8)

We have a total of 2p unknowns and thus need to generate a little more than
2p equations. The linear algebra step essentially costs (2p)2 operations. While
generating the equations, we have three degrees of freedom a, b and c. Each
triple (a, b, c) yields an equation with probability (1/d!)2. We can hope to
generate enough equations when:

p3

d!2
≥ 2p or

p2

2
≥ d!2. (15.9)

Note that when d!2 is close to the upper bound p2/2 the generation of the
equations step costs roughly p3 operations, while the linear algebra costs 4p2.
In the opposite direction, when d!2 < p the linear algebra step costs more than
the generation of the equations. The two steps are balanced when 4p ≈ d!2.
Let us analyze this middle case. Taking the logarithm of the condition we
find:

log(p) ≈ 2d log(d) i.e.

θ log(Q)1/3 log log(Q)2/3 ≈ 2
3
√
θ

log(Q)1/3 log logQ2/3, (15.10)

since log(d) ≈ log(Q)/3. Thus, the balance condition becomes:

θ =
2

3
√
θ

or θ =
(

2
3

) 2
3

= 3
√

4/9. (15.11)

Since in this middle case the complexity of generating and solving the system
of equations is approximately p2, it can be written as:

LQ(1/3, 2θ) = LQ

(
1/3, 3

√
32/9

)
.

When p is larger than this value, the complexity is dominated by the linear
algebra and as a result costs more than in the balance case. When p is smaller

© 2009 by Taylor and Francis Group, LLC

446 Algorithmic Cryptanalysis

and still conforms to Equation (15.9), the complexity slowly decreases, at the
limit, we find p2/2 = d!2 which corresponds to:

2θ =
2

3
√
θ

or θ =
(

1
3

) 2
3

= 3
√

1/9. (15.12)

In this case, the complexity is dominated by the generation of the equa-
tions which needs to consider p3 candidate triples. Thus, the total cost is
LQ(1/3, 3/91/3) = LQ(1/3, 31/3).

Complexity of individual discrete logarithms To determine the com-
plexity of the individual discrete logarithms, we need a detailed analysis of
the descent parameters. Assume that we are given a polynomial1 q(x). At
most the degree dq of q is n−1 since q represents an element of the finite field.
We use a descent step to express q in terms of polynomials of smaller degree.
Remember that this is done by searching for a bivariate polynomial T (x, y) of
degree t, in each variable, such that q(x)|T (x, f1(x)). Without the divisibility
condition, there are (t + 1)2 − 1 degrees of freedom that determine2 T . The
divisibility condition adds dq linear constraints. Thus, the total number of
polynomials we can consider is:

NT = p(t+1)2−dq−1. (15.13)

We want both T (x, f1(x)) and T (f2(y), y) to split into small enough fac-
tors. These two polynomials have degree td, their probability to simultane-
ously split into factors of degree t′ has a logarithm approximately equal to
−2(td/t′) log(td/t′). For the descent to be effective, each step should not cost
too much. It is tempting to try making the probability comparable to the
probability encountered while generating the main set of equations. Making
this choice, we now need to make sure that we can really find an equation
during this step of the descent. This means that we need to check that the
number of polynomials NT is larger than the inverse of the probability, i.e.:

(t+ 1)2 − dq − 1 ≥ 2(td/t′) logp(td/t
′) = 2d logp(d) ≈ 2

3θ3/2
. (15.14)

Thus, t+ 1 can be chosen as the integer obtained by rounding up the square
root of dq plus some constant µ = 1 + 2

3θ3/2 . Clearly, with this choice of pa-
rameters for the descent, each individual step does not cost too much, since its
cost is comparable to the cost of computing a single equation during the initial
construction of the system of equation. Moreover, the tree of descent has a
small height. Indeed, we start from d1

q = n and at step i we go down from d
(i)
q

1Or q(y), both cases are completely symmetric.
2We subtract 1 from (t + 1)2 because multiplying T by a constant does not change the
degrees of its factors. This remark removes one degree of freedom.

© 2009 by Taylor and Francis Group, LLC

Index calculus algorithms 447

to d(i1)
q = d

√
d

(i)
q + µe. This means that log(dq) roughly follows a geometric

progression of ratio 1/2 and that we have a height bounded by O(log log(n)).
As a consequence, the descent tree contains a polynomial number of nodes
and does not impact the constants in the subexponential complexity.

Since θ ≥ 3−1/3 according to Section 15.2.1.2, we have µ < 1.39, and the
above analysis allows us to descent until we reach dq = 2. Indeed, for dq = 3
we choose t + 1 = d

√
3 + µ e = 3 or t = 2 and we split the polynomials into

factors of degree 2. Since our factor basis only contains polynomials of degree
1, we need to analyze separately an extra step to descent from degree 2 to
degree 1. In this final step of descent, we have dq = 2. The first option
is to consider polynomials T (x, y) = xy + ax + by + c for triples (a, b, c) of
coefficients in Fp. Since we have two linear conditions to make sure that
the degree 2 polynomial divides either T (x, f1(x)) or T (f2(y), y), there are p
possible choices for T . After substitution, the degree on each side is d+ 1 and
it can be reduced to d−1 on one side by removing the known factor of degree
2. The probability of having two polynomials that split into degree one is:

1
(d− 1)!(d+ 1)!

.

Asymptotically, this is LQ(1/3,− 2
3
√
θ
). We can hope to find a relation if this

probability is at least 1/p, i.e., when θ ≥ (2/3)2/3. This corresponds either to
the balanced case of Section 15.2.1.2 or to large prime p.

When p is a smaller prime, we need to consider a second option and to
look at unbalanced polynomials3, T (x, y) = x2y + axy + bx2 + cx + dy + e.
Removing the degrees of freedom due to the two linear conditions, we are left
with p3 possible polynomials. The probability of splitting correctly is:

1
(2d− 1)!(d+ 1)!

.

Asymptotically, this is LQ(1/3,− 1√
θ
). In this case, there is enough freedom to

find a relation if this probability is at least 1/p3, i.e., when θ ≥ (1/3)2/3. As a
consequence, we can asymptotically address all the cases of Section 15.2.1.2.

However, the reader should note that for practical computations, this option
of a smaller prime should be handled with care. The difficulty stems from the
fact that for moderate values of d, such as, for example, d = 7, there is a
considerable gap between d!2 and (2d)!. Thus for some practical choices of
parameters, we may encounter discrete logarithm computations where the
initial system of linear equations can be constructed and solved reasonably
quickly, while the final step of the descent from degree 2 to degree 1 remains
unpractical. For example, when choosing p = 65537 and n = 49, i.e., d = 7

3We assume here that the degree 2 polynomial we are trying to express is on the x side.
Otherwise, we need to reverse the roles of x an y.

© 2009 by Taylor and Francis Group, LLC

448 Algorithmic Cryptanalysis

we run into this exact problem. It is possible to perform the early steps
reasonably easily on today’s computers and obtain the discrete logarithms of
basis elements; moreover, the early steps of the descent down to polynomials
of degree 2 do not present any special difficulty. However, the last descent step
from polynomials of degree 2 to linear polynomials does not work, because we
do not have enough degrees of freedom and we cannot conclude the discrete
logarithms computation.

15.2.2 A toy example

In this section, we illustrate the above method by computing discrete log-
arithm in F1014 . Let us define p = 101 and n = 4 together with the two
polynomials:

f1(x) = x2 + 1 and f2(y) = y2 + 2. (15.15)

Then the polynomial f2(f1(x))− x = x4 + 2x2 − x+ 3 is irreducible modulo
p and so is the polynomial f1(f2(y)) − y = y4 + 4y2 − y + 5. Thus, the two
relations y = f1(x) and x = f2(y) implicitly define the finite field F1014 .

With this definition for f1 and f2, we now search for smooth multiplica-
tive relations involving the two finite field representation. Before considering
polynomials of the form xy + ax+ by + c, we first look at polynomials x+ a,
y + a and x+ ay + b. The advantage of these polynomials is that, since they
give relations between polynomials in x and y of lower degree, we expect a
better probability of smoothness. In addition, having equations of this type
in our system removes the all ‘1’ parasitical solution from the linear system
we are constructing.

In our example, we obtain 51 equations using polynomials of the form x+a
and also 51 equations from polynomials y + a. This can be easily interpreted
by remarking that x + a is always expressed as a linear term on the x side
and that on the y side we are looking at the factorization of y2 + 2 + a. This
polynomial splits into linear factors if and only if −(a + 2) is either 0 or a
quadratic residue. Since in F101 there are 50 quadratic residues and 50. In
addition, we only need another hundred equations and they are obtained by
considering polynomials x+ ay + b with a 6= 0. In fact, it suffices to consider
values of a in [1 · · · 5] and test all values of b to obtain enough equations.
Typical equations are:

x+ 7 = (y + 30) · (y + 71) (mod 101), (15.16)
(x+ 44) · (x+ 57) = y + 83 (mod 101),
(x+ 6) · (x+ 96) = (y + 49) · (y + 53) (mod 101) [from x+ y + 70],

3(x+ 64) · (x+ 71) = (y + 4) · (y + 100) (mod 101) [from x+ 3y + 95].

It is interesting to remark that the fourth among Equations (15.16) involves
a finite field constant 3 in addition to the linear polynomials x + u or y + v.
Clearly, in general, we may expect arbitrary constants to appear, since from

© 2009 by Taylor and Francis Group, LLC

Index calculus algorithms 449

x + ay + b we generate an equation which has a as coefficient of the highest
degree monomial on the x side. A natural question to consider is the impact of
these constants on the discrete logarithm computations. Indeed, when writing
the linear equations we get as additional unknowns the logarithms of the p−1
non-zero constants. At first, this seems to imply that we need to collect 3p
equations instead of 2p. However, there are simple ways of sidestepping this
issue. One possible idea is to simply avoid equations from polynomials of the
form x+ay+ b since these equations are the only ones that involve constants.
In fact, this is not a good idea, because these polynomials have a better chance
of yielding equations than the more general form xy+ ax+ by+ c, thus using
them speeds up the computations.

To get rid of the extra p unknowns coming from the constants, it is better to
remark that since F∗p is a multiplicative subgroup of F∗pn , its order p−1 divides
the order pn−1 of the full group. Thus, thanks to the Pohlig-Hellman method,
see Section 6.4.1, we are going to deal separately with the discrete logarithms
modulo p−1 and modulo q = (pn−1)/(p−1). Since p−1 is small, we can use
Pollard’s rho algorithm to determine this part of the discrete logarithm and
thus we do not require any equation at all modulo p − 1. Thus, we are only
looking at our equations modulo q. At that point, we should remember that
to focus on the discrete logarithm modulo q using Pohlig-Hellman method,
we need to raise everything to the power p − 1 in order to get rid of this
factor. This means that in our equations, we do not need the logarithms of
the constants in F∗p but the logarithms of the non-zero constants raised to the
power p − 1. Of course, thanks to Fermat’s little theorem, all these powers
are equal to 1. As a consequence, since the logarithm of 1 is zero, we can
completely forget the constants when setting up the linear system for discrete
logarithm modulo q.

The equations we need are summarized in three tables. Table 15.1 describes
all equations coming from x + a, Table 15.2 describes all equations coming
from y + a and Table 15.3 contains enough equations of the form x + ay + b
to get a complete system.

15.3 Generalization to finite fields with small enough
characteristic

The method described in Section 15.2 can in fact be generalized to all values
of the characteristic smaller than L(1/3). More precisely, discrete logarithms
in finite fields FQ = Fpn , with p smaller than LQ

(
1/3, 3−1/3

)
can be com-

puted using such a generalization. In the range of p from LQ(1/3, 3−1/3) to
LQ(1/3,Θ), for some value of Θ we can use the algorithm of Section 15.2 itself.
Beyond that point, we need a variation of the number field sieve described

© 2009 by Taylor and Francis Group, LLC

450 Algorithmic Cryptanalysis

(2, 81, 20) (3, 55, 46) (4, 87, 14) (7, 30, 71) (11, 54, 47)
(12, 17, 84) (14, 40, 61) (15, 65, 36) (17, 48, 53) (18, 9, 92)
(19, 22, 79) (20, 33, 68) (21, 52, 49) (22, 73, 28) (23, 51, 50)
(28, 77, 24) (29, 26, 75) (31, 13, 88) (34, 41, 60) (35, 8, 93)
(41, 19, 82) (43, 64, 37) (45, 85, 16) (47, 31, 70) (50, 7, 94)
(52, 59, 42) (54, 67, 34) (56, 89, 12) (62, 21, 80) (63, 95, 6)
(66, 29, 72) (68, 58, 43) (69, 63, 38) (74, 96, 5) (75, 78, 23)
(76, 86, 15) (77, 74, 27) (78, 83, 18) (79, 11, 90) (80, 25, 76)
(82, 57, 44) (83, 4, 97) (85, 69, 32) (86, 66, 35) (90, 3, 98)
(93, 62, 39) (94, 45, 56) (95, 99, 2) (98, 100, 1) (99, 0, 0)
(100, 91, 10)

Table 15.1: Equations (x+ u) = (y + v1) · (y + v2) as triples (u, v1, v2)

(91, 10, 0) (81, 20, 3) (55, 46, 4) (14, 87, 5) (30, 71, 8)
(54, 47, 12) (84, 17, 13) (61, 40, 15) (36, 65, 16) (53, 48, 18)
(9, 92, 19) (22, 79, 20) (68, 33, 21) (49, 52, 22) (73, 28, 23)
(50, 51, 24) (24, 77, 29) (75, 26, 30) (13, 88, 32) (41, 60, 35)
(93, 8, 36) (19, 82, 42) (64, 37, 44) (85, 16, 46) (70, 31, 48)
(94, 7, 51) (59, 42, 53) (34, 67, 55) (89, 12, 57) (80, 21, 63)
(6, 95, 64) (29, 72, 67) (43, 58, 69) (63, 38, 70) (5, 96, 75)
(23, 78, 76) (15, 86, 77) (74, 27, 78) (83, 18, 79) (90, 11, 80)
(76, 25, 81) (44, 57, 83) (4, 97, 84) (32, 69, 86) (66, 35, 87)
(3, 98, 91) (62, 39, 94) (45, 56, 95) (99, 2, 96) (100, 1, 99)
(0, 0, 100)

Table 15.2: Equations (x+ u1) · (x+ u2) = (y + v) as triples (u1, u2, v)

© 2009 by Taylor and Francis Group, LLC

Index calculus algorithms 451

(1, 4) � (27, 75, 25, 77) (1, 10)� (10, 92, 43, 59) (1, 38) � (30, 72, 45, 57)
(1, 44)� (94, 8, 89, 13) (1, 50)� (56, 46, 74, 28) (1, 51) � (28, 74, 66, 36)
(1, 52)� (36, 66, 78, 24) (1, 53)� (78, 24, 33, 69) (1, 54) � (33, 69, 62, 40)
(1, 55)� (40, 62, 26, 76) (1, 58)� (95, 7, 55, 47) (1, 61) � (19, 83, 16, 86)
(1, 69)� (12, 90, 96, 6) (1, 70)� (6, 96, 49, 53) (1, 74) � (52, 50, 51, 51)
(1, 75)� (51, 51, 61, 41) (1, 79)� (31, 71, 5, 97) (1, 80) � (5, 97, 65, 37)
(1, 88)� (98, 4, 34, 68) (1, 91)� (11, 91, 15, 87) (1, 94) � (99, 3, 42, 60)
(1, 95)� (42, 60, 73, 29) (1, 96)� (29, 73, 84, 18) (1, 97) � (18, 84, 2, 100)
(1, 98)� (100, 2, 23, 79) (1, 99)� (23, 79, 0, 1) (2, 4) � (72, 80, 47, 56)
(2, 8) � (44, 7, 72, 31) (2, 18)� (73, 79, 54, 49) (2, 21) � (57, 95, 34, 69)
(2, 24)� (37, 14, 52, 51) (2, 29)� (60, 92, 78, 25) (2, 36) � (76, 76, 9, 94)
(2, 44)� (96, 56, 65, 38) (2, 46)� (21, 30, 17, 86) (2, 48) � (62, 90, 71, 32)
(2, 51)� (88, 64, 95, 8) (2, 63)� (97, 55, 22, 81) (2, 64) � (59, 93, 96, 7)
(2, 70)� (11, 40, 64, 39) (2, 75)� (33, 18, 97, 6) (2, 76) � (85, 67, 79, 24)
(2, 77)� (13, 38, 87, 16) (2, 78)� (98, 54, 28, 75) (2, 80) � (43, 8, 12, 91)
(2, 84)� (3, 48, 5, 98) (2, 86)� (26, 25, 70, 33) (2, 87) � (71, 81, 36, 67)
(2, 91)� (61, 91, 99, 4) (2, 95)� (58, 94, 57, 46) (2, 96) � (100, 52, 3, 100)
(2, 99)� (0, 51, 0, 2) (3, 5) � (61, 74, 76, 28) (3, 6) � (82, 53, 26, 78)
(3, 8) � (21, 13, 39, 65) (3, 12)� (70, 65, 60, 44) (3, 18) � (96, 39, 71, 33)
(3, 22)� (84, 51, 36, 68) (3, 24)� (69, 66, 83, 21) (3, 27) � (45, 90, 45, 59)
(3, 29)� (20, 14, 94, 10) (3, 45)� (41, 94, 95, 9) (3, 46) � (38, 97, 90, 14)
(3, 53)� (16, 18, 37, 67) (3, 54)� (30, 4, 25, 79) (3, 56) � (17, 17, 63, 41)
(3, 59)� (27, 7, 96, 8) (3, 63)� (58, 77, 87, 17) (3, 67) � (55, 80, 49, 55)
(3, 71)� (63, 72, 97, 7) (3, 82)� (22, 12, 66, 38) (3, 85) � (95, 40, 82, 22)
(3, 90)� (54, 81, 69, 35) (3, 95)� (64, 71, 100, 4) (3, 96) � (33, 1, 61, 43)
(3, 97)� (28, 6, 74, 30) (3, 98)� (0, 34, 85, 19) (3, 100)� (93, 42, 80, 24)
(4, 1) � (22, 54, 1, 3) (4, 2) � (71, 5, 2, 2) (4, 6) � (87, 90, 22, 83)
(4, 11)� (39, 37, 73, 32) (4, 15)� (38, 38, 49, 56) (4, 16) � (43, 33, 19, 86)
(4, 19)� (48, 28, 38, 67) (4, 21)� (45, 31, 50, 55) (4, 24) � (23, 53, 35, 70)
(4, 32)� (56, 20, 26, 79) (4, 35)� (84, 93, 15, 90) (4, 38) � (12, 64, 43, 62)
(4, 39)� (52, 24, 10, 95) (4, 45)� (26, 50, 21, 84) (4, 51) � (68, 8, 72, 33)
(4, 58)� (79, 98, 69, 36) (4, 60)� (6, 70, 91, 14) (4, 67) � (85, 92, 97, 8)
(4, 73)� (32, 44, 65, 40) (4, 79)� (99, 78, 80, 25) (4, 80) � (41, 35, 17, 88)
(4, 83)� (74, 2, 92, 13) (4, 86)� (19, 57, 59, 46) (4, 94) � (75, 1, 5, 100)
(4, 97)� (0, 76, 64, 41) (4, 99)� (60, 16, 4, 0) (5, 3) � (9, 72, 25, 81)
(5, 4) � (39, 42, 2, 3) (5, 9) � (63, 18, 77, 29) (5, 10) � (71, 10, 79, 27)
(5, 12)� (85, 97, 66, 40) (5, 15)� (36, 45, 12, 94) (5, 26) � (56, 25, 37, 69)

Table 15.3: Equations a(x+u1)·(x+u2) = (y+v1)·(y+v2) from x+ay+b
represented by (a, b) � (u1, u2, v1, v2)

© 2009 by Taylor and Francis Group, LLC

452 Algorithmic Cryptanalysis

in [JLSV06].
The main difference between the basic algorithm of Section 15.2 and the

variation we are now presenting is the choice of the smoothness bases. Instead
of considering only linear polynomials, we now consider polynomials of degree
D. When p remains expressed as LQ(1/3, θ) as the size of the finite field
grows, we choose for D a fixed constant. In that case, the analysis is very
similar to the case D = 1.

However, when p is smaller than that, i.e., when:

log(p) = o(log(Q)1/3 log log(Q)2/3),

we should make a careful choice for D. In fact, we write:

D =
log(LQ(1/3, θD))

log(p)
. (15.17)

Note that thanks to the o(1) in Equation (15.2) defining the L notation, we
can round D to the nearest integer without changing Equation (15.2).

In addition to controlling the size of the smoothness bases, the parameter
D also changes the algorithm of Section 15.2 in other places. First, it modifies
the set of polynomials we consider. Instead of looking at polynomials xy +
ax + by + c, we generalize to polynomials of the form a(x) + b(x)y where a
and b are coprime univariate polynomials of degree at most D in x. Indeed,
if a and b are not coprime, we can factor out the common factor and obtain
another equation of the same form. Thus, when a and b are not coprime, we
obtain duplicates of existing equation. With such polynomials a and b, we now
see that when substituting y by f1(x) we obtain a polynomial of degree (at
most) D + d1, where d1 = deg(f1). When substituting x by f2(y), we obtain
a polynomial of degree Dd2, where d2 = deg(f2). Clearly, we should try to
minimize the sum of the two degrees, while keeping d1d2 ≈ n. Asymptotically,
the optimal choice is to have:

d1 =
√
nD and d2 =

√
n/D. (15.18)

With this choice, we have the degree on each side is approximately d1. Since
n = log(Q)/ log(p), we see that:

d1 =
log(LQ(2/3,

√
θD))

log(p)
and d2 =

1√
θD

(
log(Q)

log log(Q)

)1/3

. (15.19)

As usual the logarithm of the probability of splitting into irreducible poly-
nomials of degree at most D on both sides is approximately:

−(2d1/D) log(d1/D) = LQ

(
1/3,− 2

3
√
θD

)
. (15.20)

© 2009 by Taylor and Francis Group, LLC

Index calculus algorithms 453

In order to make sure that we obtain enough equations, we remark that we
have LQ(1/3, θD) polynomials in the smoothness bases and that the size of
the search space a(x) + b(x)y is LQ(1/3, 2θD). As a consequence, we need :

θD =
2

3
√
θD

. (15.21)

This condition implies θD = (2/3)2/3. Note that making this specific choice
also balances the runtime complexities of finding the equations and solving
the linear system. We leave the adaptation of the individual logarithms com-
putation as an exercise.

With this generalization, the complexity of computing discrete logarithms in
arbitrary finite fields FQ, with Q = pn and p = o(LQ(1/3)), is LQ(1/3, 2θD) =

LQ

(
1/3, 3

√
32/9

)
. This generalization is a simplification of the function

field sieve Algorithm [Adl94]. The important aspect of this simplification is
that, as in Section 15.2, we are directly working in two different representa-
tions of the finite field: each element can be expressed either as a polynomial
in x or as a polynomial in y. In general, the function field algorithm makes
use of a more complicated mathematical structure than polynomial rings:
function fields.

15.3.1 Overview of the regular function field sieve

Despite the fact that function fields can be avoided altogether for the com-
putation of discrete logarithms in small characteristic, it is interesting to look
at the function field sieve in order to introduce some of the technicalities that
are needed in larger characteristic with the number field sieve. When com-
paring the function field sieve with our previous approach, the first difference
is that we break the symmetry between the two unknowns that appear in the
algorithm. To emphasize this breach of symmetry, we rename the unknowns
t and X instead of x and y. The function field sieve is based on the following
commutative diagram:

Fp[t,X]
↙ ↘

Fp[t,X]
(F1(t,X))

Fp[t,X]
(F2(t,X))

↘ ↙
FQ = Fp[t]

(g(t))

(15.22)

Looking at the bottom line of this diagram, we see that t plays a special role
because it is used to generate our representation of FQ. On the contrary, X is
no longer used to generate FQ. The middle line of the diagram shows another
crucial difference, instead of removing one of the unknowns on each side, we
keep both and consider all polynomials modulo a bivariate polynomial either
F1(t,X) or F2(t,X). From a mathematical point-of-view, Fp[t,X]

(F1(t,X)) is a ring.

© 2009 by Taylor and Francis Group, LLC

454 Algorithmic Cryptanalysis

If in addition, F1(t,X) is an irreducible polynomial, this quotient becomes
an entire ring and we can form its field of fractions. This field of fractions is
called a function field. We already introduced such a mathematical object in
Chapter 14.

In the most general case, F1 and F2 can be arbitrary irreducible polynomials
in t and X. In order to make the above diagram commutative, we need the
two simultaneous conditions F1(t,X) = 0 and F2(t,X) = 0. Eliminating X
from these two algebraic equations in two unknowns, we obtain an equation
G(t) = 0. If G has an irreducible factor g of degree n, such that pn = Q, we
can keep F1 and F2 as an implicit definition of FQ. In practice, this general
setting is rarely needed and one polynomial is usually chosen of a simpler
form. A typical choice is the following:

F1(t,X) = X − f1(t) and F2(t,X) =
D∑
i=0

f
(i)
2 (t)Xi.

In other words, we view both F1 and F2 as polynomials in X whose coeffi-
cients are polynomials in t. The first polynomial f1 is simpler since it is a
linear polynomial. With this specific choice, several simplifications appear.
First, G can now be computed without using resultants, more precisely, we
have G(t) = F2(t, f1(t)). Second, the commutative diagram becomes simpler,
because on the F1 side, also called the linear side, with can remove X com-
pletely, replacing it by f1(t). Thus, on the linear side, we only need to factor
polynomials and the technical difficulties related to the use of function fields
only appear on the side of F2.

With this setup, we are now ready to explain how the equations are gener-
ated with the function field sieve. In order to produce the equations, we start
from linear polynomials in X of the form a(t) + Xb(t). On the linear side,
this becomes a(t) + f1(t)b(t) with can easily be factored. On the function
field side, matters are more difficult. Indeed, unique factorization is not even
guaranteed on that side. As a consequence, we need to decompose a(t)+Xb(t)
into a product of prime ideals in the function field4.

Informally, in this context, an ideal I in the function field is a set of elements
of the function field such that:

I + I ⊂ I and
H(x, T)I ⊂ I, for all polynomial H ∈ Fp[t,X]. (15.23)

An ideal is prime if it cannot be decomposed into a non-trivial product of
ideals. Thanks to the fact that a(t) + Xb(t) is linear in X, we only need to

4In Chapter 14, we give a complete description of function fields of a special kind. More
precisely, using the unknowns t and X, this chapter fully describes the function field of the
curve associated with the irreducible polynomial X2 − t3 − at − b. In truth, decomposing
an ideal as a product of prime ideals is equivalent to writing the divisor of a function.

© 2009 by Taylor and Francis Group, LLC

Index calculus algorithms 455

consider prime ideals of a special form. These prime ideals correspond to a
pair (q(t), X − r(t)), where q(t) is an irreducible polynomial modulo p and
r(t) a root of F2 modulo q(t), i.e., F2(t, r(t)) is a multiple of q(t).

Testing whether a(t) + Xb(t) can be decomposed into a product of prime
ideals of this form is achieved by checking if the numerator of F2(t,−a(t)/b(t))
is a product of polynomials of small enough degree. Thus, in practice, gen-
erating the equations with the function field sieve is not really more difficult.
Interpreting the equations in the finite field is more delicate: it is not clear
at all that an ideal in the function field can be sent to a element of the finite
field. Indeed, in general, an ideal is not generated by a single element. How-
ever, with function fields, this difficulty can in fact be ignored. We simply
write the equations in logarithmic form without worrying about the images
of ideals in the finite field and everything works out. We will see that with
the number field sieve, the situation is more complicated and that we need
additional tools to obtain a working algorithm.

15.4 Introduction to the number field sieve

The basic number field sieve algorithm can be used for two main purposes:
to factor composite numbers N or to compute discrete logarithm modulo a
prime p. The overall outline of the algorithm is identical, however, at the
detailed level there are some important differences. In all cases, the number
field sieve algorithm relies on the following commutative diagram:

Z[X]
↙ ↘

Z[X]
(f1(X))

Z[X]
(f2(X))

↘ ↙
Z
NZ

(15.24)

where N is either the composite to factor or a copy of the prime p. As in the
case of the function field sieve, f1 and f2 are chosen to make sure that the
diagram commute. In the context of the number field sieve, this means that f1

and f2 have a common root modulo N and thus that N divides the resultant
of the two polynomials as explained in Chapter 11. The above commutative
diagram is valid in the most general case with f1 and f2 of arbitrary degrees.
However, very frequently, f1 is a polynomial of degree 1, f1(X) = X−α where
α is a root of f2 modulo N . In that special case, we say that f1 defines a linear
side and we can replace Z[X]

(f1(X)) by Z in the above commutative diagram. As
with the function field sieve, equations are generated by looking at the images
of elements from the top of the diagram, both on the left- and the right-
hand sides. In all generality, we may consider polynomials of arbitrary degree

© 2009 by Taylor and Francis Group, LLC

456 Algorithmic Cryptanalysis

in Z[X]. However, in the most frequent cases, we restrict ourselves to linear
polynomials of the form a+bX, where a and b are, of course, coprime integers.
On the rational side, the image of a+ bX simply is the integer a+ bα. On the
right-hand (algebraic) side, the image is the algebraic number a + bβ, where
β denotes a complex root of the polynomial f2.

Any element a+bX whose images a+bα and a+bβ can both be decomposed
into small enough factors, yields an equation which can be interpreted in
Z/NZ. Note that, as in the case of the function field sieve of Section 15.3.1,
this interpretation is not always straightforward and requires a careful analysis
of the underlying mathematical structure.

We give a sketch of a description for the number field sieve in Section 15.4.2.1.
However, for a complete description, we refer the reader to [JLSV06] and [LL93].

15.4.1 Factoring with the quadratic sieve

Before looking at the number field sieve algorithm and its application to
factoring and discrete logarithms computations, it is useful to review simpler
special cases. The simpler situation that can be imagined involves two linear
sides. It can be achieved by choosing f1(X) = X and f2(X) = X + N . In
that basic case, looking at the restricted set of values a+ bX with b = 1, we
are simply looking at relations a ≡ a + N (mod N). In that case, if both a
and a+N decompose into products of primes, all smaller than a smoothness
bound B, we get a multiplicative relation between two products of primes.
This approach is called the linear sieve. We leave its detailed analysis as an
exercise for the reader.

Looking beyond the linear sieve, the next step is to choose a linear poly-
nomial for f1 and a quadratic polynomial for f2. When N is a composite
that we want to factor, let R be the nearest integer to

√
N and let f2 be the

polynomial:
f2(x) = x2 + 2Rx+ (R2 −N). (15.25)

We can see that coefficients of f2 are not too large. More precisely, they are
of the order of O(

√
N). Since −R is a root of f2 modulo N , it is natural to

choose for f1 the polynomial:

f1(x) = x+R. (15.26)

With this choice, we are now ready to generate multiplicative equations.
At this point, the quadratic sieve slightly differs from our general framework.
We may remark that for any integer a, we have:

f1(a)2 ≡ f2(a) (mod N). (15.27)

Thanks to the square on the left-hand side of this equation, we do not need
to factor f1(a) but only to look at the decomposition of f2(a). The quadratic
sieve algorithm is parametrized by two values A and B. The parameter A

© 2009 by Taylor and Francis Group, LLC

Index calculus algorithms 457

fixes the range [−A,A] of values of a we consider. The parameter B is a
bound on the size of small primes. When f2(a) (or its absolute value) factors
into primes smaller than B, we write an equation:

f1(a)2 ≡
na∏
i=1

(
p
c
(a)
i

)e(a)
i

(mod N), (15.28)

where na is the number of primes in the equation, c(a)
i is the number of the i-th

prime involved in the equation and e(a)
i is its multiplicity. Note that it is useful

to add an additional element to our list of primes, p0 = −1. This value of p0

offers a convenient way a representing the sign of f2(a). We denote by NB
the total number of primes that may appear in the equations, including the
additional p0. Another interesting remark about the equations, is that since
f2(a) is a number of the order of 2aR, as long as a remains small compared
to R, the number of primes involved in each instance of Equation (15.28)
remains small.

Once NB (or a few more) equations are found, we construct a Boolean
matrix M . Each line of the matrix corresponds to an instance of Equa-
tion (15.28); each column to a prime from p0 to pNB−1. For a line l, we
denote by al the value of a that generates the corresponding equation. On
this line, in the column corresponding to p

c
(al)
i

(for each possible value of i) we

write the value c(al)i (mod 2). Since the number of primes in each equation is
small, the matrix M is a sparse matrix. Once M is constructed, we search for
a sum of lines equal to zero in F2. This can be done by finding a non-trivial
element of the kernel of >M . Given such an element of the kernel, we can
compute the corresponding sum of lines over the integers and the product P
(modulo N) of the values f1(al) for the lines l included in the sum. Clearly,
the sum yields a vector in which each coordinate is even. Let V denote the
vector where each coordinate is halved. Putting everything together, we see
that:

P 2 ≡

(
NB+1∏
i=0

pVii

)2

(mod N). (15.29)

We recall from Section 2.3.3.1 that two different square roots of the same
number modulo N can be used to generate a square root of 1 and that random
square roots of 1 modulo N can factor N with probability 1/2 or more.

15.4.2 Discrete logarithms with the Gaussian integer method

The quadratic sieve as presented in Section 15.4.1 relies on the specific
property that a congruence of square is sufficient for factoring. It is thus
natural to wonder whether the special cases which make things simpler for
factoring also apply for discrete logarithm computations. Clearly, the most
special case of the linear sieve can be applied. Thus, we are left to consider

© 2009 by Taylor and Francis Group, LLC

458 Algorithmic Cryptanalysis

whether the next step with a linear polynomial and a quadratic polynomial
is applicable. In fact, it is and we proceed as follows: first, we choose a small
positive integer d > 0 such that −d is a quadratic residue in Fp. Let R be
a root of −d modulo p. We know from Chapter 2 that R can be written as
R ≡ A/B (mod N) with A and B of the order of

√
p. With this choice, we

can now let:
f1(X) = A−BX and f2(X) = X2 + d. (15.30)

We see that R is a root of both f1 and f2 modulo N . As usual, we take
elements a+bX and see how they can be sent into the sides defined by f1 and
f2. Clearly, since f1 is linear, this side should be simple. Indeed, replacing X
by A/B in a + bX we find that the left-hand image is (aB + bA)/B. Since
B is a fixed value, we factor aB + bA as a product of primes and when
the factorization is acceptable, we consider B as additional prime which is
included in all equations with exponent −1.

The side of f2 is slightly more complicated. Since f2(X) = X2 + d, the
quotient field of Z(X)/(f2) is the number field Q[

√
−d] obtained by adjoining

to Q (one of) the purely imaginary square root of −d. This specific kind of
number field is called an imaginary quadratic field. In addition, when d = 1, 2,
3, 7, 11, 19, 43, 67 or 163, the ring of integers Q[

√
−d] is a unique factorization

domain. As a consequence, in these nine special cases, the quadratic side
essentially behaves as a linear side. The image of a+ bX, i.e., a+ b

√
−d can

be factored into a product of primes. For the sake of completeness, it is useful
to describe the set of primes in Q[

√
−d]; they are of two types. The first type

is simply prime integers ` such that −d is a non-quadratic residue modulo `.
Note that most of these primes cannot occur in the factorization of a+ b

√
−d

when a and b are coprime, as a consequence, they can safely be excluded from
the smoothness basis. The second type of primes is obtained by decomposing
the prime integers ` such that −d is a quadratic residue modulo ` as:

` =
a` + b`

√
−d

2
· a` − b`

√
−d

2
. (15.31)

The two primes appearing in this equation are complex conjugates of each
other. Note that a`/b` and −a`/b` are the two square roots of −d modulo `.

Once we have the list of primes, assuming that d is one of the nine above
cases and not equal to 1, a + b

√
−d can be written up to sign as a product

of primes. Thus, adding an additional “prime” `0 = −1 we find ourselves
exactly in the situation of the linear sieve. When d = 1, the situation is
slightly different, a+ b

√
−d can be written as a product of primes multiplied

by either 1, −1, i or −i where i denotes
√
−1. Thus we need to add `0 = i.

Remark that `0 occurs with exponent 0, 1, 2 or 3 in the decomposition. From
a mathematical point-of-view, we see that in both cases `0 generates the unit
group in Q[

√
−d]. Indeed, with imaginary quadratic fields, the unit group is

either {1,−1} when d 6= 1 or {1, i,−1,−i} when d = 1.
The only remaining step to deal with Q[

√
−d] in the unique factorization

domain case is to explicitly compute the factorization of a+ b
√
−d. We first

© 2009 by Taylor and Francis Group, LLC

Index calculus algorithms 459

remark that when (a` + b`
√
−d)/2 divides a + b

√
−d, then (a` − b`

√
−d)/2

divides a − b
√
−d. Thus, ` divides (a + b

√
−d) · (a − b

√
−d) = a2 + db2, the

norm of a+ b
√
−d. Conversely, if p divides the norm of a+ b

√
−d then either

(a`+b`
√
−d)/2 or (a`−b`

√
−d)/2 divide a+b

√
−d. To distinguish between the

two cases, it suffices to test whether a/b is equal to a`/b` or −a`/b` modulo `.
Remarking that when a and b are coprime, two conjugate primes cannot both
divide a + b

√
−d, we see that the multiplicity of a prime a` + b`

√
−d in the

decomposition is equal to the multiplicity of ` in the norm of a+ b
√
−d.

Once we have written down exact multiplicative equalities modulo p, be-
tween (aB+bA)/B and a+b

√
−d, we proceed to compute discrete logarithms

as in Section 15.3. More precisely, taking logarithms, we obtain linear rela-
tions between the logarithms of all primes5 modulo all prime factors Q of
p − 1. Once we have enough relations, we can solve the linear system to ob-
tain logarithms of primes. Note that as usual small prime factors of p − 1
do not need to be addressed by this method, but can be dealt with using a
generic algorithm with square root complexity.

When none of −1, −2, −3, −7, −11, −19, −43, −67 and −163 is a quadratic
residue in Fp, it is no longer possible to directly work with a unique factoriza-
tion domain. Of course, only a small proportion of primes (approximately 1
in 512 primes) are of this bad form. However, it is interesting to see how this
difficulty can be overcome. In this case, we need to proceed with a value of d
such that the ring of integers of Q[

√
−d] is not a unique factorization domain.

For example, in Q[
√
−5] we may see that:

6 = (1 +
√
−5) · (1−

√
−5) = 2 · 3, (15.32)

and that the prime 2 does not have any not trivial divisor and divides neither
1 +
√
−5 nor 1−

√
−5. As in the case of the function field sieve, we now need

to factor the elements a+ b
√
−d into products of prime ideals. For example,

the equality in Equation (15.32) corresponds to a decomposition of the ideal
generated by 6 into a product I2

2I
+
3 and I−3 , where each of the three ideals is

generated by two elements, 2 and 1+
√
−5 for I2, 3 and 1+

√
−5 for I+

3 , 3 and
1 −
√
−5 for I−3 . None of these ideals can be generated by a single element.

Without going into the theory of ideals in number fields or even quadratic
fields, let us say that the set of ideals forms an abelian group. Moreover, in
this group we find a subgroup formed of ideals which can be generated by
single elements, called principal ideals. The quotient of group of ideals by
the subgroup of principal ideals is called the ideal class group of the number
field. It is a finite group and its cardinality k is called the class number of
the number field. A consequence of this is that the k-th power of any ideal
is always a principal ideal. As a consequence, up to multiplication by a unit,
i.e., up to sign, the k-th power of any a+ b

√
−d in a imaginary quadratic field

5Including the special “primes” corresponding to B and to the units in the quadratic imag-
inary field.

© 2009 by Taylor and Francis Group, LLC

460 Algorithmic Cryptanalysis

can be written as a product of k-th power of prime ideals, i.e., as a product of
elements which generates these ideals. Going back to our example in Q[

√
−5],

we have a class number k = 2 and we can find generators for the squares of
the ideals appearing in the decomposition of 6. More precisely, I2

2 is generated
by 2, I+

3

2
by 2−

√
−5 and I−3

2
by 2 +

√
−5.

Thus, for all quadratic imaginary fields, we can write explicit multiplicative
equations between the k-th powers of (aB+bA)/B and a+b

√
−d. When taking

the logarithm of such equations, we can clearly factor k out. Moreover, if the
linear algebra is to be done modulo Q, we can in fact divide the equations
by k as long Q and k are not coprime. Since Q is a large prime divisor of
p − 1, it is clear that Q and k are coprime unless we get extremely unlucky.
With this process we can associate with any prime ideal a value equal to the
logarithm of a generator of the k-th power of this ideal divided by k. For
convenience, we call this value the virtual logarithm of the ideal. A final
important remark is that when computing modulo an odd prime Q, the units
in the quadratic imaginary field can altogether be ignored. Indeed, since their
order is either 2 or 4, their discrete logarithm modulo Q is necessarily equal
to 0.

Note that to compute arbitrary discrete logarithm, we need to adapt the
descent method for this case.

15.4.2.1 Obstructions to the number field sieve

Taking the quadratic sieve as a model, we may try to generalize it to ar-
bitrary number fields. That is, given a polynomial f2 irreducible over Q[X],
we can consider the number field obtained as quotient field of Z[X]/(f2) and
denoted Q[β], where β is a complex (potential real) root of f2. We are inter-
ested by the possible factorizations of elements a + bβ. In general, as in the
general quadratic case, we are not in a unique factorization domain and we
can decompose a + bβ into a product of prime. However, we can write it as
a product of prime ideals. Moreover, for a general number field, we also have
a finite class number k and looking at k-th powers, we may write an ideal
equality between two products, one on the linear side and the other in the
number field. Thus, at first, it may seem that going to the number field sieve
for discrete logarithm computations does not require any new tool. However,
this first impression is not correct. The problem is that when two integral el-
ements x and y in a number field generate the same ideal, we cannot say that
x = y but only that there exists a unit u such that x = uy. With imaginary
quadratic fields, all units had finite order 2 or 4 and could easily be dealt with.
With arbitrary number fields, there exists unit of non-finite order which can-
not be removed when working modulo Q. This is the most important problem
that needs to be overcome in order to use arbitrary number fields in index
calculus.

When factoring with the number field sieve, there are in fact two potential
obstructions. Clearly, the obstruction coming from units remains, but in

© 2009 by Taylor and Francis Group, LLC

Index calculus algorithms 461

addition, we cannot ignore the class group. Indeed, in the case of factoring,
we want to compute the linear algebra modulo 2 and we cannot have any
guarantee that the class number k is invertible modulo 2, i.e., odd. One way
out of this problem would be to restart the computation with another number
field should a problem occur. Since we expect an odd class number about half
of the time, this would on average double the running time. However, this is
not necessary. Instead, it suffices to add extra terms in the equations we are
writing to get rid of the obstruction. These extra terms are computed using
either characters [LL93] or Schirokauer’s maps [Sch93].

15.4.3 Constructing number field sieve polynomials

The number field sieve is too complex to develop in details here. Instead,
we refer the reader to [LL93] and [JLSV06] for complete descriptions in all
accessible finite fields. However, the question of constructing polynomials f1

and f2 for number field sieve algorithms is easily accessible with the tools we
have at hand. We first analyze theoretical bounds on the sizes of coefficients
that can be achieved for these polynomials and then present the simple base
m construction.

15.4.3.1 General setting

Throughout this section, we denote by d1 the degree of f1 and by d2 the
degree of f2. We further write:

f1(X) =
d1∑
i=0

C
(1)
i Xi and f2(X) =

d2∑
i=0

C
(2)
i Xi.

To optimize the efficiency of the sieving step with these polynomials, we
need to minimize the size of the smooth numbers we need to find while sieving.
These numbers are norms of linear number field elements obtained from a+bX.
For simplicity, we assume that we are in the balanced case where a and b are
chosen in a half-square, with 0 < a ≤ S and −S ≤ b ≤ S. In this balanced
case, since the norm on each side respectively is:

bd1f1(−a/b) =
d1∑
i=0

C
(1)
i (−a)ibd1−i and (15.33)

bd2f2(−a/b) =
d2∑
i=0

C
(2)
i (−a)ibd2−i, (15.34)

it is natural to have all coefficients in f1 of roughly the same size C1 and all
coefficients in f2 of size C2.

Since f1 and f2 have a common root modulo N or p but not over C, the
resultant of f1 and f2 is necessarily a multiple of N , resp. p. Since the resul-
tant is the determinant of a matrix that contains d2 copies of the coefficients

© 2009 by Taylor and Francis Group, LLC

462 Algorithmic Cryptanalysis

of f1 and d1 copies of the coefficient of f2, its order of magnitude is Cd2
1 Cd1

2 .
Thus, d2 log2(C1) + d1 log2(C2) is of the order of log2(N) or larger.

Moreover, the above property shows that f1 and f2 form an encoding ofN in
the information theoretic sense: given f1 and f2 we can retrieve N or at least
a small set of candidates containing N . Since N is essentially an arbitrary
number, there should not exist any short encoding of N . As a consequence,
the sizes of the coefficients C1 and C2 cannot be too small. More precisely, we
expect that (d1 + 1) log2(C1) + (d2 + 1) log2(C2) is near to log2(N) or larger.

As a consequence, given d1 and d2, the minimum we can hope to achieve
for γ1 = log2(C1) and γ2 = log2(C2) is a solution of the linear system of
equations:

d2c1 + d1c2 = log2(N) and (15.35)
(d1 + 1)c1 + (d2 + 1)c2 = log2(N). (15.36)

We can remark that for d1 = d2, this system of equation does not have a
solution and the two linear constraints cannot be optimized simultaneously.
Otherwise, we find a solution and in particular, we have:

(c1 + c2) =
2 log2N

d1 + d2 + 1
. (15.37)

Looking at Equations (15.33) and (15.34), we see that when a and b are up-
per bounded by a common bound B, the product of the norms is (ignoring
small factors) C1C2B

d1+d2 = 2c1+c2Bd1+d2 . It is interesting to note that this
expression only involves d1 +d2 and c1 +c2. Moreover Equation (15.37) above
relates these two parameters. As a consequence, when presenting construc-
tions of polynomials for the number field sieve, it is very useful to compare
the value of c1 + c2 that can be achieved by a given construction to the limit
given by Equation (15.37).

15.4.3.1.1 The special number field sieve Note that the bound given
by Equation (15.37) only holds for numbers N of a general form. Special
numbers with a short description may correspond to better polynomials, i.e.,
polynomials with smaller coefficients. The number field sieve when applied
to such numbers is called the special number field sieve or SNFS. In this
special case, Equation (15.35) remains true, but Equation (15.36) no longer
holds. Thus, to determine the best polynomials we can achieve, we need to
minimize c1+c2 under the constraints that c1 ≥ 0 and c2 ≥ 0, while respecting
Equation (15.35). Assuming that d1 ≤ d2, the best choice is c1 = log2(N)/d2

and c2 = 0. Clearly, with such a choice, for a fixed value D of d1 + d2 the
overall optimum is achieved by choosing d1 = 1 and d2 = D−1. For example,
see Exercise 6.

© 2009 by Taylor and Francis Group, LLC

Index calculus algorithms 463

15.4.3.2 Base m construction

The simpler of all known constructions that can be used for the number
field sieve is the base-m construction. With this construction, one of the two
polynomials is linear, say d1 = 1 and the other can be chosen with arbitrary
degree d2. The construction works as follows:

• Choose an integer m by rounding d2+1
√
N up.

• Write N in basis m as:

N =
d2∑
i=0

Mim
i, (15.38)

with 0 ≤Mi < m for all i.

• Let f1(X) = X −m.

• Let f2(X) =
∑d2
i=0Mix

i.

Clearly, m is a root of both f1 and f2 modulo N and the resultant of f1 and
f2 is N . The sizes of the coefficients that are achieved are:

c1 = c2 =
log2(N)
d2 + 1

. (15.39)

Thus, c1 + c2 is equal to 2 log2(N)
d1+d2

and slightly above the theoretical minimum
2 log2(N)
d1+d2+1 . For an asymptotic point-of-view, this small difference does not affect
the overall complexity that can be achieved. However, in practice, its effect
might be non-negligible.

15.5 Smoothness probabilities

15.5.1 Computing smoothness probabilities for polynomials

In order to precisely evaluate the behavior of index calculus algorithms
based on the function field sieve, it is essential to give fine predictions for the
probability for a polynomial of degree D to split into factors of maximum
degree m. In practice, there exists a simple combinatorial algorithm that
allows us to compute these probabilities exactly. In order to describe this
algorithm, we introduce a few notations:

SmD = {f ∈ Fp[x]|deg f = D, any irreducible g|f has deg g ≤ m} ,
S̃mD = {f ∈ SmD |deg f = D, at least one g of f has deg g = m} ,
Nm
D =]SmD and Ñm

D =]S̃mD . (15.40)

© 2009 by Taylor and Francis Group, LLC

464 Algorithmic Cryptanalysis

Remember that since Fp is a field, all irreducible polynomials can be chosen
to be unitary polynomials. In addition to the above notations, it is convenient
to extend the definitions and let N0

0 = Ñ0
0 = 1 and N0

D = Ñ0
D = 0 for D > 0.

Indeed, no non-constant polynomial can be written as a product of constants.
The difference between S or N and S̃ or Ñ is that in the second case we

insist on having at least one factor of exact degree m. From these definitions,
a few properties can immediately be deduced:

Nm
D = pD,whenever m ≥ D, and Nm

D =
m∑
j=1

Ñ j
D. (15.41)

Indeed, the first property follows from the remark that any polynomial of
degree D can be decomposed in factors of degree at most D. The second
property is that the factor of largest degree in this decomposition necessarily
has a degree between 1 and D. Another noteworthy property is that ÑD

D is
equal to the number of irreducible polynomials of degree D.

With these notations in mind, we can now proceed to compute the various
values of Nm

D and Ñm
D . Any polynomial f of degree N is either irreducible or

reducible. When f is reducible and m is the degree of its largest irreducible
factor, f can be decomposed as:

f =
t∏
i=1

Fi × g, (15.42)

where each Fi has degree m and where g is a product of polynomials of degree
at most m− 1. Moreover, this decomposition is unique up to a renumbering
of the polynomials Fi. When m and t are fixed, the number of polynomials
f which can be written as in Equation (15.42), is simply the product of the
number of possible t-uples (F1, . . . , Ft) by the number of possible polynomials
g. The number of possible polynomials g is simply Nm−1

D−tm, since g is a poly-
nomial of degree D − tm with no irreducible factor of degree m or more. We
now need to determine the number of unordered t-uples (F1, . . . , Ft). Since
each Fi is an irreducible polynomial of degree m, it suffices to choose t such
polynomials. However, we should be careful that even though the t-uples are
unordered, repetitions are allowed. A very classical combinatorial result is
that an unordered choice with repetitions allowed of t elements in a set of Ñm

m

elements is: (
Ñm
m + t− 1

t

)
=

(Ñm
m + t− 1)!

t!(Ñm
m − 1)!

. (15.43)

One easy way to prove this result is to remark that if (n1, n2, . . . , nt) is a
unordered t-uples of t integers in [1 · · ·M] with possible repetitions sorted in
increasing order, then (n1 + 1, n2 + 2, . . . , nt + t) is an unordered t-uples of
t integers in [2 · · ·M + t] without repetitions. Moreover the correspondence
works both ways.

© 2009 by Taylor and Francis Group, LLC

Index calculus algorithms 465

It is now very easy to sum up the contribution of the various values of t
and obtain:

Ñm
D =

bD/tc∑
t=1

(
Ñm
m + t− 1

t

)
Nm−1
D−tm. (15.44)

Thanks to Equation (15.41), it suffices to add Ñm
D and Nm−1

D to obtain Nm
D .

As a side bonus, the computation also yields the number of irreducible poly-
nomials of degree D, thanks to the relation:

ÑD
D = pD −ND−1

D . (15.45)

Note that, by theoretical analysis we already know an exact formula for
ÑD
D . Indeed, by taking any element g of FpD that does not belong to any

proper subfield, we can construct an irreducible polynomial by contructing
the product:

D−1∏
i=0

X − gp
i

.

Thus, the number of irreducible is equal to the number of such elements
divided by D. For example, when D is prime, we find:

ÑD
D =

pD − p
D

. (15.46)

When D is not prime, we need to remove each element which belongs to a
subfield and we find:

ÑD
D =

1
D

∑
d|D

µ(D/d)pd ≥ pD − pD/2

D

 , (15.47)

where µ is the Moebius function defined on a number from its decomposition
into primes as follows:

µ(x) =

 0 if x is not square free,
1 if x has an even number of distinct prime factors,
−1 if x has an odd number of distinct prime factors.

So, in all cases, ÑD
D is close to pD/D.

The above equations can directly be translated into Algorithm 15.1. For
simplicity, the variable V in this algorithm is assumed to be a rational. In
order to work with integers only, one should slightly reorder the computations
to avoid non-exact divisions. Note that in all cases, the numbers involved in
this algorithm can become very large. As a consequence, one should preferably
work with a multi-precision integer library. A much less preferable alternative
is to perform the computations using floating point numbers. Indeed, once
we exceed the accuracy limit, the results become completely meaningless.

© 2009 by Taylor and Francis Group, LLC

466 Algorithmic Cryptanalysis

Algorithm 15.1 Compute number of smooth polynomials
Require: Input: characteristic p, maximum degree D

Create a two-dimensional D ×D array N
Create a vector of D elements I
Let I[1]←− p
for i from 1 to D do

for j from i to D do
Let N [i, j]←− pi

end for
end for
for i from 2 to D do

Let V ←− 1
Let C ←− I[1] + i
for k from 1 to i do

Let V ←− (C − k)V/k
end for
Let N [i, 1]←− V
for m from 2 to i− 1 do

Let N [i,m]←− N [i,m− 1]
Let V ←− 1
for t from 1 to T do

Let C ←− I[m] + t
Let V ←− N [i− tm,m− 1]
for k from 1 to t do

Let V ←− (C − k)V/k
end for
Let N [i,m]←− N [i,m] + V

end for
end for
Let I[i]←− N [i, i]−N [i, i− 1]

end for

© 2009 by Taylor and Francis Group, LLC

Index calculus algorithms 467

15.5.2 Asymptotic lower bound on the smoothness proba-
bility

Here, using the same notations as above, we prove the lower bound of the
probability of smoothness of polynomials of degree D over the basis of monic
irreducible polynomials of degree at most m. Thus, our goal is to give an
asymptotic lower bound on Nm

D .
We first assume thatD is a multiple ofm, D = `m. In that case, the number

of smooth polynomials is greater than the number of possible products of `
distinct irreducible polynomials of degree m. This number is:

1
`!

`−1∏
i=0

(Ñm
m − i).

Remembering that Ñm
m is close to pm/m, letting ` and m grow and dividing

by pD to get a probability, we obtain a lower bound of: 1
`!(m+ε)`

for any value
of ε > 0. Taking the logarithm we find `(log `+m+ε) which is asymptotically
equivalent to ` log ` as expected.

In the general case, we write D = `m+ r with r < m and proceed similarly
with a product of a single irreducible of degree r and ` distinct irreducibles of
degree m. The lower bounds immediately follows.

15.5.3 Smoothness probabilities for integers

To compute the probability of smoothness for integers, let us introduce the
quantity Ψ(x, y) to denote the number of positive integers up to x which are
y-smooth. Then, we have the following theorem from [CEP83].

THEOREM 15.2 Canfield, Erdös, Pomerance
For every ε > 0, there exists a constant Cε such that for all x ≥ 1 and

3 ≤ u ≤ (1− ε) log(x)/ log log(x) we have:

Ψ(x, x1/u) ≥ x · e−u(log(u)+log log(u)−1+
log log(u)−1

log(u) +E(x,u)),

where

|E(x, u)| ≤ Cε
log log(u)2

log(u)2
.

As a consequence, to express Ψ(x, y), we let u = log(x)/ log(y) and substi-
tute u in the above theorem. After dividing by x to obtain a probability of
smoothness and ignoring low order terms we find that:

log(Ψ(x, y)/x) ≈ − log(x)
log(y)

log
(

log(x)
log(y)

)
.

To understand the relation between this smoothness probability and the
functions LN (α, c), see Exercise 9.

© 2009 by Taylor and Francis Group, LLC

468 Algorithmic Cryptanalysis

Exercises

1h. Draw the graphs of LN (α, c) as a function of N for several values of α
and c. In particular, focus on the values of α and c that arise in the
complexity analysis we have seen. In each case, what is the maximum
value of N that can be reached if we want to ensure that LN (α, c) ≤ 280?
This gives an upper bound on the size of N that can be reached in the
near future.

2. Repeat the complexity analysis of the function field sieve variation of
Section 15.3 when D is a fixed integer. For D = 1, you should recover
the results of Section 15.2. For each D, what is the range for p where
this value of D is the best choice? Draw the corresponding asymptotic
complexities on a graph.

3h. For the case of Fpn with p = 65537 and n = 49, construct two polyno-
mials f1 and f2 allowing to apply the basic algorithm of Section 15.2.
Write a program to generate equations from xy + ax + by + c. How
long would it take to find enough equations? How long to solve the lin-
ear algebra problem and obtain discrete logarithms for the smoothness
basis?

Turn to the descent problem and write code, possibly in a computer
algebra system, to perform the descent step down to degree 2. Can you
descend from degree 2 to degree 1?

4. Consider the nine fields Q[
√
−d] whose rings of integers are unique fac-

torization domains. For each, list the primes of the form (a`+b`
√
−d)/2.

Remark that division by 2 is not always required. When is it needed?
Write a program to explicitly factor any a + b

√
−d. Assuming that a

and b are coprime, is there any integer prime appearing in these decom-
positions?

5h. Consider the field Q[
√
−5]. Characterize all the prime ideals in the ring

of numbers of the form a + b
√
−5. Write a program to compute the

decomposition into prime ideals of all numbers of this form when |a|
and |b| are smaller than 1000.

6. Consider the p-th Fermat number Fp = 22p + 1. Construct two polyno-
mials with a common root modulo Fp which beat the bound of Equa-
tion (15.37). Explain why the special number field sieve outperforms
the number field sieve in this case.

7h. Let N be a fixed integer and let f1(X) = αX−β for two integers α and
β. How can we use lattice reduction to construct a second polynomial f2

of degree d which also has β/α (mod N) as a root modulo N? Given N

© 2009 by Taylor and Francis Group, LLC

Index calculus algorithms 469

and d, which size can be achieved for α and β. Compare with the base
m construction. Assume that the sieving step considers elements of the
form a+ bX with unbalanced bounds on |a| and |b|. Show that in that
case, using unbalanced (skewed) coefficients in f1 and f2 is important.
Adapt the construction to the skewed case.

8. This exercise considers a contruction, due to Montgomery, of two quadratic
polynomials usable for the number field sieve modulo N . Let p be a
prime near

√
N such that N is a quadratic residue modulo p. Let c be a

square root of N modulo p. Show that the numbers p, c and (c2−N)/p)
form a geometry progression of ratio c/p (mod N). Consider the lattice
formed of all vectors whose scalar product with (p, c, (c2 −N)/p) mod-
ulo N is 0. What is the rank of this lattice? What is the size of the
short vectors it contains? Show that each short vector in this lattice can
be transformed into a polynomial with root c/p modulo N . Conclude
how we obtain two quadratic polynomials f1 and f2 for the number field
sieve. Compare with the bound of Equation (15.37).

9h. This exercise studies the relation between functions LN (α, c) and the
smoothness probabilities given in Section 15.5.3. Assume that x =
LN (α, c) and y = LN (β, d) and compute Ψ(x, y)/x. For which values of
α, β, c and d is this formula valid?

A natural implementation project for this topic is to implement one of the
possible index calculus algorithms described in this chapter. Note that this
is a long project, because it is necessary to implement at least three separate
parts, sieving, linear algebra and final phase (individual logarithm or factor
extraction). This can possibly be split into separate but well-coordinated
subprojects.

© 2009 by Taylor and Francis Group, LLC

References
Numbers within brackets after each reference indicate the citing pages.

[AB04] A. O. L. Atkin and Daniel J. Bernstein. Prime sieves using binary
quadratic forms. Mathematics of Computation, 73(246):1023–
1030, 2004. [123, 133, 134, 135]

[ABW03] Mart́ın Abadi, Michael Burrows, and Ted Wobber. Moderately
hard and memory-bound functions. In NDSS 2003, San Diego,
California, USA, February 5–7, 2003. The Internet Society. [164]

[ADKF70] V. L. Arlazarov, E. A. Dinic, M. A. Kronod, and I. A. Faradzev.
On economical construction of the transitive closure of an ori-
ented graph. Soviet Math. Dokl., 11:1209–1210, 1970. [85]

[Adl94] Leonard M. Adleman. The function field sieve. In First Algorith-
mic Number Theory Symposium (ANTS), volume 877 of LNCS,
pages 108–121. Springer-Verlag, Berlin, Germany, 1994. [453]

[ADR02] Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security
of joint signature and encryption. In Lars R. Knudsen, editor,
EUROCRYPT 2002, volume 2332 of LNCS, pages 83–107, Ams-
terdam, The Netherlands, April 28–May 2, 2002. Springer-Verlag,
Berlin, Germany. [20]

[AFK+07] Kazumaro Aoki, Jens Franke, Thorsten Kleinjung, Arjen K.
Lenstra, and Dag Arne Osvik. A kilobit special number field sieve
factorization. In Kaoru Kurosawa, editor, ASIACRYPT 2007,
volume 4833 of LNCS, pages 1–12, Kuching, Malaysia, Decem-
ber 2–6, 2007. Springer-Verlag, Berlin, Germany. [113]

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm
for the shortest lattice vector problem. In 33rd ACM STOC,
pages 601–610, Crete, Greece, July 6–8, 2001. ACM Press. [328]

[AKS02] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is
in P. Ann. of Math, 2:781–793, 2002. [38]

[AS08] Onur Aciiçmez and Werner Schindler. A vulnerability in RSA
implementations due to instruction cache analysis and its demon-
stration on OpenSSL. In Tal Malkin, editor, CT-RSA 2008,
LNCS, pages 256–273, San Francisco, CA, USA, April 7–11, 2008.
Springer-Verlag, Berlin, Germany. [92]

[AScKK07] Onur Aciiçmez, Werner Schindler, and Çetin Kaya Koç. Cache
based remote timing attack on the AES. In Masayuki Abe, ed-
itor, CT-RSA 2007, volume 4377 of LNCS, pages 271–286, San

471

© 2009 by Taylor and Francis Group, LLC

472 Algorithmic Cryptanalysis

Francisco, CA, USA, February 5–9, 2007. Springer-Verlag, Berlin,
Germany. [92]

[Bar04] Magali Turrel Bardet. Étude des systèmes algébriques
surdéterminés. Applications aux codes correcteurs et à la cryp-
tographie. PhD thesis, Université de Paris VI, 2004. [367]

[BBD07] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen, ed-
itors. Post Quantum Cryptography. Springer-Verlag, Berlin, Ger-
many, 2007. [363]

[BC04] Eli Biham and Rafi Chen. Near-collisions of SHA-0. In
Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS,
pages 290–305, Santa Barbara, CA, USA, August 15–19, 2004.
Springer-Verlag, Berlin, Germany. [179]

[BCJ+05] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault,
Christophe Lemuet, and William Jalby. Collisions of SHA-0 and
reduced SHA-1. In Ronald Cramer, editor, EUROCRYPT 2005,
volume 3494 of LNCS, pages 36–57, Aarhus, Denmark, May 22–
26, 2005. Springer-Verlag, Berlin, Germany. [179, 181]

[BCRL79] Dario Bini, Milvio Capovani, Francesco Romani, and Grazia
Lotti. o(n2.7799) complexity for n × n approximate matrix mul-
tiplication. Information processing letters, 8(5):234–235, 1979.
[89]

[BD99] Dan Boneh and Glenn Durfee. Cryptanalysis of RSA with pri-
vate key d less than n0.292. In Jacques Stern, editor, EURO-
CRYPT’99, volume 1592 of LNCS, pages 1–11, Prague, Czech
Republic, May 2–6, 1999. Springer-Verlag, Berlin, Germany. [414]

[BDJR97] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway.
A concrete security treatment of symmetric encryption. In 38th
FOCS, pages 394–403, Miami Beach, Florida, October 19–22,
1997. IEEE Computer Society Press. [15]

[Ber00] Daniel J. Bernstein. How to find small factors of integers. Avail-
able on cr.yp.to, 2000. [152]

[Ber07] Côme Berbain. Analyse et conception d’algorithmes de chiffre-
ment à flot. PhD thesis, Université Paris Diderot, 2007. [289]

[BGP06] Côme Berbain, Henri Gilbert, and Jacques Patarin. QUAD: A
practical stream cipher with provable security. In Serge Vaude-
nay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages
109–128, St. Petersburg, Russia, May 28–June 1, 2006. Springer-
Verlag, Berlin, Germany. [289]

[Bih97] Eli Biham. A fast new DES implementation in software. In
Eli Biham, editor, FSE’97, volume 1267 of LNCS, pages 260–

© 2009 by Taylor and Francis Group, LLC

References 473

272, Haifa, Israel, January 20–22, 1997. Springer-Verlag, Berlin,
Germany. [162]

[BJ07] Aurélie Bauer and Antoine Joux. Toward a rigorous variation
of Coppersmith’s algorithm on three variables. In Moni Naor,
editor, EUROCRYPT 2007, volume 4515 of LNCS, pages 361–
378, Barcelona, Spain, May 20–24, 2007. Springer-Verlag, Berlin,
Germany. [413]

[BJN00] Dan Boneh, Antoine Joux, and Phong Q. Nguyen. Why textbook
ElGamal and RSA encryption are insecure. In Tatsuaki Okamoto,
editor, ASIACRYPT 2000, volume 1976 of LNCS, pages 30–43,
Kyoto, Japan, December 3–7, 2000. Springer-Verlag, Berlin, Ger-
many. [269]

[BK03] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of
related-key attacks: RKA-PRPs, RKA-PRFs, and applications.
In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 491–506, Warsaw, Poland, May 4–8, 2003. Springer-Verlag,
Berlin, Germany. [21]

[BK04] Mihir Bellare and Tadayoshi Kohno. Hash function balance and
its impact on birthday attacks. In Christian Cachin and Jan
Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS,
pages 401–418, Interlaken, Switzerland, May 2–6, 2004. Springer-
Verlag, Berlin, Germany. [192]

[BKN04] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre.
Authenticated encryption in SSH: provably fixing the SSH bi-
nary packet protocol. ACM transactions on information and
system security, 7(2):206–241, May 2004. Full paper avail-
able at http://www.cse.ucsd.edu/users/mihir/papers/ssh.
html. Earlier version appeared in ACM CCS 02. [238, 239]

[BKR00] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of
the cipher block chaining message authentication code. Journal
of Computer and System Sciences, 61(3):362–399, 2000. [5]

[BM97] Mihir Bellare and Daniele Micciancio. A new paradigm for
collision-free hashing: Incrementality at reduced cost. In Wal-
ter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
163–192, Konstanz, Germany, May 11–15, 1997. Springer-Verlag,
Berlin, Germany. [266]

[BM05] Johannes Blömer and Alexander May. A tool kit for finding
small roots of bivariate polynomials over the integers. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS,
pages 251–267, Aarhus, Denmark, May 22–26, 2005. Springer-
Verlag, Berlin, Germany. [412]

© 2009 by Taylor and Francis Group, LLC

474 Algorithmic Cryptanalysis

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated en-
cryption: Relations among notions and analysis of the generic
composition paradigm. In Tatsuaki Okamoto, editor, ASI-
ACRYPT 2000, volume 1976 of LNCS, pages 531–545, Kyoto,
Japan, December 3–7, 2000. Springer-Verlag, Berlin, Germany.
[17, 18]

[BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryp-
tion. In Alfredo De Santis, editor, EUROCRYPT’94, volume 950
of LNCS, pages 92–111, Perugia, Italy, May 9–12, 1994. Springer-
Verlag, Berlin, Germany. [64]

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital
signatures: How to sign with RSA and Rabin. In Ueli M. Maurer,
editor, EUROCRYPT’96, volume 1070 of LNCS, pages 399–416,
Saragossa, Spain, May 12–16, 1996. Springer-Verlag, Berlin, Ger-
many. [10, 64]

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple en-
cryption and a framework for code-based game-playing proofs.
In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of
LNCS, pages 409–426, St. Petersburg, Russia, May 28–June 1,
2006. Springer-Verlag, Berlin, Germany. [186]

[BS91a] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-
like cryptosystems. In Alfred J. Menezes and Scott A. Vanstone,
editors, CRYPTO’90, volume 537 of LNCS, pages 2–21, Santa
Barbara, CA, USA, August 11–15, 1991. Springer-Verlag, Berlin,
Germany. [273]

[BS91b] Eli Biham and Adi Shamir. Differential cryptoanalysis of Feal
and N-hash. In Donald W. Davies, editor, EUROCRYPT’91,
volume 547 of LNCS, pages 1–16, Brighton, UK, April 8–11, 1991.
Springer-Verlag, Berlin, Germany. [273]

[BS92] Eli Biham and Adi Shamir. Differential cryptanalysis of Snefru,
Khafre, REDOC-II, LOKI and Lucifer. In Joan Feigenbaum,
editor, CRYPTO’91, volume 576 of LNCS, pages 156–171, Santa
Barbara, CA, USA, August 11–15, 1992. Springer-Verlag, Berlin,
Germany. [273]

[BS93] Eli Biham and Adi Shamir. Differential cryptanalysis of the full
16-round DES. In Ernest F. Brickell, editor, CRYPTO’92, vol-
ume 740 of LNCS, pages 487–496, Santa Barbara, CA, USA,
August 16–20, 1993. Springer-Verlag, Berlin, Germany. [273]

[BS00] Alex Biryukov and Adi Shamir. Cryptanalytic
time/memory/data tradeoffs for stream ciphers. In Tatsuaki
Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS,

© 2009 by Taylor and Francis Group, LLC

References 475

pages 1–13, Kyoto, Japan, December 3–7, 2000. Springer-Verlag,
Berlin, Germany. [394]

[BSS05] Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart, editors. Ad-
vances in Elliptic Curve Cryptography, volume 317 of London
Mathematical Society Lecture Note Series. Cambridge University
Press, New York, 2005. [425]

[BSV07] Thomas Baignères, Jacques Stern, and Serge Vaudenay. Linear
cryptanalysis of non binary ciphers. In Carlisle M. Adams, Ali
Miri, and Michael J. Wiener, editors, SAC 2007, volume 4876
of LNCS, pages 184–211, Ottawa, Canada, August 16–17, 2007.
Springer-Verlag, Berlin, Germany. [289]

[BT04] Alexandra Boldyreva and Nut Taesombut. Online encryption
schemes: New security notions and constructions. In Tatsuaki
Okamoto, editor, CT-RSA 2004, volume 2964 of LNCS, pages
1–14, San Francisco, CA, USA, February 23–27, 2004. Springer-
Verlag, Berlin, Germany. [238]

[Buc04] Johannes Buchmann. Introduction to Cryptography (Second edi-
tion). Undergraduate texts in Mathematics. Springer, New York,
2004. [3]

[BV07] Johannes Buchmann and Ulrich Vollmer. Binary Quadratic
Forms – An Algorithmic Approach, volume 20 of Algorithms and
Computation in Mathematics. Springer-Verlag, Berlin, Germany,
2007. [311]

[Cav00] Stefania Cavallar. Strategies in filtering in the number field sieve.
In Fourth Algorithmic Number Theory Symposium (ANTS), vol-
ume 1838 of LNCS, pages 209–232. Springer-Verlag, Berlin, Ger-
many, 2000. [118]

[CEP83] E. R. Canfield, Paul Erdös, and Carl Pomerance. On a problem
of Oppenheim concerning factorisatio numerorum. Journal of
Number Theory, 17:1–28, 1983. [467]

[CF05] Henri Cohen and Gerhard Frey, editors. Handbook of Elliptic and
Hyperelliptic Curve Cryptography, volume 34 of Discrete Mathe-
matics and its Applications. Chapman & Hall, CRC, 2005. [417,
424, 432]

[CJ98] Florent Chabaud and Antoine Joux. Differential collisions in
SHA-0. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462
of LNCS, pages 56–71, Santa Barbara, CA, USA, August 23–27,
1998. Springer-Verlag, Berlin, Germany. [179]

[CJL+92] Matthijs J. Costerr, Antoine Joux, Brian A. LaMacchia, An-
drew M. Odlyzko, Clauss-Peter Schnorr, and Jacques Stern. Im-

© 2009 by Taylor and Francis Group, LLC

476 Algorithmic Cryptanalysis

proved low-density subset sum algorithms. Computational Com-
plexity, 2:111–128, 1992. [402]

[CJM02] Philippe Chose, Antoine Joux, and Michel Mitton. Fast corre-
lation attacks: An algorithmic point of view. In Lars R. Knud-
sen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages
209–221, Amsterdam, The Netherlands, April 28–May 2, 2002.
Springer-Verlag, Berlin, Germany. [257, 385, 387]

[CKM97] Stéphane Collart, Michael Kalkbrener, and Daniel Mall. Con-
verting bases with the Groöbner walk. J. Symbolic Computation,
24(3–4):465–469, 1997. [361]

[CKSU05] Henry Cohn, Robert Kleinberg, Balazs Szegedy, and Christopher
Umans. Group-theoretic algorithms for matrix multiplication.
In Proceedings of the 46th Annual IEEE Symposium on Foun-
dations of Computer Science, pages 379–388, Washington, DC,
USA, 2005. IEEE Computer Society. [93]

[CL09] Jean-Marc Couveignes and Reynald Lercier. Elliptic periods for
finite fields. Finite fields and their applications, 15:1–22, 2009.
[49]

[CLO07] David Cox, John Little, and Donal O’Shea. Ideals, Varieties and
Algorithms (Third edition). Undergraduate texts in Mathematics.
Springer, New York, 2007. [345, 348, 350, 353, 354]

[Cop94] Don Coppersmith. Solving homogeneous linear equations over
gf(2) via block wiedemann algorithm. Mathematics of Compu-
tation, 62(205):333–350, 1994. [113]

[Cop96a] Don Coppersmith. Finding a small root of a bivariate integer
equation; factoring with high bits known. In Ueli M. Maurer,
editor, EUROCRYPT’96, volume 1070 of LNCS, pages 178–189,
Saragossa, Spain, May 12–16, 1996. Springer-Verlag, Berlin, Ger-
many. [412]

[Cop96b] Don Coppersmith. Finding a small root of a univariate modu-
lar equation. In Ueli M. Maurer, editor, EUROCRYPT’96, vol-
ume 1070 of LNCS, pages 155–165, Saragossa, Spain, May 12–16,
1996. Springer-Verlag, Berlin, Germany. [410]

[Cor04] Jean-Sébastien Coron. Finding small roots of bivariate integer
polynomial equations revisited. In Christian Cachin and Jan Ca-
menisch, editors, EUROCRYPT 2004, volume 3027 of LNCS,
pages 492–505, Interlaken, Switzerland, May 2–6, 2004. Springer-
Verlag, Berlin, Germany. [412]

[Cor07] Jean-Sébastien Coron. Finding small roots of bivariate integer
polynomial equations: A direct approach. In Alfred Menezes,

© 2009 by Taylor and Francis Group, LLC

References 477

editor, CRYPTO 2007, volume 4622 of LNCS, pages 379–394,
Santa Barbara, CA, USA, August 19–23, 2007. Springer-Verlag,
Berlin, Germany. [412]

[CP91] Paul Camion and Jacques Patarin. The Knapsack hash function
proposed at Crypto’89 can be broken. In Donald W. Davies,
editor, EUROCRYPT’91, volume 547 of LNCS, pages 39–53,
Brighton, UK, April 8–11, 1991. Springer-Verlag, Berlin, Ger-
many. [264, 405]

[CPS08] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The
random oracle model and the ideal cipher model are equiva-
lent. In David Wagner, editor, CRYPTO 2008, volume 5157
of LNCS, pages 1–20, Santa Barbara, CA, USA, August 17–21,
2008. Springer-Verlag, Berlin, Germany. [22]

[CT65] James W. Cooley and John W. Tukey. An algorithm for the
machine calculation of complex Fourier series. Mathematics of
Computation, 19:297–301, 1965. [296]

[CV94] Florent Chabaud and Serge Vaudenay. Links between differential
and linear cryptoanalysis. In Alfredo De Santis, editor, EURO-
CRYPT’94, volume 950 of LNCS, pages 356–365, Perugia, Italy,
May 9–12, 1994. Springer-Verlag, Berlin, Germany. [279, 281]

[CW90] Don Coppersmith and Shmuel Winograd. Matrix multiplica-
tion via arithmetic progressions. J. of Symbolic Computation,
9(3):251–280, 1990. [93]

[Dam90] Ivan Damg̊ard. A design principle for hash functions. In Gilles
Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 416–
427, Santa Barbara, CA, USA, August 20–24, 1990. Springer-
Verlag, Berlin, Germany. [405, 406]

[DES77] Data encryption standard. National Bureau of Standards, NBS
FIPS PUB 46, U.S. Department of Commerce, January 1977.
[157]

[DFV97] Hervé Daudé, Philippe Flajolet, and Brigitte Vallée. An average-
case analysis of the gaussian algorithm for lattice reduction. Com-
binatorics, Probability & Computing, 6(4):397–433, 1997. [318]

[DGV94] Joan Daemen, René Govaerts, and Joos Vandewalle. Correla-
tion matrices. In Bart Preneel, editor, FSE’94, volume 1008 of
LNCS, pages 275–285, Leuven, Belgium, December 14–16, 1994.
Springer-Verlag, Berlin, Germany. [279]

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory, 22(6):644–
654, 1976. [5, 9]

© 2009 by Taylor and Francis Group, LLC

478 Algorithmic Cryptanalysis

[DLC07] Frédéric Didier and Yann Laigle-Chapuy. Finding low-weight
polynomial multiples using discrete logarithm. Computing Re-
search Repository (CoRR), abs/cs/0701069, 2007. [386]

[DN93] Cynthia Dwork and Moni Naor. Pricing via processing or com-
batting junk mail. In Ernest F. Brickell, editor, CRYPTO’92,
volume 740 of LNCS, pages 139–147, Santa Barbara, CA, USA,
August 16–20, 1993. Springer-Verlag, Berlin, Germany. [164]

[DS09] Itai Dinur and Adi Shamir. Cube attacks on tweakable black
box polynomials. In Antoine Joux, editor, EUROCRYPT 2009,
volume 5479 of LNCS, pages 278–299. Springer-Verlag, Berlin,
Germany, 2009. [390, 391, 392, 396]

[Eis95] David Eisenbud. Commutative Algebra with a View Towards Al-
gebraic Geometry, volume 150 of Graduate Texts in Mathematics.
Springer, New York, 1995. [342]

[ElG85] Taher ElGamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. In G. R. Blakley and David
Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 10–18,
Santa Barbara, CA, USA, August 19–23, 1985. Springer-Verlag,
Berlin, Germany. [66, 67]

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing
Gröbner bases (F4). J. Pure Appl. Algebra, 139(1-3):61–88, 1999.
Effective methods in algebraic geometry (Saint-Malo, 1998). [356,
357]

[Fau02] Jean-Charles Faugère. A new efficient algorithm for computing
Gröbner bases without reduction to zero (F5). In T. Mora, editor,
ISSAC 2002, pages 75–83, 2002. [356, 359]

[FGLM93] Jean-Charles Faugère, Patricia Gianni, Daniel Lazard, and Teo
Mora. Efficient computation of zero-dimensional Groöbner bases
by change of ordering. J. Symbolic Computation, 16(4):329–344,
1993. [361, 362]

[FJ03] Jean-Charles Faugère and Antoine Joux. Algebraic cryptanaly-
sis of hidden field equation (HFE) cryptosystems using gröbner
bases. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of
LNCS, pages 44–60, Santa Barbara, CA, USA, August 17–21,
2003. Springer-Verlag, Berlin, Germany. [365]

[FJMV04] Pierre-Alain Fouque, Antoine Joux, Gwenaëlle Martinet, and
Frédéric Valette. Authenticated on-line encryption. In Mitsuru
Matsui and Robert J. Zuccherato, editors, SAC 2003, volume
3006 of LNCS, pages 145–159, Ottawa, Ontario, Canada, Au-
gust 14–15, 2004. Springer-Verlag, Berlin, Germany. [238]

© 2009 by Taylor and Francis Group, LLC

References 479

[FJP04] Pierre-Alain Fouque, Antoine Joux, and Guillaume Poupard.
Blockwise adversarial model for on-line ciphers and symmetric
encryption schemes. In Helena Handschuh and Anwar Hasan,
editors, SAC 2004, volume 3357 of LNCS, pages 212–226, Wa-
terloo, Ontario, Canada, August 9–10, 2004. Springer-Verlag,
Berlin, Germany. [238]

[FLPR99] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Srid-
har Ramachandran. Cache-oblivious algorithms. In 40th FOCS,
pages 285–298, New York, New York, USA, October 17–19, 1999.
IEEE Computer Society Press. [92]

[FM03] Joanne Fuller and William Millan. Linear redundancy in S-boxes.
In Thomas Johansson, editor, FSE 2003, volume 2887 of LNCS,
pages 74–86, Lund, Sweden, February 24–26, 2003. Springer-
Verlag, Berlin, Germany. [282]

[FMP03] Pierre-Alain Fouque, Gwenaëlle Martinet, and Guillaume
Poupard. Practical symmetric on-line encryption. In Thomas Jo-
hansson, editor, FSE 2003, volume 2887 of LNCS, pages 362–375,
Lund, Sweden, February 24–26, 2003. Springer-Verlag, Berlin,
Germany. [239]

[FO90] Philippe Flajolet and Andrew M. Odlyzko. Random mapping
statistics. In Jean-Jacques Quisquater and Joos Vandewalle, ed-
itors, EUROCRYPT’89, volume 434 of LNCS, pages 329–354,
Houthalen, Belgium, April 10–13, 1990. Springer-Verlag, Berlin,
Germany. [231, 233, 234]

[FP85] U. Fincke and Michael E. Pohst. Improved methods for calcu-
lating vectors of short length in a lattice, including a complexity
analysis. Mathematics of Computation, 44(170):463–471, 1985.
[328]

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical
solutions to identification and signature problems. In Andrew M.
Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–
194, Santa Barbara, CA, USA, August 1987. Springer-Verlag,
Berlin, Germany. [10]

[Gal04] William F. Galway. Ph. D. in mathematics. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign, 2004. [135]

[GC91] Henri Gilbert and Guy Chassé. A statistical attack of the FEAL-
8 cryptosystem. In Alfred J. Menezes and Scott A. Vanstone,
editors, CRYPTO’90, volume 537 of LNCS, pages 22–33, Santa
Barbara, CA, USA, August 11–15, 1991. Springer-Verlag, Berlin,
Germany. [273]

© 2009 by Taylor and Francis Group, LLC

480 Algorithmic Cryptanalysis

[GH05] Jovan Dj. Golic and Philip Hawkes. Vectorial approach to fast
correlation attacks. Des. Codes Cryptography, 35(1):5–19, 2005.
[380]

[GJS06] Louis Granboulan, Antoine Joux, and Jacques Stern. In-
verting HFE is quasipolynomial. In Cynthia Dwork, editor,
CRYPTO 2006, volume 4117 of LNCS, pages 345–356, Santa
Barbara, CA, USA, August 20–24, 2006. Springer-Verlag, Berlin,
Germany. [366]

[GL96] Gene H. Golub and Charles F. Van Loan. Matrix Computations
(third edition). The Johns Hopkins University Press, London,
1996. [71]

[GL03] Rosario Gennaro and Yehuda Lindell. A framework for password-
based authenticated key exchange. In Eli Biham, editor, EU-
ROCRYPT 2003, volume 2656 of LNCS, pages 524–543, War-
saw, Poland, May 4–8, 2003. Springer-Verlag, Berlin, Germany.
http://eprint.iacr.org/2003/032.ps.gz. [156]

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-
edge complexity of interactive proof systems. SIAM Journal on
Computing, 18(1):186–208, 1989. [66]

[GN08] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduc-
tion. In Nigel P. Smart, editor, EUROCRYPT 2008, LNCS, pages
31–51, Istanbul, Turkey, April 13–17, 2008. Springer-Verlag,
Berlin, Germany. [405]

[HG97] Nick Howgrave-Graham. Finding small roots of univariate mod-
ular equations revisited. In Michael Darnell, editor, Cryptog-
raphy and Coding, 6th IA International Conference, volume
1355 of LNCS, pages 131–142, Cirencester, UK, December 1997.
Springer-Verlag, Berlin, Germany. [407, 410]

[HG07] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-
in-the-middle attack against NTRU. In Alfred Menezes, editor,
CRYPTO 2007, volume 4622 of LNCS, pages 150–169, Santa
Barbara, CA, USA, August 19–23, 2007. Springer-Verlag, Berlin,
Germany. [405]

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael
Luby. A Pseudorandom Generator from any One-way Function.
SIAM J. Comput., 28(4):1364–1396, 1999. [286]

[HS07] Guillaume Hanrot and Damien Stehlé. Improved analysis of kan-
nan’s shortest lattice vector algorithm. In Alfred Menezes, edi-
tor, CRYPTO 2007, volume 4622 of LNCS, pages 170–186, Santa
Barbara, CA, USA, August 19–23, 2007. Springer-Verlag, Berlin,
Germany. [331]

© 2009 by Taylor and Francis Group, LLC

References 481

[JG94] Antoine Joux and Louis Granboulan. A practical attack against
Knapsack based hash functions (extended abstract). In Al-
fredo De Santis, editor, EUROCRYPT’94, volume 950 of LNCS,
pages 58–66, Perugia, Italy, May 9–12, 1994. Springer-Verlag,
Berlin, Germany. [406]

[JL01] Antoine Joux and Reynald Lercier. “Chinese & Match,” an al-
ternative to Atkin’s “Match and Sort” method used in the SEA
algorithm. Mathematics of Computation, 70:827–836, 2001. [267,
268, 269]

[JLSV06] Antoine Joux, Reynald Lercier, Nigel Smart, and Frederik Ver-
cauteren. The number field sieve in the medium prime case. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS,
pages 326–344, Santa Barbara, CA, USA, August 20–24, 2006.
Springer-Verlag, Berlin, Germany. [452, 456, 461]

[JMV02] Antoine Joux, Gwenaëlle Martinet, and Frédéric Valette.
Blockwise-adaptive attackers: Revisiting the (in)security of some
provably secure encryption models: CBC, GEM, IACBC. In Moti
Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 17–30,
Santa Barbara, CA, USA, August 18–22, 2002. Springer-Verlag,
Berlin, Germany. [238, 239]

[JN08] Marc Joye and Gregory Neven, editors. Identity-based Cryptog-
raphy, volume 2 of Cryptology and Information Security Series.
IOS Press, Amsterdam, 2008. [417]

[JNT07] Antoine Joux, David Naccache, and Emmanuel Thomé. When
e-th roots become easier than factoring. In Kaoru Kurosawa,
editor, ASIACRYPT 2007, volume 4833 of LNCS, pages 13–28,
Kuching, Malaysia, December 2–6, 2007. Springer-Verlag, Berlin,
Germany. [439]

[JP07] Antoine Joux and Thomas Peyrin. Hash functions and the
(amplified) boomerang attack. In Alfred Menezes, editor,
CRYPTO 2007, volume 4622 of LNCS, pages 244–263, Santa
Barbara, CA, USA, August 19–23, 2007. Springer-Verlag, Berlin,
Germany. [182]

[Jut01] Charanjit S. Jutla. Encryption modes with almost free message
integrity. In Birgit Pfitzmann, editor, EUROCRYPT 2001, vol-
ume 2045 of LNCS, pages 529–544, Innsbruck, Austria, May 6–10,
2001. Springer-Verlag, Berlin, Germany. [17]

[Kah67] David Kahn. The Codebreakers: The Comprehensive History
of Secret Communication from Ancient Times to the Internet.
Scribner, 1967. [11]

© 2009 by Taylor and Francis Group, LLC

482 Algorithmic Cryptanalysis

[Kan83] Ravi Kannan. Improved algorithms for integer programming and
related lattice problems. In Proc. 15th Symp. Theory of Comp.,
pages 193–206, 1983. [327, 328, 330]

[Ker83] Auguste Kerckhoffs. La cryptographie militaire. Journal des
sciences militaire, IX, 1883. Article in two parts: Jan. and Feb.
issues. [4]

[Knu94] Lars R. Knudsen. Truncated and higher order differentials. In
Bart Preneel, editor, FSE’94, volume 1008 of LNCS, pages 196–
211, Leuven, Belgium, December 14–16, 1994. Springer-Verlag,
Berlin, Germany. [282, 392]

[KPT96] Jyrki Katajainen, Tomi Pasanen, and Jukka Teuhola. Practical
in-place mergesort. Nordic J. of Computing, 3(1):27–40, 1996.
[201]

[Kra01] Hugo Krawczyk. The order of encryption and authentication
for protecting communications (or: How secure is SSL?). In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 310–
331, Santa Barbara, CA, USA, August 19–23, 2001. Springer-
Verlag, Berlin, Germany. [18]

[KS99] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public
key cryptosystem by relinearization. In Michael J. Wiener, editor,
CRYPTO’99, volume 1666 of LNCS, pages 19–30, Santa Barbara,
CA, USA, August 15–19, 1999. Springer-Verlag, Berlin, Germany.
[357]

[KVW04] Tadayoshi Kohno, John Viega, and Doug Whiting. CWC: A
high-performance conventional authenticated encryption mode.
In Bimal K. Roy and Willi Meier, editors, FSE 2004, volume
3017 of LNCS, pages 408–426, New Delhi, India, February 5–7,
2004. Springer-Verlag, Berlin, Germany. [17]

[Kwa00] Matthew Kwan. Reducing the gate count of bitslice DES. IACR
eprint archive, 2000. Report 2000/051. [163, 183]

[Lai94] Xuejia Lai. Higher order derivatives and differential cryptanal-
ysis. In Communication and Cryptography – Two Sides of One
Tapestry, pages 227–233. Kluwer Academic Publisher, 1994. [392]

[Lan05] Serge Lang. Algebra, volume 211 of Graduate Texts in Mathe-
matics. Springer, New York, 2005. Revised third edition. [37, 47,
48, 62, 110, 343]

[Laz83] Daniel Lazard. Gröbner bases, gaussian elimination and reso-
lution of systems of algebraic equations. In Computer algebra
(London, 1983), volume 162 of LNCS, pages 146–156. Springer-
Verlag, Berlin, Germany, 1983. [355]

© 2009 by Taylor and Francis Group, LLC

References 483

[LG89] Leonid A. Levin and Oded Goldreich. A Hard-core Predicate
for all One-way Functions. In D. S. Johnson, editor, 21th ACM
Symposium on Theory of Computing - STOC ’89, pages 25–32.
ACM Press, 1989. [286]

[LL93] Arjen K. Lenstra and Hendrick W. Lenstra, Jr., editors. The
development of the number field sieve, volume 1554 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, Germany, 1993.
[456, 461]

[LLL82] Arjen K. Lenstra, Hendrick W. Lenstra, Jr., and László Lovász.
Factoring polynomials with rational coefficients. Math. Ann.,
261:515–534, 1982. [319]

[LMV05] Yi Lu, Willi Meier, and Serge Vaudenay. The conditional cor-
relation attack: A practical attack on bluetooth encryption. In
Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS,
pages 97–117, Santa Barbara, CA, USA, August 14–18, 2005.
Springer-Verlag, Berlin, Germany. [380]

[LO85] Jeffrey C. Lagarias and Andrew M. Odlyzko. Solving low-density
subset sum problems. Journal of the ACM, 32(1):229–246, 1985.
[402, 406]

[LO91] Brian A. LaMacchia and Andrew M. Odlyzko. Solving large
sparse linear systems over finite fields. In Alfred J. Menezes and
Scott A. Vanstone, editors, CRYPTO’90, volume 537 of LNCS,
pages 109–133, Santa Barbara, CA, USA, August 11–15, 1991.
Springer-Verlag, Berlin, Germany. [113, 115]

[Luc05] Stefan Lucks. Two-pass authenticated encryption faster than
generic composition. In Henri Gilbert and Helena Handschuh,
editors, FSE 2005, volume 3557 of LNCS, pages 284–298, Paris,
France, February 21–23, 2005. Springer-Verlag, Berlin, Germany.
[17]

[Mar57] Harry M. Markowitz. The elimination form of the inverse and
its application to linear programming. Management Science,
3(3):255–269, 1957. [116]

[Mat93] Mitsuru Matsui. Linear cryptoanalysis method for DES cipher.
In Tor Helleseth, editor, EUROCRYPT’93, volume 765 of LNCS,
pages 386–397, Lofthus, Norway, May 23–27, 1993. Springer-
Verlag, Berlin, Germany. [273]

[Mat94a] Mitsuru Matsui. The first experimental cryptanalysis of the data
encryption standard. In Yvo Desmedt, editor, CRYPTO’94, vol-
ume 839 of LNCS, pages 1–11, Santa Barbara, CA, USA, Au-
gust 21–25, 1994. Springer-Verlag, Berlin, Germany. [273]

© 2009 by Taylor and Francis Group, LLC

484 Algorithmic Cryptanalysis

[Mat94b] Mitsuru Matsui. On correlation between the order of S-boxes
and the strength of DES. In Alfredo De Santis, editor, EURO-
CRYPT’94, volume 950 of LNCS, pages 366–375, Perugia, Italy,
May 9–12, 1994. Springer-Verlag, Berlin, Germany. [273]

[MG90] Miodrag J. Mihaljevic and Jovan Dj. Golic. A fast iterative al-
gorithm for a shift register initial state reconstruction given the
noisy output sequence. In Jennifer Seberry and Josef Pieprzyk,
editors, AUSCRYPT’90, volume 453 of LNCS, pages 165–175,
Sydney, Australia, January 8–11, 1990. Springer-Verlag, Berlin,
Germany. [380]

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of Lat-
tice Problems: A Cryptographic Perspective, volume 671 of The
Kluwer International Series in Engineering and Computer Sci-
ence. Kluwer Academic Publishers, 2002. [311]

[Mil04] Victor S. Miller. The Weil pairing, and its efficient calculation.
Journal of Cryptology, 17(4):235–261, September 2004. [431]

[Mon92] Peter L. Montgomery. A FFT Extension of the Elliptic Curve
Method of Factorization. PhD thesis, University of California,
Los Angeles, 1992. [236, 435]

[Mon95] Peter L. Montgomery. A block Lanczos algorithm for finding de-
pendencies over GF(2). In Louis C. Guillou and Jean-Jacques
Quisquater, editors, EUROCRYPT’95, volume 921 of LNCS,
pages 106–120, Saint-Malo, France, May 21–25, 1995. Springer-
Verlag, Berlin, Germany. [112]

[MP08] Stéphane Manuel and Thomas Peyrin. Collisions on SHA–0 in
one hour. In Kaisa Nyberg, editor, FSE 2008, volume 5086
of LNCS, pages 16–35, Lausanne, Switzerland, February 10–13,
2008. Springer-Verlag, Berlin, Germany. [182]

[MS89] Willi Meier and Othmar Staffelbach. Fast correlation attacks
on certain stream ciphers. Journal of Cryptology, 1(3):159–176,
1989. [380]

[MSK98] Shiho Moriai, Takeshi Shimoyama, and Toshinobu Kaneko.
Higher order differential attak of CAST cipher. In Serge Vau-
denay, editor, FSE’98, volume 1372 of LNCS, pages 17–31, Paris,
France, March 23–25, 1998. Springer-Verlag, Berlin, Germany.
[392]

[MT09] Ravi Montenegro and Prasad Tetali. How long does it take to
catch a wild kangaroo? In Michael Mitzenmacher, editor, 41st
ACM STOC, pages 1–10, Bethesda, Maryland, USA, May 31–
June 2 2009. ACM Press. [238]

© 2009 by Taylor and Francis Group, LLC

References 485

[MvOV97] Aldred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone,
editors. Handbook of Applied Cryptography. CRC Press LLC,
Boca Raton, Florida, 1997. [3]

[MY92] Mitsuru Matsui and Atsuhiro Yamagishi. A new method for
known plaintext attack of FEAL cipher. In Rainer A. Ruep-
pel, editor, EUROCRYPT’92, volume 658 of LNCS, pages 81–
91, Balatonfüred, Hungary, May 24–28, 1992. Springer-Verlag,
Berlin, Germany. [273]

[Niv04] G. Nivasch. Cycle detection using a stack. Information Processing
Letter, 90(3):135–140, 2004. [229, 242]

[NP99] Wim Nevelsteen and Bart Preneel. Software performance of
universal hash functions. In Jacques Stern, editor, EURO-
CRYPT’99, volume 1592 of LNCS, pages 24–41, Prague, Czech
Republic, May 2–6, 1999. Springer-Verlag, Berlin, Germany. [8]

[NS05] Phong Q. Nguyen and Damien Stehlé. Floating-point LLL re-
visited. In Ronald Cramer, editor, EUROCRYPT 2005, volume
3494 of LNCS, pages 215–233, Aarhus, Denmark, May 22–26,
2005. Springer-Verlag, Berlin, Germany. [326]

[Odl85] Andrew M. Odlyzko. Discrete logarithms in finite fields and their
cryptographic significance. In Thomas Beth, Norbert Cot, and
Ingemar Ingemarsson, editors, EUROCRYPT’84, volume 209 of
LNCS, pages 224–314, Paris, France, April 9–11, 1985. Springer-
Verlag, Berlin, Germany. [113]

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks
and countermeasures: The case of AES. In David Pointcheval,
editor, CT-RSA 2006, volume 3860 of LNCS, pages 1–20, San
Jose, CA, USA, February 13–17, 2006. Springer-Verlag, Berlin,
Germany. [92]

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In Jacques Stern, editor, EURO-
CRYPT’99, volume 1592 of LNCS, pages 223–238, Prague, Czech
Republic, May 2–6, 1999. Springer-Verlag, Berlin, Germany. [64]

[Pan84] Victor Pan. How to multiply matrix faster, volume 179 of LNCS.
Springer-Verlag, Berlin, Germany, 1984. [89]

[Pat96] Jacques Patarin. Hidden fields equations (HFE) and isomor-
phisms of polynomials (IP): Two new families of asymmetric al-
gorithms. In Ueli M. Maurer, editor, EUROCRYPT’96, volume
1070 of LNCS, pages 33–48, Saragossa, Spain, May 12–16, 1996.
Springer-Verlag, Berlin, Germany. [362, 363]

© 2009 by Taylor and Francis Group, LLC

486 Algorithmic Cryptanalysis

[PGF98] Daniel Panario, Xavier Gourdon, and Philippe Flajolet. An ana-
lytic approach to smooth polynomials over finite fields. In Third
Algorithmic Number Theory Symposium (ANTS), volume 1423 of
LNCS, pages 226–236. Springer-Verlag, Berlin, Germany, 1998.
[444]

[PK95] Walter T. Penzhorn and G. J. Kuhn. Computation of low-
weight parity checks for correlation attacks on stream ciphers.
In Cryptography and Coding – 5th IMA Conference, volume 1025
of LNCS, pages 74–83. Springer-Verlag, Berlin, Germany, 1995.
[386]

[Pol75] John M. Pollard. A Monte Carlo method for factorization. BIT
Numerical Mathematics, 15(3):331–334, 1975. [233]

[Pom82] Carl Pomerance. Analysis and comparison of some integer fac-
toring methods. In Jr. Hendrik W. Lenstra and Robert Tijde-
man, editors, Computational methods in number theory – Part I,
volume 154 of Mathematical centre tracts, pages 8–139. Mathe-
matisch Centrum, Amsterdam, 1982. [141]

[Pri81] Paul Pritchard. A sublinear additive sieve for finding prime num-
bers. Communications of the ACM, 24(1):18–23, 1981. [128, 133]

[Pri83] Paul Pritchard. Fast compact prime number sieves (among oth-
ers). Journal of algorithms, 4:332–344, 1983. [133]

[QD90] Jean-Jacques Quisquater and Jean-Paul Delescaille. How easy is
collision search. New results and applications to DES. In Gilles
Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 408–
413, Santa Barbara, CA, USA, August 20–24, 1990. Springer-
Verlag, Berlin, Germany. [229, 244]

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz.
OCB: A block-cipher mode of operation for efficient authenti-
cated encryption. In ACM CCS 01, pages 196–205, Philadelphia,
PA, USA, November 5–8, 2001. ACM Press. [15, 17]

[RH07] Sondre Rønjom and Tor Helleseth. A new attack on the filter gen-
erator. IEEE Transactions on Information Theory, 53(5):1752–
1758, 2007. [388, 389]

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis
reduction algorithms. Theoretical Computer Science, 53:201–224,
1987. [331]

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for
smart cards. In Gilles Brassard, editor, CRYPTO’89, volume 435
of LNCS, pages 239–252, Santa Barbara, CA, USA, August 20–
24, 1990. Springer-Verlag, Berlin, Germany. [67]

© 2009 by Taylor and Francis Group, LLC

References 487

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart
cards. Journal of Cryptology, 4(3):161–174, 1991. [10]

[Sch93] Oliver Schirokauer. Discrete logarithms and local units. Phil.
Trans. R. Soc. Lond. A 345, pages 409–423, 1993. [461]

[Sch96] Bruce Schneier. Applied Cryptography (Second Edition). John
Wiley & Sons, 1996. [3]

[SE94] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction:
Improved practical algorithms and solving subset sum problems.
Math. Program., 66:181–199, 1994. [326, 328]

[Sha49] Claude E. Shannon. Communication theory of secrecy systems.
Bell System Technical Journal, 28:656–715, 1949. [4, 337]

[Sie84] T. Siegenthaler. Correlation-immunity of nonlinear combining
functions for cryptographic applications. IEEE Trans. on Infor-
mation Theory, IT-30:776–780, 1984. [378]

[Sie85] T. Siegenthaler. Decrypting a class of stream ciphers using ci-
phertext only. IEEE Trans. Comput., C-34:81–85, 1985. [378]

[Sil86] Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume
106 of Graduate Texts in Mathematics. Springer, New York, 1986.
[417, 424, 431]

[Sim82] Gustavus J. Simmons. A system for point-of-sale or access
user authentication and identification. In Allen Gersho, editor,
CRYPTO’81, volume ECE Report 82-04, pages 31–37, Santa
Barbara, CA, USA, 1982. U.C. Santa Barbara, Dept. of Elec.
and Computer Eng. [8]

[Sim85] Gustavus J. Simmons. Authentication theory/coding theory. In
G. R. Blakley and David Chaum, editors, CRYPTO’84, volume
196 of LNCS, pages 411–431, Santa Barbara, CA, USA, Au-
gust 19–23, 1985. Springer-Verlag, Berlin, Germany. [8]

[Sim86] Gustavus J. Simmons. The practice of authentication. In Franz
Pichler, editor, EUROCRYPT’85, volume 219 of LNCS, pages
261–272, Linz, Austria, April 1986. Springer-Verlag, Berlin, Ger-
many. [8]

[Sor98] Jonathan P. Sorenson. Trading time for space in prime number
sieves. In Third Algorithmic Number Theory Symposium (ANTS),
volume 1423 of LNCS, pages 179–195. Springer-Verlag, Berlin,
Germany, 1998. [133]

[SS81] Richard Schroeppel and Adi Shamir. A T = O(2n/2), S =
O(2n/4) algorithm for certain NP-complete problems. SIAM
Journal on Computing, 10(3):456–464, 1981. [251]

© 2009 by Taylor and Francis Group, LLC

488 Algorithmic Cryptanalysis

[Sti02] Douglas Stinson. Cryptography: Theory and Practice (Third Edi-
tion). CRC Press LLC, Boca Raton, Florida, 2002. [3]

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numer.
Math., 13:354–356, 1969. [80]

[TCG92] Anne Tardy-Corfdir and Henri Gilbert. A known plaintext at-
tack of FEAL-4 and FEAL-6. In Joan Feigenbaum, editor,
CRYPTO’91, volume 576 of LNCS, pages 172–181, Santa Bar-
bara, CA, USA, August 11–15, 1992. Springer-Verlag, Berlin,
Germany. [273]

[TSM94] Toshio Tokita, Tohru Sorimachi, and Mitsuru Matsui. Lin-
ear cryptanalysis of LOKI and s2DES. In Josef Pieprzyk and
Reihaneh Safavi-Naini, editors, ASIACRYPT’94, volume 917 of
LNCS, pages 293–303, Wollongong, Australia, November 28 –
December 1, 1994. Springer-Verlag, Berlin, Germany. [273]

[Val91] Brigitte Vallée. Gauss’ algorithm revisited. J. Algorithms, 12(4),
1991. [318]

[vW96] Paul C. van Oorschot and Michael J. Wiener. Improving im-
plementable meet-in-the-middle attacks by orders of magnitude.
In Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS,
pages 229–236, Santa Barbara, CA, USA, August 18–22, 1996.
Springer-Verlag, Berlin, Germany. [244]

[Wag99] David Wagner. The boomerang attack. In Lars R. Knudsen,
editor, FSE’99, volume 1636 of LNCS, pages 156–170, Rome,
Italy, March 24–26, 1999. Springer-Verlag, Berlin, Germany. [182]

[Wag02] David Wagner. A generalized birthday problem. In Moti Yung,
editor, CRYPTO 2002, volume 2442 of LNCS, pages 288–303,
Santa Barbara, CA, USA, August 18–22, 2002. Springer-Verlag,
Berlin, Germany. [264, 265]

[Was03] Lawrence C. Washington. Elliptic curves: number theory and
cryptography. CRC Press LLC, Boca Raton, Florida, 2003. [422]

[WC81] Mark N. Wegman and Larry Carter. New hash functions and their
use in authentication and set equality. Journal of Computer and
System Sciences, 22:265–279, 1981. [8]

[Wie90] Michael J. Wiener. Cryptanalysis of short RSA secret expo-
nents (abstract). In Jean-Jacques Quisquater and Joos Vande-
walle, editors, EUROCRYPT’89, volume 434 of LNCS, page 372,
Houthalen, Belgium, April 10–13, 1990. Springer-Verlag, Berlin,
Germany. [414]

[Wie04] Michael J. Wiener. The full cost of cryptanalytic attacks. Journal
of Cryptology, 17(2):105–124, March 2004. [5]

© 2009 by Taylor and Francis Group, LLC

References 489

[WYY05a] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Efficient
collision search attacks on SHA-0. In Victor Shoup, editor,
CRYPTO 2005, volume 3621 of LNCS, pages 1–16, Santa Bar-
bara, CA, USA, August 14–18, 2005. Springer-Verlag, Berlin,
Germany. [179, 182]

[WYY05b] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding colli-
sions in the full SHA-1. In Victor Shoup, editor, CRYPTO 2005,
volume 3621 of LNCS, pages 17–36, Santa Barbara, CA, USA,
August 14–18, 2005. Springer-Verlag, Berlin, Germany. [179, 182]

[XM88] Guo-Zhen Xiao and James L. Massey. A spectral characterization
of correlation-immune combining functions. IEEE Transactions
on Information Theory, 34(3):569–571, 1988. [275]

[Yuv79] Gideon Yuval. How to swindle Rabin. Cryptologia, 3:187–189,
1979. [243]

[ZF06] Bin Zhang and Dengguo Feng. Multi-pass fast correlation at-
tack on stream ciphers. In Eli Biham and Amr M. Youssef, edi-
tors, SAC 2006, volume 4356 of LNCS, pages 234–248, Montreal,
Canada, August 17–18, 2006. Springer-Verlag, Berlin, Germany.
[380]

[Zha05] Fuzhen Zhang, editor. The Schur Complement and Its Applica-
tions (Numerical Methods and Algorithms). Springer, New York,
2005. [94]

[Zhe97] Yuliang Zheng. Digital signcryption or how to achieve
cost(signature & encryption) < cost(signature) + cost(en-
cryption). In Burton S. Kaliski Jr., editor, CRYPTO’97, vol-
ume 1294 of LNCS, pages 165–179, Santa Barbara, CA, USA,
August 17–21, 1997. Springer-Verlag, Berlin, Germany. [20]

© 2009 by Taylor and Francis Group, LLC

Lists

List of Algorithms

2.1 Euclid’s greatest common divisor algorithm 28

2.2 Euclid’s extended algorithm 29

2.3 GCD of a list of numbers . 30

2.4 Stein’s binary greatest common divisor algorithm 32

2.5 Addition modulo N . 35

2.6 Subtraction modulo N . 35

2.7 Multiplication modulo N . 36

2.8 Multiplicative inverse modulo N 36

2.9 Exponentiation in Z/NZ, left-to-right version 36

2.10 Exponentiation in Z/NZ, right-to-left version 37

2.11 Shanks-Tonelli algorithm for square roots in Fp 40

2.12 Computation of Jacobi symbols 42

2.13 Stein’s greatest common divisor algorithm for polynomials . . 46

2.14 Berlekamp-Massey algorithm 56

2.15 Squarefree factorization of polynomials 58

2.16 Distinct degree factorization of a squarefree polynomial . . . 58

2.17 Final splitting of polynomials 60

3.1 Elementary square matrix multiplication 72

3.2 Strassen matrix multiplication (rounding up) 82

3.3 Strassen matrix multiplication (rounding down) 83

3.4 Triangularization of a linear system (simplified, incorrect) . 95

3.5 Backtracking to solve a triangular system 95

3.6 Triangularization of a linear system 97

3.7 Matrix inversion . 99

3.8 Triangularization of a possibly non-invertible system 101

3.9 Backtracking of a possibly non-invertible triangular system . 102

3.10 Hermite normal forms . 104

3.11 Lanczos’s algorithm over finite fields 109

491

© 2009 by Taylor and Francis Group, LLC

492 Algorithmic Cryptanalysis

4.1 Eratosthenes’s sieve . 124
4.2 Sieve of Atkin and Bernstein for primes ≡ 1 (mod 4) 134
4.3 Two-dimensional sieving for smooth numbers 139
4.4 Walking the multiples with polynomials 145
4.5 Walking the multiples with numbers 146
4.6 Basic line sieve . 149
6.1 Generating all collisions in a sorted list 193
6.2 Dichotomy search . 195
6.3 Bubble sort . 197
6.4 Find minimal element . 197
6.5 Selection sort . 198
6.6 Insertion sort . 199
6.7 Merge sort main procedure 200
6.8 Merge sort wrapper . 201
6.9 Quicksort . 202
6.10 Radix sort . 203
6.11 Heap sort . 205
6.12 Insertion in heap procedure 205
6.13 Count sort: Beating the sort lower bound 206
6.14 Collision search using hash tables 209
6.15 Avoiding cache misses with hash tables 211
6.16 Insertion in a binary search tree 214
6.17 Deletion in a binary search tree 215
6.18 Pohlig-Hellman discrete logarithm algorithm 218
6.19 Baby-step, giant-step discrete logarithm algorithm 219
7.1 Floyd’s cycle detection algorithm 225
7.2 Brent’s cycle detection algorithm 226
7.3 Algorithm for recovering a cycle’s start 228
7.4 Nivasch’s cycle detection algorithm 230
7.5 Pollard’s Rho factoring algorithm 235
8.1 Initialization of Shamir and Schroeppel algorithm 255
8.2 Get next knapsack sum with Shamir and Schroeppel algorithm 255
8.3 Generating all solutions to Equation (8.10) 259
8.4 Alternative option to Algorithm 8.3 260
9.1 Algorithm for computing differential characteristics 274
9.2 Algorithm for computing linear characteristics 275

© 2009 by Taylor and Francis Group, LLC

Lists 493

9.3 Walsh transform algorithm 276
9.4 Inverse Walsh transform algorithm 277
9.5 Algorithm for truncated differential characteristics 283
9.6 Moebius transform algorithm 286
9.7 Pre-Walsh transform encoding over Fp 291
9.8 Walsh transform algorithm over Fp 292
9.9 Moebius transform algorithm over Fp 295
9.10 Fast Fourier transform algorithm on N = 2n values 298
9.11 Core transform of extended Walsh over Fp 301
10.1 Gauss’s reduction algorithm 312
10.2 t-Gauss reduction algorithm 317
10.3 Gram-Schmidt algorithm . 320
10.4 LLL algorithm using rationals 322
10.5 Length reduction subalgorithm RED(i, j) 323
10.6 A basic short vector enumeration algorithm 329
10.7 Kannan’s HKZ reduction algorithm 331
11.1 Computation of normal form 349
11.2 Basic version of Buchberger’s algorithm 353
11.3 Reduction of a Gröbner basis 355
11.4 A basic linear algebra based Gröbner basis algorithm 358
12.1 Computing formal expression of LFSR outputs 384
14.1 Miller’s algorithm with double and add 432
14.2 Pollard’s p− 1 factoring algorithm 433
15.1 Compute number of smooth polynomials 466

List of Figures

1.1 Some classical encryption modes 7

2.1 Ordinary LFSR . 50
2.2 Galois LFSR . 51

3.1 MMX and SSE instructions 75
3.2 Winograd’s formulas for matrix multiplication 84
3.3 Performance of Strassen’s multiplication over F2 87
3.4 Performance of Strassen’s multiplication over Fp 91
3.5 Principles of cached memory in processors 92

© 2009 by Taylor and Francis Group, LLC

494 Algorithmic Cryptanalysis

3.6 Effect of a pivoting step . 96

4.1 Schematic picture of wheel factorization 127

4.2 Multiples of 7 in a wheel of perimeter 30 131

4.3 Set of points a+ bα divisible by (11, 5) 137

4.4 Gray codes . 143

4.5 Illustration of Algorithm 4.5 147

5.1 Propagation of differences in a local collision of SHA 170

7.1 Rho shape while iterating a random function 224

10.1 A 2-dimensional lattice with a basis 312

10.2 A reduced basis of the same lattice 313

10.3 Applying Gauss’s algorithm 314

10.4 Typical cases of short vectors in 2-dimensional lattices 316

10.5 Computing ~b∗3 from ~b3 . 321

10.6 An elementary reduction step of L3 in dimension 3 323

11.1 A sample algebraic system in two unknowns 342

12.1 Noisy LFSR (Binary Symmetric Channel) model 376

List of Programs

2.1 Representation of F232 with a Galois LFSR 51

3.1 Basic C code for matrix multiplication over F2 73

3.2 Matrix multiplication over F2 with compact encoding 74

3.3 Matrix multiplication using fast scalar product 76

3.4 Fast transposition of 32× 32 matrices over F2 78

3.5 Faster scalar product for multiplying of 32× 32 matrices . . . 79

3.6 C code for elementary 32n× 32n matrix multiplication over F2 86

3.7 C code for elementary matrix multiplication over Fp 88

3.8 C code for matrix mult. over Fp with fewer modular reductions 90

3.9 Inversion of 32× 32 matrix over F2 100

4.1 Basic C code for Eratosthenes’s sieve 126

4.2 Small memory code for Eratosthenes’s sieve 129

4.2 Small memory code for Eratosthenes’s sieve (continued) . . . 130

© 2009 by Taylor and Francis Group, LLC

Lists 495

4.3 Line sieving with two levels of cache 151

9.1 C code for Walsh transform 278

9.2 C code for Moebius transform 287

List of Tables

3.1 32× 32 Boolean matmul. on Intel Core 2 Duo at 2.4 GHz . . 80

3.2 Times for (32n)× (32n) Boolean matrix multiplication 86

5.1 DES initial permutation . 158

5.2 DES final permutation . 158

5.3 Permutation of the round function 159

5.4 Expansion of the round function 160

5.5 S-box S1 . 160

5.6 S-box S2 . 160

5.7 S-box S3 . 160

5.8 S-box S4 . 160

5.9 S-box S5 . 160

5.10 S-box S6 . 161

5.11 S-box S7 . 161

5.12 S-box S8 . 161

5.13 Permutation PC-1 of the key bits 162

5.14 Table PC-2 to extract Ki from Ci and Di 162

5.15 Definition of the round functions and constants 167

5.16 Possible expanded bit sequences for local collisions 172

5.17 Case by case behavior of MAJ(x, y, z) 175

5.18 Case by case behavior of XOR(x, y, z) 175

5.19 Case by case behavior of IF(x, y, z) 175

5.20 Case by case behavior of ADD(x, y, z) (carry bit on left) . . . 176

5.21 Interferences of overlapping local collisions 178

9.1 Timings on Intel Core 2 Duo at 2.4 GHz using gcc 4.3.2 . . . 278

12.1 Typical probabilities with binomial distributions 379

15.1 Equations (x+ u) = (y + v1) · (y + v2) as triples (u, v1, v2) . . 450

15.2 Equations (x+ u1) · (x+ u2) = (y + v) as triples (u1, u2, v) . 450

© 2009 by Taylor and Francis Group, LLC

496 Algorithmic Cryptanalysis

15.3 Equations a(x+u1) ·(x+u2) = (y+v1) ·(y+v2) from x+ay+b
represented by (a, b) � (u1, u2, v1, v2) 451

© 2009 by Taylor and Francis Group, LLC

	Cover Page
	Title Page
	ALGORITHMIC CRYPTANALYSIS
	Contents
	Preface
	Existing programs or libraries
	Stand-alone tools
	Libraries

	Chapter 1: A bird's-eye view of modern cryptography
	Part I: Background
	Chapter 1: A bird's-eye view of modern cryptography
	1.1 Preliminaries
	1.1.1 Typical cryptographic needs
	1.1.1.1 Secret key encryption
	1.1.1.2 Secret key authentication
	1.1.1.3 Public key encryption
	1.1.1.4 Public key signature

	1.2 Defining security in cryptography
	1.2.1 Distinguishers
	Distinguishing attacks against ECB encryption
	1.2.1.1 Allowed queries for distinguishers
	1.2.1.2 Three avors of distinguishers
	1.2.1.2.1 Find then guess distinguishers
	1.2.1.2.2 Left or right distinguishers
	1.2.1.2.3 Real or random distinguishers

	1.2.2 Integrity and signatures
	1.2.3 Authenticated encryption
	1.2.3.1 Authenticated encryption in the secret key setting
	1.2.3.1.1 Encrypt and MAC
	1.2.3.1.2 MAC then Encrypt
	1.2.3.1.3 Encrypt then MAC

	1.2.3.2 Authenticated encryption in the public key setting
	1.2.3.2.1 Sign then Encrypt
	1.2.3.2.2 Encrypt then Sign
	1.2.3.2.3 Signcryption

	1.2.4 Abstracting cryptographic primitives
	1.2.4.1 Blockciphers
	1.2.4.2 Hash functions

	Chapter 2: Elementary number theory and algebra background
	Chapter 2: Elementary number theory and algebra background
	2.1 Integers and rational numbers
	2.2 Greatest common divisors in Z
	2.2.1 Binary GCD algorithm
	2.2.2 Approximations using partial GCD computations
	2.2.2.1 Application to real numbers
	2.2.2.2 Alternative approaches for approximations

	2.3 Modular arithmetic
	2.3.1 Basic algorithms for modular arithmetic
	2.3.1.1 Invertible elements in Z/NZ

	2.3.2 Primality testing
	2.3.2.1 Computing square roots modulo primes
	2.3.2.2 Jacobi symbols

	2.3.3 Specific aspects of the composite case
	2.3.3.1 Square roots and factoring from phi(N)

	2.4 Univariate polynomials and rational fractions
	2.4.1 Greatest common divisors and modular arithmetic
	2.4.2 Derivative of polynomials

	2.5 Finite fields
	2.5.1 The general case
	2.5.2 The special case of F2n
	2.5.2.1 Representation by LFSRs
	2.5.2.1.1 Berlekamp-Massey algorithm

	2.5.3 Solving univariate polynomial equations

	2.6 Vector spaces and linear maps
	2.7 The RSA and Diffie-Hellman cryptosystems
	2.7.1 RSA
	2.7.2 Diffie-Hellman key exchange
	Non interactive Diffie-Hellman
	Zero-knowledge proofs of discrete logarithms
	Signature based on discrete logarithm

	Chapter 3: Linear algebra
	Part II: Algorithms
	Chapter 3: Linear algebra
	3.1 Introductory example: Multiplication of small matrices over F2
	3.2 Dense matrix multiplication
	3.2.1 Strassen's algorithm
	Practical aspects of Strassen's multiplication

	3.2.2 Asymptotically fast matrix multiplication
	3.2.3 Relation to other linear algebra problems

	3.3 Gaussian elimination algorithms
	3.3.1 Matrix inversion
	3.3.2 Non-invertible matrices
	3.3.3 Hermite normal forms
	3.3.3.1 Linear algebra modulo composites and prime powers

	3.4 Sparse linear algebra
	3.4.1 Iterative algorithms
	3.4.1.1 Lanczos's algorithm
	3.4.1.2 Wiedemann's algorithm
	3.4.1.2.1 Minimal polynomials of matrices
	3.4.1.2.2 Application to linear systems

	3.4.1.3 Block iterative algorithms

	3.4.2 Structured Gaussian elimination
	3.4.2.1 Odlyzko's method
	3.4.2.2 Markowitz pivoting
	3.4.2.2.1 Structure for efficient pivoting
	3.4.2.2.2 Structure for pivot selection

	3.4.2.3 A lightweight approach
	3.4.2.4 Graph method
	3.4.2.5 Final backtracking

	Exercises

	Chapter 4: Sieve algorithms
	Chapter 4: Sieve algorithms
	4.1 Introductory example: Eratosthenes's sieve
	4.1.1 Overview of Eratosthenes's sieve
	4.1.2 Improvements to Eratosthenes's sieve
	4.1.2.1 Wheel factorization
	4.1.2.2 Segmented sieve
	4.1.2.3 Fast practical Eratosthenes's sieve
	4.1.2.4 Fast asymptotic Eratosthenes's sieve

	4.1.3 Finding primes faster: Atkin and Bernstein's sieve
	4.1.3.1 Further improvements of Atkin and Bernstein's sieve

	4.2 Sieving for smooth composites
	4.2.1 General setting
	4.2.1.1 Smoothness
	4.2.1.2 Basic Lattice Algorithm
	4.2.1.2.1 Walking the multiples
	4.2.1.2.2 Speeding up the approach
	4.2.1.2.3 Checking for smoothness
	4.2.1.2.4 Working with smaller arrays

	4.2.1.3 The case of polynomials over F2
	4.2.1.4 The case of numbers
	4.2.1.5 The case of polynomials in odd characteristic

	4.2.2 Advanced sieving approaches
	4.2.2.1 Line sieving
	4.2.2.2 Special-q lattice sieving

	4.2.3 Sieving without sieving

	Exercises

	Chapter 5: Brute force cryptanalysis
	Chapter 5: Brute force cryptanalysis
	5.1 Introductory example: Dictionary attacks
	5.2 Brute force and the DES algorithm
	5.2.1 The DES algorithm
	5.2.1.1 Round key expansion

	5.2.2 Brute force on DES

	5.3 Brute force as a security mechanism
	5.4 Brute force steps in advanced cryptanalysis
	5.4.1 Description of the SHA hash function family
	5.4.1.1 Security properties of the Merkle-Damgard construction
	5.4.1.2 Compression function of SHA

	5.4.2 A linear model of SHA-0
	5.4.2.1 Local collisions in linearized SHA-0
	5.4.2.2 Combining local collisions with the message expansion

	5.4.3 Adding non-linearity
	5.4.3.1 Propagation of changes in SHA-0
	5.4.3.1.1 Superposing several local collisions

	5.4.4 Searching for collision instances
	5.4.4.1 Early abort
	5.4.4.2 Partial backtrack
	5.4.4.3 Neutral bits and message modifications
	Boomerang attacks
	Message modifications

	5.5 Brute force and parallel computers
	Exercises

	Chapter 6: The birthday paradox: Sorting or not?
	Chapter 6: The birthday paradox: Sorting or not?
	6.1 Introductory example: Birthday attacks on modes of operation
	6.1.1 Security of CBC encryption and CBC-MAC
	6.1.1.1 Birthday attacks on CBC encryption and CBC-MAC
	6.1.1.2 Birthday attacks and the counter mode

	6.2 Analysis of birthday paradox bounds
	6.2.1 Generalizations

	6.3 Finding collisions
	6.3.1 Sort algorithms
	6.3.1.1 Quadratic algorithms for sorting
	6.3.1.1.1 Bubble sort
	6.3.1.1.2 Selection sort
	6.3.1.1.3 Insertion sort

	6.3.1.2 Fast algorithms for sorting
	6.3.1.2.1 Merge sort
	6.3.1.2.2 Quicksort sort
	6.3.1.2.3 Radix sort
	6.3.1.2.4 Heap sort

	6.3.1.3 Optimality of sort algorithms and beating the bound
	6.3.1.4 Sort algorithms and stability

	6.3.2 Hash tables
	6.3.2.1 Hash tables and cache misses

	6.3.3 Binary trees
	6.3.3.1 Detailed description of basic binary search trees

	6.4 Application to discrete logarithms in generic groups
	6.4.1 Pohlig-Hellman algorithm
	6.4.2 Baby-step, giant-step algorithm

	Exercises

	Chapter 7: Birthday-based algorithms for functions
	Chapter 7: Birthday-based algorithms for functions
	7.1 Algorithmic aspects
	7.1.1 Floyd's cycle finding algorithm
	7.1.2 Brent's cycle finding algorithm
	7.1.3 Finding the cycle's start
	7.1.3.1 Dichotomy search
	7.1.3.2 Direct search

	7.1.4 Value-dependent cycle finding
	7.1.4.1 Nivasch and the cycle's start

	7.2 Analysis of random functions
	7.2.1 Global properties
	7.2.2 Local properties
	7.2.3 Extremal properties

	7.3 Number-theoretic applications
	7.3.1 Pollard's Rho factoring algorithm
	7.3.2 Pollard's Rho discrete logarithm algorithm
	7.3.3 Pollard's kangaroos

	7.4 A direct cryptographic application in the context of blockwise security
	7.4.1 Blockwise security of CBC encryption
	7.4.2 CBC encryption beyond the birthday bound
	7.4.3 Delayed CBC beyond the birthday bound
	7.4.3.1 Floyd's algorithm
	7.4.3.2 Brent's algorithm
	7.4.3.3 Nivasch's algorithm

	7.5 Collisions in hash functions
	7.5.1 Collisions between meaningful messages
	7.5.2 Parallelizable collision search
	7.5.2.1 Looking for many collisions

	7.6 Hellman's time memory tradeoff
	7.6.1 Simplified case
	7.6.2 General case

	Exercises

	Chapter 8: Birthday attacks through quadrisection
	Chapter 8: Birthday attacks through quadrisection
	8.1 Introductory example: Subset sum problems
	8.1.1 Preliminaries
	8.1.2 The algorithm of Shamir and Schroeppel

	8.2 General setting for reduced memory birthday attacks
	8.2.1 Xoring bit strings
	8.2.2 Generalization to different groups
	8.2.2.1 Badly presented groups

	8.2.3 Working with more lists

	8.3 Extensions of the technique
	8.3.1 Multiple targets
	8.3.2 Wagner's extension
	8.3.3 Related open problems
	8.3.3.1 An incremental improvement

	8.4 Some direct applications
	8.4.1 Noisy Chinese remainder reconstruction
	8.4.2 Plain RSA and plain ElGamal encryptions
	8.4.3 Birthday attack on plain RSA
	8.4.4 Birthday attack on plain ElGamal

	Exercises

	Chapter 9: Fourier and Hadamard-Walsh transforms
	Chapter 9: Fourier and Hadamard-Walsh transforms
	9.1 Introductory example: Studying S-boxes
	9.1.1 Definitions, notations and basic algorithms
	9.1.2 Fast linear characteristics using the Walsh transform
	9.1.2.1 Basic implementation of the Walsh transform

	9.1.3 Link between Walsh transforms and differential characteristics
	9.1.3.1 Differential characteristics for general S-boxes
	9.1.3.1.1 Theoretical approach
	9.1.3.1.2 Practical Variant

	9.1.4 Truncated differential characteristics

	9.2 Algebraic normal forms of Boolean functions
	9.3 Goldreich-Levin theorem
	9.4 Generalization of the Walsh transform to Fp
	9.4.1 Complexity analysis
	9.4.2 Generalization of the Moebius transform to Fp

	9.5 Fast Fourier transforms
	9.5.1 Cooley-Tukey algorithm
	9.5.1.1 Multiplication of polynomials
	9.5.1.1.1 Convolution product

	9.5.2 Rader's algorithm
	9.5.2.1 Application to Walsh transform over Fp

	9.5.3 Arbitrary finite abelian groups
	9.5.3.1 Link with the previous cases

	Exercises

	Chapter 10: Lattice reduction
	Chapter 10: Lattice reduction
	10.1 Definitions
	10.2 Introductory example: Gauss reduction
	10.2.1 Complexity analysis

	10.3 Higher dimensions
	10.3.1 Gram-Schmidt orthogonalization
	10.3.2 Lenstra-Lenstra-Lovász algorithm
	Complexity of the L3 algorithm
	Properties of LLL-reduced bases

	10.4 Shortest vectors and improved lattice reduction
	10.4.1 Enumeration algorithms for the shortest vector
	10.4.2 Using shortest vectors to improve lattice reduction
	10.4.2.1 Schnorr's block reduction

	10.5 Dual and orthogonal lattices
	10.5.1 Dual of a lattice
	10.5.2 Orthogonal of a lattice

	Exercises

	Chapter 11: Polynomial systems and Gröbner base computations
	Chapter 11: Polynomial systems and Gröbner base computations
	11.1 General framework
	11.2 Bivariate systems of equations
	11.2.1 Resultants of univariate polynomials
	11.2.2 Application of resultants to bivariate systems
	11.2.2.1 Using resultants with more variables

	11.3 Definitions: Multivariate ideals, monomial orderings and Gröbner bases
	11.3.1 A simple example: Monomial ideals
	11.3.2 General case: Gröbner bases
	11.3.3 Computing roots with Gröbner bases
	11.3.3.1 The case of incompatible systems
	11.3.3.2 The case of dimension 0
	11.3.3.3 The case of higher dimension

	11.3.4 Homogeneous versus affine algebraic systems

	11.4 Buchberger algorithm
	11.5 Macaulay's matrices
	11.6 Faugère's algorithms
	11.6.1 The F4 approach
	11.6.2 The F5 approach
	11.6.3 The specific case of F2
	11.6.4 Choosing and changing monomial ordering for Gröbner bases
	11.6.4.1 A simplified variant of FGLM

	11.7 Algebraic attacks on multivariate cryptography
	11.7.1 The HFE cryptosystem
	11.7.2 Experimental Gröbner basis attack
	11.7.3 Theoretical explanation
	11.7.4 Direct sparse approach on Macaulay's matrix

	11.8 On the complexity of Gröbner bases computation
	Exercises

	Chapter 12: Attacks on stream ciphers
	Part III: Applications
	Chapter 12: Attacks on stream ciphers
	12.1 LFSR-based keystream generators
	12.2 Correlation attacks
	12.2.1 Noisy LFSR model
	12.2.2 Maximum likelihood decoding
	12.2.2.1 Necessary amount of keystream for correlation attacks

	12.2.3 Fast correlation attacks
	12.2.3.1 Binary symmetric channel with repetitions
	12.2.3.2 A basic attack on LFSRs

	12.2.4 Algorithmic aspects of fast correlation attacks
	12.2.4.1 Computing parity checks
	12.2.4.2 Improving the basic attack

	12.3 Algebraic attacks
	12.3.1 Predicting an annihilator polynomial

	12.4 Extension to some non-linear shift registers
	12.5 The cube attack
	12.5.1 Basic scenario for the cube method

	12.6 Time memory data tradeoffs
	Exercises

	Chapter 13: Lattice-based cryptanalysis
	Chapter 13: Lattice-based cryptanalysis
	13.1 Direct attacks using lattice reduction
	13.1.1 Dependence relations with small coefficients
	13.1.1.1 Combinatorial properties
	13.1.1.2 Lattice reduction based search for short relations
	13.1.1.3 Generalization to approximate relations
	13.1.1.4 Modular relations

	13.1.2 Some applications of short dependence relations
	13.1.2.1 Knapsack problems
	13.1.2.2 Polynomial relations
	13.1.2.3 NTRU lattices
	13.1.2.4 Cryptanalysis of Damgård's hash function
	13.1.2.4.1 The basic strategy

	13.2 Coppersmith's small roots attacks
	13.2.1 Univariate modular polynomials
	13.2.1.1 Howgrave-Graham's variation
	13.2.1.1.1 Properties of the lattice of Howgrave-Graham

	13.2.1.2 Coppersmith's original method

	13.2.2 Bivariate polynomials
	13.2.2.1 Coppersmith's algorithm with more variables

	13.2.3 Extension to rational roots
	13.2.4 Security of RSA with small decryption exponent

	Exercises

	Chapter 14: Elliptic curves and pairings
	Chapter 14: Elliptic curves and pairings
	14.1 Introduction to elliptic curves
	14.1.1 The group structure of elliptic curves
	14.1.1.1 Divisors
	14.1.1.2 Functions
	14.1.1.3 Principal divisors and the group structure

	14.1.2 Double and add method on elliptic curves
	14.1.3 Number of points on elliptic curves

	14.2 The Weil pairing
	14.2.1 Weil's reciprocity law
	14.2.2 The Weil pairing on l-torsion points
	14.2.2.1 Miller's algorithm for the Weil pairing

	14.3 The elliptic curve factoring method
	14.3.1 Pollard's p–1 factoring
	14.3.2 Elliptic curve factoring
	14.3.2.1 Complexity analysis

	Exercises

	Chapter 15: Index calculus algorithms
	Chapter 15: Index calculus algorithms
	15.1 Introduction to index calculus
	15.2 A simple finite field example
	15.2.1 Overview
	15.2.1.1 Individual logarithms
	15.2.1.2 Complexity analysis

	15.2.2 A toy example

	15.3 Generalization to finite fields with small enough characteristic
	15.3.1 Overview of the regular function field sieve

	15.4 Introduction to the number field sieve
	15.4.1 Factoring with the quadratic sieve
	15.4.2 Discrete logarithms with the Gaussian integer method
	15.4.2.1 Obstructions to the number field sieve

	15.4.3 Constructing number �eld sieve polynomials
	15.4.3.1 General setting
	15.4.3.1.1 The special number field sieve

	15.4.3.2 Base m construction

	15.5 Smoothness probabilities
	15.5.1 Computing smoothness probabilities for polynomials
	15.5.2 Asymptotic lower bound on the smoothness probability
	15.5.3 Smoothness probabilities for integers

	Exercises

	References
	References

	Lists
	Lists
	List of Algorithms
	List of Figures
	List of Programs
	List of Tables

