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ABSTRACT
Address-space randomization is a technique used to fortify
systems against bu�er over
ow attacks. The idea is to in-
troduce arti�cial diversity by randomizing the memory lo-
cation of certain system components. This mechanism is
available for both Linux (via PaX ASLR) and OpenBSD.
We study the e�ectiveness of address-space randomization
and �nd that its utility on 32-bit architectures is limited by
the number of bits available for address randomization. In
particular, we demonstrate a derandomization attack that
will convert any standard bu�er-over
ow exploit into an ex-
ploit that works against systems protected by address-space
randomization. The resulting exploit is as e�ective as the
original exploit, although it takes a little longer to compro-
mise a target machine: on average 216 seconds to compro-
mise Apache running on a Linux PaX ASLR system. The
attack does not require running code on the stack.
We also explore various ways of strengthening address-

space randomization and point out weaknesses in each. Sur-
prisingly, increasing the frequency of re-randomizations adds
at most 1 bit of security. Furthermore, compile-time ran-
domization appears to be more e�ective than runtime ran-
domization. We conclude that, on 32-bit architectures, the
only bene�t of PaX-like address-space randomization is a
small slowdown in worm propagation speed. The cost of
randomization is extra complexity in system support.
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1. INTRODUCTION
Randomizing the memory-address-space layout of soft-

ware has recently garnered great interest as a means of di-
versifying the monoculture of software [19, 18, 26, 7]. It
is widely believed that randomizing the address-space lay-
out of a software program prevents attackers from using the
same exploit code e�ectively against all instantiations of the
program containing the same 
aw. The attacker must ei-
ther craft a speci�c exploit for each instance of a random-
ized program or perform brute force attacks to guess the
address-space layout. Brute force attacks are supposedly
thwarted by constantly randomizing the address-space lay-
out each time the program is restarted. In particular, this
technique seems to hold great promise in preventing the ex-
ponential propagation of worms that scan the Internet and
compromise hosts using a hard-coded attack [11, 31].
In this paper, we explore the e�ectiveness of address-

space randomization in preventing an attacker from using
the same attack code to exploit the same 
aw in multiple
randomized instances of a single software program. In par-
ticular, we implement a novel version of a return-to-libc
attack on the Apache HTTP Server [3] on a machine run-
ning Linux with PaX Address Space Layout Randomization
(ASLR) and Write or Execute Only (W�X) pages.
Traditional return-to-libc exploits rely on knowledge of

addresses in both the stack and the (libc) text segments.
With PaX ASLR in place, such exploits must guess the seg-
ment o�sets from a search space of either 40 bits (if stack
and libc o�sets are guessed concurrently) or 25 bits (if se-
quentially). In contrast, our return-to-libc technique uses
addresses placed by the target program onto the stack. At-
tacks using our technique need only guess the libc text seg-
ment o�set, reducing the search space to an entirely prac-
tical 16 bits. While our speci�c attack uses only a single
entry-point in libc, the exploit technique is also applicable
to chained return-to-libc attacks.
Our implementation shows that bu�er over
ow attacks

(as used by, e.g., the Slammer worm [11]) are as e�ective on
code randomized by PaX ASLR as on non-randomized code.
Experimentally, our attack takes on the average 216 sec-
onds to obtain a remote shell. Brute force attacks, like our
attack, can be detected in practice, but reasonable counter-



measures are di�cult to design. Taking vulnerable machines
o�ine results in a denial of service attack, and leaving them
online while a �x is sought allows the vulnerability to be
exploited. The problem of detecting and managing a brute
force attack is especially exacerbated by the speed of our
attack. While PaX ASLR appears to provide a slowdown in
attack propagation, work done by Staniford et al. [31] sug-
gests that this slowdown may be inadequate for inhibiting
worm propagation.
Although our discussion is speci�c to PaX ASLR, the

attack is generic and applies to other address-space ran-
domization systems such as that in OpenBSD. The attack
also applies to any software program accessible locally or
through a network connection. Our attack demonstrates
what we call a derandomization attack ; derandomization
converts any standard bu�er-over
ow exploit into an ex-
ploit that works against systems protected by address-space
randomization. The resulting exploit is as e�ective as the
original, but slower. On the other hand, the slowdown is not
su�cient to prevent its being used in worms or in a targeted
attack.
In the second part of the paper, we explore and analyze

the e�ectiveness of more powerful randomization techniques
such as increasing the frequency of re-randomization and
also �ner grained randomizations. We show that subse-
quent re-randomizations (regardless of frequency) after the
initial address-space randomization improve security against
a brute force attack by at most a factor of 2. This result
suggests that it would be far more bene�cial to focus on
increasing the entropy in the address-space layout. Further-
more, this result shows that our brute force attacks are still
feasible against network servers that are restarted with dif-
ferent randomization upon crashing (unlike Apache). We
also analyze the e�ectiveness of crash detectors in mitigat-
ing such attacks.
Our analysis suggests that runtime address-space random-

ization is far less e�ective on 32-bit architectures than com-
monly believed. Compile-time address-space randomization
can be more e�ective than runtime randomization because
the address space can be randomized at a much �ner gran-
ularity at compile-time than runtime (e.g., by reordering
functions within libraries). We note that bu�er over
ow
mitigation techniques can prevent some attacks, including
the one we present in this paper. However, over
ow mitiga-
tion by itself without any address-space randomization also
defeats many of these attacks. Thus, the security provided
by over
ow mitigation is largely orthogonal to address-space
randomization.
We speculate that the most promising solution appears to

be upgrading to a 64-bit architecture. Randomization comes
at a cost: in both 32 and 64 bit architectures, randomized
executables are more di�cult to debug and support.

1.1 Related Work

Exploits. Bu�er over
ow exploits started with simple stack
smashing techniques where the return address of the current
stack frame is overwritten to point to injected code [1]. After
the easy stack smashing vulnerabilities were discovered and
exploited, a 
urry of new attacks emerged that exploited
over
ows in the heap [20], format string errors [28], integer
over
ows [35], and double-free() errors [2].

Countermeasures.Several techniques were developed to
counter stack smashing|StackGuard by Cowan et al. [14]
detects stack smashing attacks by placing canary values next
to the return address. StackShield by Vendicator [32] makes
a second copy of the return address to check against before
using it. These techniques are e�ective for reducing the
number of exploitable bu�er over
ows but does not com-
pletely remove the threat. For example, Bulba and Kil3r [8]
show how to bypass these bu�er over
ow defenses.
ProPolice by Etoh [16] extends the ideas behind Stack-

Guard by reordering local variables and function arguments,
and placing canaries in the stack. ProPolice also copies
function pointers to an area preceding local variable bu�ers.
ProPolice is packaged with the latest versions of OpenBSD.
PointGuard by Cowan et al. [13] prevents pointer corruption
by encrypting them while in memory and only decrypting
values before dereferencing.

W�X Pages and Return-to-libc.The techniques described
so far aim to stop attackers from seizing control of program
execution. A orthogonal technique called W�X nulli�es at-
tacks that inject and execute code in a process's address
space. W�X is based on the observation that most of the
exploits so far inject malicious code into a process's address
space and then circumvent program control to execute the
injected code. Under W�X, pages in the heap, stack, and
other memory segments are marked either writable (W) or
executable (X), but not both. StackPatch by Solar De-
signer [29] is a Linux kernel patch that makes the stack
non-executable. The latest versions of Linux (through the
PaX project [26]) and of OpenBSD contain implementations
of W�X. Our sample attack works on a system running PaX
with W�X.
With W�X memory pages, attackers cannot inject and

execute code of their own choosing. Instead, they must use
existing executable code|either the program's own code or
code in libraries loaded by the program. For example, an
attacker can overwrite the stack above the return address
of the current frame and then change the return address to
point to a function he wishes to call. When the function
in the current frame returns, program control 
ow is redi-
rected to the attacker's chosen function and the overwritten
portions of the stack are treated as arguments.
Traditionally, attackers have chosen to call functions in

the standard C-language library, libc, which is an attrac-
tive target because it is loaded into every Unix program and
encapsulates the system-call API by which programs access
such kernel services as forking child processes and commu-
nicating over network sockets. This class of attacks, orig-
inally suggested by Solar Designer [30], is therefore known
as \return-to-libc."
Implementations of W�X on CPUs whose memory-man-

agement units lack a per-page execute bit| for example,
current x86 chips| incur a signi�cant performance penalty.
Another defense against malicious code injection is ran-

domized instruction sets [6, 21]. On the other hand, ran-
domized instruction sets are ine�ective against return-to-
libc attacks for the same reasons as those given above for
W�X pages.

Address-Space Randomization.Observe that a \return-
to-libc" attack needs to know the virtual addresses of the
libc functions to be written into a function pointer or return



address. If the base address of the memory segment con-
taining libc is randomized, then the success rate of such an
attack signi�cantly decreases. This idea is implemented in
PaX as ASLR [27]. PaX ASLR randomizes the base address
of the stack, heap, code, and mmap()ed segments of ELF ex-
ecutables and dynamic libraries at load and link time. We
implemented our attack against a PaX hardened system and
will give a more detailed description of PaX in Sect. 2.1.
Previous projects have employed address randomization

as a security mechanism. Yarvin et al. [34] develop a low-
overhead RPCmechanism by placing bu�ers and executable-
but-unreadable stubs at random locations in the address
space, treating the addresses of these bu�ers and stubs as ca-
pabilities. Their analysis shows that a 32-bit address space
is insu�cient to keep processes from guessing such capabil-
ity addresses, but that a 64-bit address space is, assuming a
time penalty is assessed on bad guesses.
Bhatkar et al. [7] de�ne and discuss address obfuscation.

Their implementation randomizes the base address of the
stack, heap, and code segments and adds random padding
to stack frame and malloc() function calls. They imple-
mented a binary tool that rewrites executables and object
�les to randomize addresses. Randomizing addresses at link
and compilation time �xes the randomizations when the sys-
tem is built. This approach has the shortcoming of giv-
ing an attacker a �xed address-space layout that she can
probe repeatedly to garner information. Their solution to
this problem is periodically to \re-obfuscate" executables
and libraries| that is, periodically relink and recompile ex-
ecutables and libraries. As pointed out in their paper, this
solution interferes with host based intrusion detection sys-
tems based on �les' integrity checksums. Our brute force
attack works just as well on the published version of this
system because their published implementation only ran-
domizes the base address of libraries �a la PaX.
Xu et al. [33] designed a runtime randomization system

that does not require kernel changes, but is otherwise sim-
ilar to PaX. The primary di�erence between their system
and PaX is that their system randomizes the location of
the Global O�set Table (GOT) and patches the Procedu-
ral Linkage Table (PLT) accordingly. Our attack also works
against their system because: (1) their system uses 13 bits
of randomness (3 bits less than PaX), and (2) our attack
does not need to determine the location of the GOT.

2. BREAKING PAX ASLR
We brie
y review the design of PaX and Apache before

describing our attack and experimental results.

2.1 PaX ASLR Design
PaX applies ASLR to ELF binaries and dynamic libraries.

For the purposes of ASLR, a process's user address space
consists of three areas, called the executable, mapped, and
stack areas. The executable area contains the program's
executable code, initialized data, and uninitialized data; the
mapped area contains the heap, dynamic libraries, thread
stacks, and shared memory; and the stack area is the main
user stack.
ASLR randomizes these three areas separately, adding to

the base address of each one an o�set variable randomly
chosen when the process is created. For the Intel x86 ar-
chitecture, PaX ASLR provides 16, 16, and 24 bits of ran-
domness, respectively, in these memory areas. In particu-

lar, the mapped data o�set, called delta mmap, is limited to
16 bits of randomness because (1) altering bits 28 through
31 would limit the mmap() system call's ability to handle
large memory mappings, and (2) altering bits 0 through 11
would cause memory mapped pages not to be aligned on
page boundaries.
Our attack takes advantage of two characteristics of the

PaX ASLR system. First, because PaX ASLR randomizes
only the base addresses of the three memory areas, once
any of the three delta variables is leaked, an attacker can
�x the addresses of any memory location within the area
controlled by the variable. In particular, we are interested
in the delta mmap variable that determines the randomized
o�set of segments allocated by mmap(). As noted above,
delta mmap only contains 16 bits of randomness. Because
our return-to-libc technique does not need to guess any
stack addresses (unlike traditional return-to-libc attacks),
our attack only needs to brute force the small amount of
entropy in delta mmap. Our attack only requires a linear
search of the randomized address space. That is, our exploit
requires 216 = 65; 536 probes at worst and 32,768 probes on
the average, which is a relatively small number.
Second, in PaX each o�set variable is �xed throughout a

process's lifetime, including any processes that fork() from
a parent process. Many network daemons, speci�cally the
Apache web server, fork child processes to handle incoming
connections, so that determining the layout of any one of
these related processes reveals that layout for all of them.
Although this behavior on fork() is not a prerequisite for
our attack, we show in Sect. 3.2 that it halves the expected
time to success.

2.2 Return-to-libc Attack
We give a high level overview of the attack before describ-

ing its implementation in greater detail and giving experi-
mental data. We emphasize that although our discussion is
speci�c to PaX ASLR, the attack applies to other address-
space randomization systems such as that in OpenBSD.

2.2.1 Overview
We implemented our attack on the Apache web server

running on Linux with PaX ASLR and W�X pages. The
current version of the Apache server (1.3.29) has no known
over
ows, so we replicated a bu�er over
ow similar to one
discovered in the Oracle 9 PL/SQL Apache module [10, 22].
This Oracle hole can be exploited using a classic bu�er over-

ow attack|an attacker injects her own code by supply-
ing an arbitrarily long request to the web server that over-

ows an internal bu�er. Nevertheless, this attack fails in
an Apache server protected by PaX W�X. Instead, we ex-
ploit this hole using the return-to-libc technique discussed
in Sect. 1.1.
Our return-to-libc technique is non-standard. Chained

return-to-libc attacks generally rely on prior knowledge of
stack addresses. PaX randomizes 24 bits of stack base ad-
dresses (on x86), making these attacks infeasible. However,
PaX does not randomize the stack layout, which allows us
to locate a pointer to attacker supplied data on the stack.
Moreover, a randomized layout would provide no protection
against access to data in the top stack frame, and little pro-
tection against access to data in adjacent frames.
Our attack against Apache occurs in two steps. We �rst

determine the value of delta mmap using a brute force at-



top of stack (higher addresses)
...

ap getline() arguments
saved EIP
saved EBP

64 byte bu�er
...

bottom of stack (lower addresses)

Figure 1: Apache child process stack before probe

tack that pinpoints an address in libc. Once the delta mmap
value is obtained, we mount a return-to-libc attack to ob-
tain a shell.
First, the attack repeatedly over
ows the stack bu�er ex-

posed by the Oracle hole with guesses for the address of
the libc function usleep() in an attempt to return into
the usleep() function. An unsuccessful guess causes the
Apache child process to crash, and the parent process to
fork a new child in its place, with the same randomization
deltas. A successful exploit causes the connection to hang
for 16 seconds and gives enough information for us to de-
duce the value of delta mmap. Upon obtaining delta mmap,
we now know the location of all functions in libc, including
the system() function.1 With this information, we can now
mount a return-to-libc attack on the same bu�er exposed
by the Oracle hole to invoke the system() function.
Our attack searches for usleep() �rst only for conve-

nience; it could instead search directly for system() and
check periodically whether it has obtained a shell. Our at-
tack can therefore be mounted even if libc entry points
are independently randomized, a possibility we consider in
Sect. 3.3.2.

2.2.2 Implementation
We �rst describe the memory hole in the Oracle 9 PL/SQL

Apache module.

Oracle Buffer Overflow.We create a bu�er over
ow in
Apache similar to one found in Oracle 9 [10, 22]. Speci�cally,
we add the following lines to the function ap getline() in
http protocol.c:

char buf[64];
...

strcpy(buf,s); /* Overflow buffer */

Although the bu�er over
ow in the Oracle exploit is 1000
bytes long, we use a shorter bu�er for the sake of brevity.
In fact, a longer bu�er works to the attacker's advantage
because it gives more room to supply shell commands.

Precomputinglibc Addresses.In order to build the ex-
ploit, we must �rst determine the o�sets of the functions
system(), usleep(), and a ret instruction in the libc li-
brary. The o�sets are easily obtained using the system
objdump tool. With these o�sets, once the exploit deter-
mines the address of usleep(), we can deduce the value

1The system() function executes user-supplied commands
via the standard shell (usually /bin/sh).

top of stack (higher addresses)
...

0x01010101
0xDEADBEEF

guessed address of usleep()
0xDEADBEEF

64 byte bu�er, now �lled with A's
...

bottom of stack (lower addresses)

Figure 2: Stack after one probe

of delta mmap followed by the correct virtual addresses of
system() and ret, with the simple sum

address = 0x40000000+ o�set + delta mmap:

(Here 0x40000000 is the standard base address for memory
obtained with mmap() under Linux.)

Exploit Step 1.As mentioned in the overview, the �rst step
is to determine the value of delta mmap. We do this by re-
peatedly over
owing the stack bu�er exposed by the Oracle
hole with guesses for usleep()'s address in an attempt to
return into the usleep() function in libc. More speci�cally,
the brute force attack works as follows:

1. Iterate over all possible values for delta mmap starting
from 0 and ending at 65535.

2. For each value of delta mmap, compute the guess for
the randomized virtual address of usleep() from its
o�set.

3. Create the attack bu�er (described later) and send it
to the Apache web server.

4. If the connection closes immediately, continue with the
next value of delta mmap. If the connection hangs for
16 seconds, then the current guess for delta mmap is
correct.

The contents of the attack bu�er sent to Apache are best
described by illustrations of the Apache child process's stack
before and after over
owing the bu�er with the current
guess for usleep()'s address. Figure 1 shows the Apache
child process's stack before the attack is mounted and Fig-
ure 2 shows the same stack after one guess for the address
of usleep().
The saved return address of ap getline() (saved EIP)

is overwritten with the guessed address of the usleep()
function in the libc library, the saved EBP pointer is over-
written with usleep()'s return address 0xDEADBEEF, and
0x01010101 (decimal 16,843,009) is the argument passed to
usleep() (the sleep time in microseconds). Any shorter time
interval results in null bytes being included in the attack
bu�er.2 Note that the method for placing null bytes onto the
stack by Nergal [24] is infeasible because stack addresses are
strongly randomized. Finally, when ap getline() returns,
control passes to the guessed address of usleep(). If the

2Null bytes act as C string terminators, causing strcpy()
(our attack vector) to terminate before over
owing the entire
bu�er.
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Figure 3: Apache child process stack before over
ow

value of delta mmap (and hence the address of usleep())
is guessed correctly, Apache will hang for approximately
16 seconds and then terminate the connection. If the ad-
dress of usleep() is guessed incorrectly, the connection ter-
minates immediately. This di�erence in behavior tells us
when we have guessed the correct value of delta mmap.

Exploit Step 2.Once delta mmap has been determined, we
can compute the addresses of all other functions in libc with
certainty. The second step of the attack uses the same Ora-
cle bu�er over
ow hole to conduct a return-to-libc attack.
The composition of the attack bu�er sent to the Apache web
server is the critical component of step 2. Again, the con-
tents of the attack bu�er are best described by illustrations
of the Apache child process's stack before and after the step
2 attack. Figure 3 shows the Apache child process's stack
before the attack and Figure 4 shows the stack immediately
after the strcpy() call in ap getline() (the attack bu�er
has already been injected).
The �rst 64 bytes of the attack bu�er is �lled with the

shell command that we want system() to execute on a suc-
cessful exploit. The shell command is followed by a series
of pointers to ret instructions that serves as a \stack pop"
sequence. Recall that the ret instruction pops 4 bytes from
the stack into the EIP register, and program execution con-
tinues from the address now in EIP. Thus, the e�ect of this
sequence of rets is to pop a desired number of 32-bit words
o� the stack. Just above the pointers to ret instructions, the
attack bu�er contains the address of system(). The stack
pop sequence \eats up" the stack until it reaches a pointer
pointing into the original 64 byte bu�er, which serves as the
argument to the system() function. We �nd such a pointer
in the stack frame of ap getline()'s calling function.
After executing strcpy() on the exploited bu�er, Apache

returns into the sequence of ret instructions until it reaches
system(). Apache then executes the system() function with
the supplied commands. In our attack, the shell command
is \wget http://www.example.com/dropshell ; chmod +x
dropshell ; ./dropshell ;" where dropshell is a pro-
gram that listens on a speci�ed port and provides a remote
shell with the user id of the Apache process. Note that any
shell command can be executed.

2.2.3 Experiments
The brute force exploit was executed on a 2.4 GHz Pen-

tium 4 machine against a PaX ASLR (for Linux kernel ver-
sion 2.6.1) protected Apache server (version 1.3.29) running
on a Athlon 1.8 GHz machine. The two machines were con-
nected over a 100 Mbps network.
Each probe sent by our exploit program results in a to-

top of stack (higher addresses)
...

pointer into 64 byte bu�er
0xDEADBEEF

address of system()
address of ret instruction

...
address of ret instruction

0xDEADBEEF
64 byte bu�er (contains shell commands)

...
bottom of stack (lower addresses)

Figure 4: Stack after bu�er over
ow

tal of approximately 200 bytes of network tra�c, including
Ethernet, IP, and TCP headers. Therefore, our brute force
attack only sends a total of 12.8 MB of network data at
worst, and 6.4 MB of network data on expectation.
After running 10 trials, we obtained the following timing

measurements (in seconds) for our attack against the PaX
ASLR protected Apache server:

Average Max Min
216 810 29

The speed of our attack is limited by the number of child
processes Apache allows to run concurrently. We used the
default setting of 150 in our experiment.

2.3 Information Leakage Attacks
In the presence of information leakage, attacks can be

crafted that require fewer probes and are therefore more ef-
fective than our brute force attack in defeating randomized
layouts. For instance, Durden [15] shows how to obtain the
delta_mmap variable from the stack by retrieving the return
address of the main() function using a format string vulner-
ability. Durden also shows how to convert a special class of
bu�er over
ow vulnerabilities into a format string vulnera-
bility.
Not all over
ows, however, can be exploited to create a

format string bug. Furthermore, for a remote exploit, the
leaked information has to be conveyed back to the attacker
over the network, which may be di�cult when attacking
a network daemon. Note that the brute force attack de-
scribed in the previous section works against any bu�er over-

ows and does not make any assumptions about the network
server.

3. IMPROVEMENTS TO ADDRESS-SPACE
RANDOMIZATION ARCHITECTURE

Our attack on address-space randomization relied on sev-
eral characteristics of the implementation of PaX ASLR. In
particular, our attack exploited the low entropy (16 bits) of
PaX ASLR on 32-bit x86 processors, and the feature that
address-space layouts are randomized only at program load-
ing and do not change during the process lifetime. This sec-
tion explores the consequences of changing either of these
assumptions by moving to a 64-bit architecture or making
the randomization more frequent or more �ne-grained.



3.1 64-Bit Architectures
In case of Linux on 32-bit x86 machines, 16 of the 32 ad-

dress bits are available for randomization. As our results
show, 16 bits of address randomization can be defeated by
a brute force attack in a matter of minutes. Any 64-bit
machine, on the other hand, is unlikely to have fewer than
40 address bits available for randomization given that mem-
ory pages are usually between 4 kB and 4 MB in size. On-
line brute force attacks that need to guess at least 40 bits of
randomness can be ruled out as a threat, since an attack of
this magnitude is unlikely to go unnoticed. Although 64-bit
machines are now beginning to be more widely deployed, 32-
bit machines are likely to remain the most widely deployed
machines in the short and medium term. Furthermore, ap-
plications that run in 32-bit compatibility mode on a 64-bit
machine are no less vulnerable than when running on a 32-
bit machine.
Some proposed 64-bit systems implement a global virtual

address space, that is, all applications share a single 64-
bit address space [12]. Analyzing the e�ectiveness of ad-
dress randomization in these operating systems is beyond
the scope of this paper.

3.2 Randomization Frequency
PaX ASLR randomizes a process's memory segments only

at process creation. If we randomize the address space lay-
out of a process more frequently, we might naively expect
a signi�cant increase in security. However, we will demon-
strate that after the initial address space randomization,
periodic re-randomizing adds no more than 1 bit of secu-
rity against brute force attacks regardless of the frequency,
providing little extra security. This also shows that brute
force attacks are feasible even against non-forking network
daemons that crash on every probe. On the other hand, fre-
quent re-randomizations can mitigate the damage when the
layout of a �xed randomized address space is leaked through
other channels.
We analyze the security implications of increasing the fre-

quency of address-space randomization by considering two
brute force attack scenarios:

1. The address-space randomization is �xed during the
duration of an attack. For example, this scenario ap-
plies to our brute force attack against the current im-
plementation of PaX ASLR or in any situation where
the randomized address space is �xed at compile-time.

2. The address-space randomization changes with each
probe. It is pointless to re-randomize the address space
more than once between any two probes. Therefore,
this scenario represents the best re-randomization fre-
quency for a ASLR program. This scenario applies, for
example, to brute force attacks attacks against non-
forking servers protected by PaX ASLR that crash on
every probe; these servers are restarted each time with
a di�erent randomized address-space layout.

The brute force attacks in the two scenarios are di�erent.
In scenario 1, a brute force attack can linear search the ad-
dress space through its probes before launching the exploit
(exactly our attack in Sect. 2). In scenario 2, a brute force
attack guesses the layout of the address space randomly,
tailors the exploit to the guessed layout, and launches the
exploit.

We now analyze the expected number of probe attempts
for a brute force attack to succeed against a network server
in both scenarios. In each case, let n be the number of bits
of randomness that must be guessed to successfully mount
the attack, implying that there are 2n possibilities. Fur-
thermore, only 1 out of these 2n possibilities is correct. The
brute force attack succeeds once it has determined the cor-
rect state.

Scenario 1.In this scenario, the server has a �xed address-
space randomization throughout the attack. Since the ran-
domization is �xed, we can compute the expected number
of probes required by a brute force attack by viewing the
problem as a standard sampling without replacement prob-
lem. The probability that the brute force attack succeeds
only after taking exactly t probes is

2n � 1

2n
�
2n � 2

2n � 1
: : :

2n � t� 1

2n � t| {z }
Pr[�rst t�1 probes fail]

�
1

2n � t� 1
=

1

2n
;

where n is the number of bits of randomness in the address
space. Therefore, the expected number of probes required
for scenario 1 is

2nX
t=1

t �
1

2n
=

1

2n
�

2nX
t=1

t = (2n + 1)=2 � 2n�1:

Scenario 2.In this scenario, the server's address space is
re-randomized with every probe. Therefore, the expected
number of probes required by a brute force attack can be
computed by viewing the problem as a sampling with re-
placement problem. The probability that the brute force
attack succeeds only after taking exactly t probes is given
by the geometric random variable with p = 1=2n. The ex-
pected number of probes required is 1=p = 2n.

Conclusions.We can easily see that a brute force attack
in scenario 2 requires approximately 2n=2n�1 = 2 times as
many probes compared to scenario 1. Since scenario 2 repre-
sents the best possible frequency that an ASLR program can
do, we conclude that increasing the frequency of address-
space re-randomization is at best equivalent to increasing
the entropy of the address space by only 1 bit.
The di�erence between a forking server and a non-forking

server for the purposes of our brute force attack is that
for the forking server, the address-space randomization is
the same for all the probes, whereas the non-forking server
crashes and has a di�erent address-space randomization on
every probe. This di�erence is exactly that between scenar-
ios 1 and 2. Therefore, the brute force attack is also feasible
against non-forking servers if the address-space entropy is
low. For example, in the case of Apache protected by PaX
ASLR, we expect to perform 215 = 32; 768 probes before
�xing the value of delta mmap, whereas if Apache was a sin-
gle process event driven server that crashes on each probe,
the expected number of probes required doubles to a mere
216 = 65; 536.

3.3 Randomization Granularity
PaX ASLR only randomizes the o�set location of an en-

tire shared library. The following sections discuss the fea-
sibility of randomizing addresses at an even �ner granular-



ity. For example, in addition to randomizing segment base
addresses, we could also randomize function and variable
addresses within memory segments. Finer grained address
randomization can potentially stymie brute force attacks by
increasing the randomness in the address space. For ex-
ample, if the delta mmap variable in PaX ASLR contained
28 bits of randomness instead of 16 bits, then our brute
force attack would become infeasible. We divide our anal-
ysis by considering address randomization at both runtime
and compile-time.

3.3.1 Randomizing At Compile-Time
Beyond simple randomization of segments' base addresses,

the compiler and linker can be easily modi�ed to randomize
variable and function addresses within their segments, or to
introduce random padding into stack frames. Increasing the
granularity of address-space randomization at compile and
link time is easier than at the start of program execution
because source code contains more relocation information
than precompiled and prelinked program binaries.
Compile-time randomization was used by Bhatkar et al. [7]

to implement address randomization with a modi�ed com-
piler and linker. Unfortunately, their published implemen-
tation does not randomize more than the base addresses
of library and executable segments and therefore gives no
greater security than PaX ASLR against our derandomiza-
tion attack.
On the other hand, compile-time randomization is not

limited by the page granularity of the virtual memory sys-
tem. By placing entry points in a random order within a
library, a compiler can provide 10{12 additional bits of en-
tropy (depending on architecture). Since shared libraries are
by their nature shared, however, the location of entry points
within these libraries can be discovered by any user on the
system, or revealed by any compromised server running on
the same machine. Recompiling the standard libraries in
a Unix distribution is a lengthy and computation-intensive
process, and is unlikely to be undertaken frequently. How-
ever, some form of dynamic binary re-writing may be possi-
ble.

3.3.2 Randomizing at Runtime
Next we consider implementing �ner granularity random-

ization such as function reordering within a shared library
or executable at runtime.

Randomizing More than 16 Bits.Since at most 16 bits
of the available 32 bits are randomized by PaX ASLR and
other ASLR systems on 32 bit architectures, we examine
the possibility of increasing the number of randomized bits
at runtime. On typical systems, 12 of the 32 address bits
are page o�set bits, which cannot be randomized at runtime
without signi�cant modi�cation to the underlying virtual
memory system or memory management hardware. From
the remaining 20 bits, the PaX system randomizes only 16
bits. The top 4 bits are not randomized so as to prevent frag-
mentation of virtual address space. Since signi�cant mod-
i�cations to the virtual memory system are best avoided,
we see that at most 20 bits can be randomized. Given our
results for derandomizing 16 random bits, guessing 20 bits
would take roughly only 24 = 16 times longer, which is still
within the range of a practical attack.

Reordering Functions.At �rst glance, randomizing the
order in which individual functions appear within a library
or executable appears e�ective in preventing an attacker
from extending knowledge of the actual address of one func-
tion in a library into knowledge of every function address in
that library. Nevertheless, this technique does not make it
any more di�cult to guess a single function's address. Be-
cause our attack can be modi�ed so that it only needs to �nd
one function's address| that of the system() function|
this technique is ine�ective against such brute force attacks.
On the other hand, this technique is e�ective against return-
to-libc attacks that use multiple libc function calls, so it
is worth exploring the technical issues in implementing it.
The process of compiling and linking �xes many relation-

ships between runtime addresses. For example, in a stan-
dard shared library, the di�erence in the addresses of any
two given functions remains constant between library loads.
As a result, internal function calls within a shared library
may use direct relative jumps. Such relative jumps prevent
reordering of function addresses as part of dynamic linking
at runtime. By modifying the compiler and linker, we can
eliminate relative jumps at compile-time and defer resolu-
tion of o�sets until runtime dynamic linking, which allows
us to order functions arbitrarily or even load functions from
one library into arbitrary, non-contiguous portions of vir-
tual memory. The same applies to executables. Because
indirect jumps through pointers are more expensive than
direct relative jumps, these changes will exact a small run-
time performance penalty.
A naive implementation of function address randomiza-

tion runs into an additional problem: a page can only be
shared among processes if it has the same content in each.
Because functions are not generally page-aligned or an exact
multiple of a page in length, shu�ing them causes library
pages to di�er from one process to another. Thus, naively
shu�ing functions eliminates sharing, an important advan-
tage of shared libraries, with accompanying cost in time
and space. Fixing the problem is not di�cult, requiring
only clustering functions into page-size (or page-multiple)
groups, then shu�ing the groups instead of individual func-
tions. The result yields less diversity, because fewer (and
larger) units are shu�ed, but should perform much better.
Finally, regardless of how well functions are randomized,

code that needs to call these functions must be able to
locate them quickly. In modern ELF-based Unix-like sys-
tems, shared library functions are found by consulting the
Global O�set Table (GOT), an array of pointers initialized
by the runtime dynamic linker. Each dynamic object nor-
mally maintains its own GOT and refers to it via relative
o�sets �xed at link time. Shu�ing functions changes relative
o�sets, rendering this simple approach untenable. Thus, we
need some new way to �nd shared library functions, either
one based on the GOT or an entirely new technique.
Any acceptable replacement or �x for the GOT must sat-

isfy several constraints. Lookups must be fast, because func-
tion calls are common and with shu�ing almost every func-
tion call requires a lookup (without shu�ing, only inter-
library calls require lookups). Lookups must require little
code because they must be inlined (otherwise we need a
way to �nd the code to do a lookup, which is a recursive
instance of our problem). The GOT replacement must not
break sharing of code pages, because of the associated mem-
ory cost and cache penalties. Finally, the GOT replacement



must not place data or code in �xed or easily calculated
memory locations or replicate data so many times that it
becomes easy to locate.
We have not found any solution that satis�es all of these

constraints. If we discard the concept of a GOT entirely and
use the dynamic loader to �x up addresses in objects at load
time, we also prevent sharing code pages. If we make multi-
ple copies of the GOT in virtual memory, positioning one at
a �xed relative o�set to each code page, the numerous copies
substantially increase an attacker's chance of locating a copy
via random probing. If we reserve a register for locating the
current library's GOT, we are likely to cause problems due to
register scarcity on the x86, although we could use the frame
pointer register (EBP) at the cost of making code di�cult to
debug. (Moreover, each library must manage its own GOT,
so the value in the register must change and be restored in
inter-library calls.) All other solutions we have considered
are similarly problematic. Designing a linking architecture
that facilitates function shu�ing in shared code pages e�-
ciently and securely is an open problem and a direction for
future research.
We have seen that, by randomizing segment o�sets, PaX

ASLR provides approximately 16 bits of entropy against
brute force attack, in either forking or non-forking servers.
Designing a runtime randomization system that randomizes
with page granularity but maintains �delity to the tradi-
tional Unix dynamic-linking system is nontrivial. Also, re-
randomization of a running C program is not feasible; and
if it were feasible, such a technique would also not deliver
additional entropy. Thus, on 32-bit systems, runtime ran-
domization cannot provide more than 16{20 bits of entropy.

3.4 Monitoring and Catching Errors
The PaX developers suggest that ASLR be combined with

\a crash detection and reaction mechanism" [27], which we
call a watcher. An attacker who attempts to discover ad-
dresses within ASLR-protected executables will, in the pro-
cess, trigger segmentation violations through his inevitably
incorrect guesses. The watcher can detect these segmenta-
tion violations and take action to impede the attacker; for
example, shut down the program under attack.
We do not believe that the crash watcher is a viable de-

fense mechanism because of the limited actions the crash
watcher can undertake when it discovers that a PaX-pro-
tected forking daemon is experiencing segmentation faults.
Either the watcher alerts an administrator or it acts on its
own. If it acts on its own, it can either shut down the
daemon entirely or attempt to prevent the attacker from
exploiting it.
If the watcher alerts an administrator, then it is di�-

cult to see how the administrator can react in time. Our
demonstrated attack can be completed in 216 seconds on
the average, less time than would be necessary to diagnose
the network tra�c, read BugTraq, assess the severity of the
situation, and take corrective measures. The administra-
tor could also shut down the daemon before attempting a
diagnosis, but in this case he would be acting no more in-
telligently than the watcher might.
If, indeed, the watcher shuts down the daemon altogether

pending an administrator's attention, then it in e�ect acts
as a force multiplier for denial of service. If Amazon.com's
Apache servers are PaX-protected and watched, and a vul-
nerability is discovered in Apache that allows a segmentation

violation to be induced, then Amazon can be taken o�ine
persistently, with a minimum of attacker e�ort. Being taken
o�ine persistently can be costly; reports in 2000 show that
Amazon loses about $180,000 per hour of downtime [25].
While it may be true that Amazon would do better with

disabled servers than compromised servers| that, in the
end, is an economic question| it is, nevertheless, also true
that it is di�cult to distinguish exploitable vulnerabilities
from mere (segfault-inducing) denial of service. Neither
an automated watcher program nor a system administra-
tor working under time pressure can be expected to make
the correct determination.
It is worth illustrating how di�cult these two cases are

to distinguish, even for expert programmers. The Apache
chunked-encoding vulnerability [9] was for several days be-
lieved, by the Apache developers themselves, not to be ex-
ploitable on 32-bit platforms: \Due to the nature of the
over
ow on 32-bit Unix platforms this will cause a segmen-
tation violation and the child will terminate" [4]. After the
release of a working exploit for 32-bit BSD platforms, the
Apache developers revised their analysis: \Though we pre-
viously reported that 32-bit platforms were not remotely ex-
ploitable, it has since been proven by Gobbles that certain
conditions allowing exploitation do exist" [5].
Furthermore, unless the segfault watcher shuts down the

daemon permanently after a single segmentation violation,
an attacker can still slip under the radar. For example, if
the watcher acts after observing ten crashes in a one-minute
period, the attacker can seek addresses by brute force at the
rate of nine attempts per minute. The same holds if the
watcher keeps a daemon shut down for several seconds after
a crash. Such a watcher is, furthermore, as much a force
multiplier for denial of service as one that shuts down the
watched daemon after a single crash.
Finally, a watcher could attempt to prevent an attacker

from exploiting a vulnerability while allowing the daemon
to continue running. It might, for example, attempt to de-
termine the network source of the o�ending requests and
selectively �rewall the source away from the daemon. But
this assumes that the attacker can be e�ectively localized.
With zombie networks numbering hundreds of thousands of
compromised hosts available for use as launchpads [17, 23],
attackers can design and deploy worms that attack vulner-
able daemons in a coordinated fashion: no source machine
needs to connect to the attacked machine more than once,
so a �rewalling watcher is of no value. Properly-engineered
automated threats, therefore, are capable of bypassing even
�rewalling watchers unimpeded.
Sites that run large numbers of servers often load-balance

incoming requests. In such situations clients are not always
guaranteed persistent sessions with a single server, but in-
stead get a di�erent server assigned to each request. (Load
balancing slows down our attack only by a factor of 2.) A
watcher running locally on one of these servers would be un-
able to detect an attack, since subsequent segfault-inducing
requests are likely to be routed to di�erent servers. In order
to detect such an attack, a networked watcher is required
that can correlate segfault-inducing requests. Such a net-
worked watcher would be di�cult to implement and would
not be much better at making watcher decisions than a host
based watcher, due to the inherent di�culty of implement-
ing a realistic watcher strategy.
In summary, the discussion above suggests that any rea-



sonable implementation of the crash watcher suggested by
the PaX documentation cannot prevent an attack such as
we describe above from succeeding, except at the cost of fa-
cilitating and exacerbating denial-of-service vulnerabilities
in the watched daemon.

3.5 Anti-Buffer Overflow Techniques
Over
ow mitigation systems that protect the stack, such

as StackGuard [14], ProPolice [16], and PointGuard [13],
make it more di�cult for an attacker to use a stack-based
over
ow to write arbitrary data onto the stack. (PointGuard
also encrypts pointers.) Some vulnerabilities, including the
one we exploited in Sect. 2.2, can no longer be exploited in
the presence of over
ow mitigation. However, over
ow mit-
igation by itself, without address-space randomization, also
defeats many of these attacks. Thus, the security provided
by over
ow mitigation is largely orthogonal to address-space
randomization.

4. CONCLUSIONS
We showed that any bu�er-over
ow attack can be made

to work against Apache running under PaX Address Space
Layout Randomization and Write or Execute Only pages.
Experimentally, our attack took, on the average, 216 seconds
to obtain a remote shell.
Our exploit employed a novel return-to-libc technique in

which it is not necessary for the attacker to guess addresses
on the stack. Brute force was needed only to �nd a single
16-bit delta. Although our implemented exploit was speci�c
to PaX ASLR and Apache, the attack is generic and ap-
plies to other address-space randomization systems such as
that in OpenBSD. The attack also applies to any software
program that accepts connections from the network. This
attack is an instance of a derandomization attack, which con-
verts any standard bu�er-over
ow exploit into an exploit
that works against systems protected by address-space ran-
domization. The resulting exploit is as e�ective as the orig-
inal, but slower; the slowdown is not su�cient to frustrate
worms or targeted attacks.
Our results suggest that, for current 32-bit architectures,

(1) address-space randomization is ine�ective against the
possibility of generic exploit code for a single 
aw; and (2)
brute force attacks can be e�cient, and hence e�ective.
In addition, we have analyzed the e�ectiveness of more

powerful randomization techniques such as increasing the
frequency and granularity of randomization. Subsequent
re-randomizations (regardless of frequency) after the initial
address-space randomization increases resistance to brute
force attack by at most a factor of 2. We also argue that
one cannot e�ectively prevent our attack without introduc-
ing a serious denial-of-service vulnerability.
Compile-time address-space randomization is more e�ec-

tive than runtime randomization because it can randomize
addresses at a �ner granularity, but the randomization it
produces is more vulnerable to information leakage. To pro-
tect against information leakage, sensitive daemons should
be placed within a chroot environment along with their li-
braries, so that user accounts and other daemons running
on the same machine cannot be subverted into revealing the
compile-time randomization used in the sensitive daemons.
Bu�er over
ow mitigation techniques can protect against
our attack, even in the absence of address-space randomiza-
tion. Thus, the use of over
ow mitigation is largely orthog-

onal to address-space randomization.
While compile-time and runtime randomization can be

combined to yield better security, the most promising solu-
tion appears to be upgrading to a 64-bit architecture. Our
attack is ine�ective on 64-bit architectures. On 32-bit ar-
chitectures, it is di�cult to design randomized systems that
resist brute force attacks. Applications that run in 32-bit
compatibility mode on a 64-bit machine are no less vulner-
able than when running on a 32-bit machine.
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