
Measuring software quality

A Study of Open Source Software

Ben Chelf
Chief Technology Officer
Coverity, Inc.

Executive Summary
As part of a Department of Homeland Security (DHS)
federally-funded analysis, Coverity established a new
baseline for security and quality in open source software
based on sophisticated scans of 17.5 million lines of
source code using the latest research from Stanford
University’s Computer Science department. The LAMP
stack — popular open source packages Linux, Apache,
MySQL, and Perl/PHP/Python— showed significantly
better software security and quality above the baseline
with 0.290 defects per thousand lines of code compared
to an average of 0.434 for 32 open source software
projects analyzed.

1

The analysis is the first public result of a grant from
the Department of Homeland Security to improve the
security and quality of software. The three-year grant,
called the “Vulnerability Discovery and Remediation
Open Source Hardening Project,” includes research on
the latest source code analysis techniques developed by
Coverity and Stanford scientists. The analysis identi-
fied 40 of the most critical security vulnerabilities and
defect types found in software. The analysis is one of
the first-ever comprehensive attempts to establish a
technique and framework for measuring the quality
and security of software.

In the past decade, the open source model of software
development has gained tremendous visibility and validation
though popular projects like Linux, Apache, and MySQL.
This new model, based on the “many eyes” approach, has
led to fast evolving, easy to configure software that is being
used in production environments by countless commercial
enterprises. However, how exactly (if at all) do consumers of
open source measure the quality and security of any piece
of software to determine if it is a good fit for their stack?

Few would disagree that many eyes reviewing code is a very
good way to reduce the number of defects. However, no
effective yardstick has been available to measure how good
the quality really is. In this study, we propose a new technique
and framework to measure the quality of software. This tech-
nique leverages technology that automatically analyzes
100% of the paths through a given code base, thus allowing
a consistent examination of every possible outcome when
running the resulting software. Using this new approach to
measuring quality, we aim to give visibility into how various
open source projects compare to each other and suggest a
new way to make software better.

By comparing the LAMP stack with our new quality baseline, we see that it is demonstrably
better than most other open source projects reviewed in this report.

Measuring software quality – a new approach

2

The cost of software defects
Bugs are a fact of life for software development organizations
of all sizes. Unfortunately, some level of defects has also
become the expected norm for a software purchase, whether
for a small business’ payroll system, a medium business’
inventory controls system, or a large business’ enterprise
resource planning (ERP) deployment. However, in a 2002
study, the National Institute of Standards and Technology

(NIST) estimated that software defects cost the U.S. econo-
my upwards of $60 billion a year. NIST also found that
detecting these defects earlier and with more diagnostic
accuracy could result in as much as $22 billion in annual sav-
ings. The hard truth is that software defects affect both open
source and commercial software and are very costly to all
users and producers of software.

Discovering defects automatically
In recent years, ground-breaking research from the Computer
Systems Laboratory at Stanford University has made it pos-
sible to quickly and automatically analyze tens of millions of
lines of code to look for defects that can cause run-time
crashes, performance degradation, incorrect program behav-
ior, and even exploitable security vulnerabilities. At Coverity,
we commercialized this new approach to improving software
quality and security and made it available to enterprises need-
ing to vastly improve their testing efforts.

Now, for the first time, we apply our technology on a wide
range of open source projects in aggregate and assess the
results. By identifying defects and making them available to
the open source community, we expect the quality and
security of open source software to accelerate through the
addition of a billion “automated” eyes. Our hope is that the
results of this study over open source software can also set
a higher bar of quality and security for developers of propri-
etary software.

easy to verify defect cases that pinpoint the root cause
and exact path to a software problem. Compare the two
approaches here:

Cyclomatic complexity framework
(1) “Function ‘foo’ has too many paths through it.”

Coverity framework
(2) “Function ‘foo’ has a memory leak on line 73 that is the
result of an allocation on line 34 and the following path deci-
sions on lines 38, 54, and 65 . . .”

Our belief is that a metric based on the latter is much more
valuable in measuring source code quality. Today, many open
source packages rely on our static source code analysis as a
key indicator of reliability and security. For example, MySQL,
PostgreSQL, and Berkeley DB have certified versions of their
software that contain zero Coverity defects.

Measuring quality automatically
No metric is perfect. This report does not propose the results
of source code analysis as an absolute measure of quality, but
rather as a new and effective way to assess code quality direct-
ly in terms of the number of software defects. No automated
analysis can detect all of the bugs in a piece of software.
However, many program level defects fall into the range of
bugs that we can detect, making our results not only a good
measure of the overall quality, but also a standard and
repeatable metric with which to compare two code bases.
Furthermore, the advances made recently in terms of scala-
bility, low false positive rate, and ease of integration allow us,
for the first time, to plug in dozens of open source packages
to be analyzed with little human intervention required.

Rather than using metrics such as cyclomatic complexity to
indirectly tell us the quality of code, we rely on actionable,

3

MySQL, PostgreSQL, and Berkeley DB have certified versions of their software that contain
zero Coverity defects.

Analysis Details
Speed and accuracy of analysis
In this report, we analyzed 32 different open source
packages. Most took between minutes and a few hours
to analyze, with the total analysis time for all 32 projects
requiring 27 hours on a 3.2 gHz Linux box. Also, our
checks typically report less than 20% false positives.

Required set up
Very little manual work was required to integrate our
source code analysis technology to analyze these open
source packages. Once we had the code, all that was
required for most was the typical ‘./configure; make’
command.

Results
The average defect density for the 32 open source packages
that we analyzed was 0.434 defects per thousand lines of code.
The standard deviation for this set of results was 0.243. Table 1
(on the following page) shows the raw data including lines of
code analyzed, number of defects found, analysis time, and
defect density (number of errors per thousand lines of code).
Graph 1 (below) shows the distribution of defect density based

on ranges that represent 1/2 of a standard deviation. Graph 2
(below) shows a comparison of the LAMP stack with the
baseline derived from the analysis of the 32 open source
packages. The average defect density for LAMP was 0.290 and
all but one of the LAMP packages had a better than average
defect density.

0

2

4

6

8

10

N
u

m
b

er
 o

f
P

ac
ka

g
es

Defect Density Ranges

12

0.000-
0.071

0.072-
0.192

0.193-
0.313

0.314-
0.434

0.435-
0.555

0.556-
0.676

0.677-
0.797

>=
0.798

Standard Deviation Baseline Standard Deviation

0

D
ef

ec
ts

 p
er

 K
L

O
C

0.5

P
er

l

M
yS

Q
L

L
in

u
x*

A
p

ac
h

e

L
A

M
P

 A
ve

ra
g

e

P
yt

h
o

n

B
as

el
in

e

P
H

P

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0.186

0.224 0.233
0.250

0.290

0.372

0.434

0.474

(*core kernel code only)

Graph 1

Distribution of defect densities in open source packages

Graph 2

How does LAMP stack up?

4

Conclusions
Given the observed distribution of defects over the 32 pack-
ages analyzed, we conclude that using the results of source
code analysis is an effective metric in determining software
quality. Furthermore, by comparing the LAMP stack with our
new quality baseline, we see that it is demonstrably better
than most other open source projects reviewed in this report.

While our data suggests that size of project in lines of code
is not an indicator of quality, we hypothesize that the follow-
ing factors determine the defect density of software as
measured in our study and should be considered when
assessing the quality of software:

• The ratio of developers to size of code
• The percentage of possible execution environments that

are tested pre-release
• The number of users utilizing the software regularly

The benefit of our new approach in measuring quality is that
it provides a measurement that is an objective combination
of the above factors. Though it may be difficult or impossible
to determine exactly how much of the code is tested, how
many people are using it, or even how many developers are
working on it at any given time, we have shown that overall
code quality can still be measured.

Table 1

(*including all drivers)

5

Coverity Prevent™ is an advanced static software analysis
tool designed to make software more reliable and secure. It
relies on a combination of dataflow analysis, abstraction, and
highly efficient search algorithms that can detect over 40 cat-
egories of crash-causing defects while achieving 100% path
coverage. Types of defects detected include memory leaks,

buffer overruns, illegal pointer accesses, use after frees, con-
currency errors and security vulnerabilities. Coverity Prevent™

also efficiently detects hard-to-see bugs that span functions
and modules. Most importantly, no changes to the code or
build are required and the analysis is fast, scaling linearly
with the code size.

By identifying defects and making them available to the open source community, we expect
the quality and security of open source software to accelerate through the addition of a billion
“automated” eyes.

About the technology used in this study

Future work
Producing reports about defects in code doesn’t actually
make the software better. As such, we are releasing the defects
discovered in this study to anyone who is an active maintainer
of the projects analyzed. While we realize that this creates
somewhat of a Heisenberg Principle problem (i.e., we observe
the quality of the baseline and as a result it changes), we
hope to answer the following questions as the work from this
project continues:

• What types of defects are considered the most critical?
• What factors lead to a defect being considered critical?

(e.g., type of defect, location in code, perceived impact, etc.)
• What factors can be used to predict the measured defect

density of the code?

• How does the quality and security of development branches
compare to that of stable branches?

• How can we combine defects found via other means as
part of this metric?

Answering these questions will help us further understand
how to address the problem of defects in code in our attempt
to make the world’s software better.

If you are interested in learning more, go to:
http://scan.coverity.com

As our analysis is continually run over open source projects,
this site provides data on the latest analysis results of the
code bases reviewed in this study.

Coverity Inc. Headquarters
185 Berry St. Suite 3600
San Francisco, CA 94107
(800) 873-8193

