
Blind SQL Injection
by: Kevin Spett, 10/26/2004

http://www.securitydocs.com/library/2651

Introduction

The World Wide Web has experienced remarkable growth in recent years. Businesses, individuals, and
governments have found that web applications can offer effective, efficient and reliable solutions to the
challenges of communicating and conducting commerce in the Twenty-first century. However, in the
cost-cutting rush to bring their web-based applications on line — or perhaps just through simple
ignorance — many software companies overlook or introduce critical security issues.

To build secure applications, developers must acknowledge that security is a fundamental component of
any software product and that safeguards must be infused with the software as it is being written.
Building security into a product is much easier (and vastly more cost-effective) than any post-release
attempt to remove or limit the flaws that invite intruders to attack your site. To prove that dictum,
consider the case of blind SQL injection.

What is Blind SQL Injection?

Let’s talk first about plain, old-fashioned, no-frills SQL injection. This is a hacking method that allows
an unauthorized attacker to access a database server. It is facilitated by a common coding blunder: the
program accepts data from a client and executes SQL queries without first validating the client’s input.
The attacker is then free to extract, modify, add, or delete content from the database. In some
circumstances, he may even penetrate past the database server and into the underlying operating
system.1

Hackers typically test for SQL injection vulnerabilities by sending the application input that would
cause the server to generate an invalid SQL query. If the server then returns an error message to the
client, the attacker will attempt to reverse-engineer portions of the original SQL query using information
gained from these error messages. The typical administrative safeguard is simply to prohibit the display
of database server error messages. Regrettably, that’s not sufficient.

If your application does not return error messages, it may still be susceptible to “blind” SQL injection
attacks.

Detecting Blind SQL Injection Vulnerability

Web applications commonly use SQL queries with client-supplied input in the WHERE clause to
retrieve data from a database. By adding additional conditions to the SQL statement and evaluating the
web application’s output, you can determine whether or not the application is vulnerable to SQL
injection.

For instance, many companies allow Internet access to archives of their press releases. A URL for
accessing the company’s fifth press release might look like this:

 http://www.thecompany.com/pressRelease.jsp ?pressReleaseID=5

Page 1 of 6

2/4/2005http://www.securitydocs.com/link.php?action=detail&id=2651&headerfooter=no

The SQL statement the web application would use to retrieve the press release might look like this
(client-supplied input is underlined):

 SELECT title, description, releaseDate, body FROM pressReleases WHERE pressReleaseID = 5

The database server responds by returning the data for the fifth press release. The web application will
then format the press release data into an HTML page and send the response to the client.

To determine if the application is vulnerable to SQL injection, try injecting an extra true condition into
the WHERE clause. For example, if you request this URL . . .

 http://www.thecompany.com/pressRelease.jsp ?pressReleaseID=5 AND 1=1

. . . and if the database server executes the following query . . .

 SELECT title, description, releaseDate, body FROM pressReleases WHERE pressReleaseID = 5
AND 1=1

. . . and if this query also returns the same press release, then the application is susceptible to SQL
injection. Part of the user’s input is interpreted as SQL code.

A secure application would reject this request because it would treat the user’s input as a value, and the
value “5 AND 1=1” would cause a type mismatch error. The server would not display a press release.

Exploiting the Vulnerability

When testing for vulnerability to SQL injection, the injected WHERE condition is completely
predictable: 1=1 is always true. However, when we attempt to exploit this vulnerability, we don’t know
whether the injected WHERE condition is true or false before sending it. If a record is returned, the
injected condition must have been true. We can use this behavior to “ask” the database server true/false
questions. For instance, the following request essentially asks the database server, “Is the current user
dbo?”

 http://www.thecompany.com/pressRelease.jsp ?pressReleaseID=5 AND USER_NAME() = 'dbo'

USER_NAME() is a SQL Server function that returns the name of the current user. If the current user is
dbo (administrator), the fifth press release will be returned. If not, the query will fail and no press release
will be displayed.

By combining subqueries and functions, we can ask more complex questions. The following example
attempts to retrieve the name of a database table, one character at a time.

 http://www.thecompany.com/pressRelease.jsp ?pressReleaseID=5 AND ascii(lower(substring
((SELECT
 TOP 1 name FROM sysobjects WHERE xtype='U'), 1, 1))) > 109

The subquery (SELECT) is asking for the name of the first user table in the database (which is typically
the first thing to do in SQL injection exploitation). The substring() function will return the first character
of the query’s result. The lower() function will simply convert that character to lower case. Finally, the

Page 2 of 6

2/4/2005http://www.securitydocs.com/link.php?action=detail&id=2651&headerfooter=no

ascii() function will return the ASCII value of this character.

If the server returns the fifth press release in response to this URL, we know that the first letter of the
query’s result comes after the letter “m” (ASCII character 109) in the alphabet. By making multiple
requests, we can determine the precise ASCII value.

 http://www.thecompany.com/pressRelease.jsp ?pressReleaseID=5 AND ascii(lower(substring
((SELECT
 TOP 1 name FROM sysobjects WHERE xtype='U'), 1, 1))) > 116

If no press release is returned, the ASCII value is greater than 109 but not greater than 116. So, the letter
is between “n” (110) and “t” (116).

 http://www.thecompany.com/pressRelease.jsp ?pressReleaseID=5 AND ascii(lower(substring
((SELECT
 TOP 1 name FROM sysobjects WHERE xtype='U'), 1, 1))) > 113

Another false statement. We now know that the letter is between 110 and 113.

 http://www.thecompany.com/pressRelease.jsp ?pressReleaseID=5 AND ascii(lower(substring
((SELECT
 TOP 1 name FROM sysobjects WHERE xtype='U'), 1, 1))) > 111

False again. The range is narrowed down to two letters: ‘n’ and ‘o’ (110 and 111).

 http://www.thecompany.com/pressRelease.jsp ?pressReleaseID=5 AND ascii(lower(substring
((SELECT
 TOP 1 name FROM sysobjects WHERE xtype='U'), 1, 1))) = 111

The server returns the press release, so the statement is true! The first letter of the query’s result (and the
table’s name) is “o.” To retrieve the second letter, repeat the process, but change the second argument in
the substring() function so that the next character of the result is extracted: (change underlined)

 http://www.thecompany.com/pressRelease.jsp ?pressReleaseID=5 AND ascii(lower(substring
((SELECT
 TOP 1 name FROM sysobjects WHERE xtype='U'), 2, 1))) > 109

Repeat this process until the entire string is extracted. In this case, the result is “orders.”

As you can see, simply disabling the display of database server error messages does not offer sufficient
protection against SQL injection attacks.

Solutions

To secure an application against SQL injection, developers must never allow client-supplied data to
modify the syntax of SQL statements. In fact, the best protection is to isolate the web application from
SQL altogether. All SQL statements required by the application should be in stored procedures and kept
on the database server. The application should execute the stored procedures using a safe interface such
as JDBC’s CallableStatement or ADO’s Command Object. If arbitrary statements must be used, use
PreparedStatements. Both PreparedStatements and stored procedures compile the SQL statement before

Page 3 of 6

2/4/2005http://www.securitydocs.com/link.php?action=detail&id=2651&headerfooter=no

the user input is added, making it impossible for user input to modify the actual SQL statement.

Let’s use pressRelease.jsp as an example. The relevant code would look something like this:

 String query = “SELECT title, description, releaseDate, body FROM pressReleases
 WHERE pressReleaseID = “ + request.getParameter(“pressReleaseID”);
 Statement stmt = dbConnection.createStatement();
 ResultSet rs = stmt.executeQuery(query);

The first step toward securing this code is to take the SQL statement out of the web application and put
it in a stored procedure on the database server.

 CREATE PROCEDURE getPressRelease
 @pressReleaseID integer
 AS
 SELECT title, description, releaseDate, body FROM pressReleases WHERE
 pressReleaseID = @pressReleaseID

Now back to the application. Instead of string building a SQL statement to call the stored procedure, a
CallableStatement is created to safely execute it.

 CallableStatement cs = dbConnection.prepareCall(“{call getPressRelease(?)}”);
 cs.setInt(1, Integer.parseInt(request.getParameter(“pressReleaseID”)));
 ResultSet rs = cs.executeQuery();

In a .NET application, the change is similar. This ASP.NET code is vulnerable to SQL injection:

 String query = "SELECT title, description, releaseDate, body FROM pressReleases
 WHERE pressReleaseID = " + Request["pressReleaseID"];
 SqlCommand command = new SqlCommand(query,connection);
 command.CommandType = CommandType.Text;
 SqlDataReader dataReader = command.ExecuteReader();

As with JSP code, the SQL statement must be converted to a stored procedure, which can then be
accessed safely by a stored procedure SqlCommand:

 SqlCommand command = new SqlCommand("getPressRelease",connection);
 command.CommandType = CommandType.StoredProcedure;
 command.Parameters.Add("@PressReleaseID",S qlDbType.Int);
 command.Parameters[0].Value = Convert.ToInt32(Request["pressReleaseID"]);
 SqlDataReader dataReader = command.ExecuteReader();

Finally, reinforcement of these coding policies should be performed at all stages of the application
lifecycle. The most efficient way is to use a vulnerability assessment tool such as WebInspect.
Developers simply run WebInspect, WebInspect for Microsoft Studio .NET, or WebInspect for IBM
WebSphere Studio Application Developer. This allows application and web services developers to
automate the discovery of security vulnerabilities as they build applications, access detailed steps for
remediation of those vulnerabilities, and deliver secure code for final quality assurance testing.

Early discovery and remediation of security vulnerabilities reduces the overall cost of secure application
deployment, improving both application ROI and overall organizational security.

Page 4 of 6

2/4/2005http://www.securitydocs.com/link.php?action=detail&id=2651&headerfooter=no

The Business Case for Application Security

Whether a security breach is made public or confined internally, the fact that a hacker has accessed your
sensitive data should be a huge concern to your company, your shareholders and, most importantly, your
customers. SPI Dynamics has found that the majority of companies that are vigilant and proactive in
their approach to application security are better protected. In the long run, these companies enjoy a
higher return on investment for their e-business ventures.

About SPI Labs

SPI Labs is the dedicated application security research and testing team of SPI Dynamics. Composed of
some of the industry’s top security experts, SPI Labs is focused specifically on researching security
vulnerabilities at the web application layer. The SPI Labs mission is to provide objective research to the
security community and all organizations concerned with their security practices.

SPI Dynamics uses direct research from SPI Labs to provide daily updates to WebInspect, the leading
Web application security assessment software. SPI Labs engineers comply with the standards proposed
by the Internet Engineering Task Force (IETF) for responsible security vulnerability disclosure. SPI
Labs policies and procedures for disclosure are outlined on the SPI Dynamics web site at:
http://www.spidynamics.com/spilabs.html.

About SPI Dynamics

SPI Dynamics, the expert in web application security assessment, provides software and services to help
enterprises protect against the loss of confidential data through the web application layer. The
company’s flagship product line, WebInspect, assesses the security of an organization’s applications and
web services, the most vulnerable yet least secure IT infrastructure component. Since its inception, SPI
Dynamics has focused exclusively on web application security. SPI Labs, the internal research group of
SPI Dynamics, is recognized as the industry’s foremost authority in this area.

Software developers, quality assurance professionals, corporate security auditors and security
practitioners use WebInspect products throughout the application lifecycle to identify security
vulnerabilities that would otherwise go undetected by traditional measures. The security assurance
provided by WebInspect helps Fortune 500 companies and organizations in regulated industries —
including financial services, health care and government — protect their sensitive data and comply with
legal mandates and regulations regarding privacy and information security.

SPI Dynamics is privately held with headquarters in Atlanta, Georgia.

About the WebInspect Product Line

The WebInspect product line ensures the security of your entire network with intuitive, intelligent, and
accurate processes that dynamically scan standard and proprietary web applications to identify known
and unidentified application vulnerabilities. WebInspect products provide a new level of protection for
your critical business information. With WebInspect products, you find and correct vulnerabilities at
their source, before attackers can exploit them.

Page 5 of 6

2/4/2005http://www.securitydocs.com/link.php?action=detail&id=2651&headerfooter=no

Whether you are an application developer, security auditor, QA professional or security consultant,
WebInspect provides the tools you need to ensure the security of your web applications through a
powerful combination of unique Adaptive-Agent™ technology and SPI Dynamics’ industry-leading and
continuously updated vulnerability database, SecureBase™. Through Adaptive-Agent technology, you
can quickly and accurately assess the security of your web content, regardless of your environment.
WebInspect enables users to perform security assessments for any web application, including these
industry-leading application platforms:

� IBM WebSphere
� Macromedia ColdFusion
� Lotus Domino
� Oracle Application Server
� Macromedia JRun
� BEA Weblogic
� Jakarta Tomcat

About the Author

Kevin Spett is a senior research and development engineer at SPI Dynamics, where his responsibilities
include analyzing web applications and discovering new ways of uncovering threats, vulnerabilities and
security risks. In addition, he is a member of the SPI Labs team, the application security research and
development group within SPI Dynamics.

Contact Information

SPI Dynamics
115 Perimeter Center Place
Suite 270
Atlanta, GA 30346

Telephone: (678) 781-4800
Fax: (678) 781-4850
Email: info@spidynamics.com
Web: www.spidynamics.com

1 For a more in-depth view of SQL injection, see SPI Labs’ whitepaper, “SQL Injection: Are Your Web
Application Vulnerable?”

Copywrited by S.P.I Dynamics Incorporated.

Page 6 of 6

2/4/2005http://www.securitydocs.com/link.php?action=detail&id=2651&headerfooter=no

