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Abstract
This paper addresses two problems that arise when analyzing ex-
ecutables: (1) recovering variable-like quantities in the absence of
symbol-table and debugging information, and (2) recovering useful
information about objects allocated in the heap.

1. Introduction
There is an increasing need for tools to help programmers and se-
curity analysts understand executables. For instance, commercial
companies and the military increasingly use Commercial Off-The
Shelf (COTS) components to reduce the cost of software develop-
ment. They are interested in ensuring that COTS components do not
perform malicious actions (or can be forced to perform malicious
actions). Viruses and worms have become ubiquitous. A tool that
aids in understanding their behavior can ensure early dissemina-
tion of signatures, and thereby control the extent of damage caused
by them. In both domains, the questions that need to be answered
cannot be answered perfectly—the problems are undecidable—but
static analysis provides a way to answer them conservatively.

In the past five years, there has been a considerable amount of
research activity to develop analysis tools to find bugs and security
vulnerabilities. However, most of the effort has been on analysis of
source code, and the issue of analyzing executables has largely been
ignored. In the security context, this is particularly unfortunate,
because performing analysis on the source code can fail to detect
certain vulnerabilities because of the WYSINWYX phenomenon:
“What You See Is Not What You eXecute”. That is, there can be a
mismatch between what a programmer intends and what is actually
executed on the processor. The following source-code fragment,
taken from a login program, is an example of such a mismatch [17]:

memset(password, ‘\0’, len);
free(password);

The login program temporarily stores the user’s password—
in clear text—in a dynamically allocated buffer pointed to by the
pointer variable password. To minimize the lifetime of the pass-
word, which is sensitive information, the code fragment shown
above zeroes-out the buffer pointed to by password before return-
ing it to the heap. Unfortunately, a compiler that performs useless-
code elimination may reason that the program never uses the values
written by the call on memset and therefore the call on memset can
be removed, thereby leaving sensitive information exposed in the
heap. This is not just hypothetical; a similar vulnerability was dis-
covered during the Windows security push in 2002 [17]. This vul-
nerability is invisible in the source code; it can only be detected by
examining the low-level code emitted by the optimizing compiler.

The WYSINWYX phenomenon is not restricted to the presence
or absence of procedure calls; on the contrary, it is pervasive: se-
curity vulnerabilities can exist because of a myriad of platform-
specific details due to features (and idiosyncrasies) of the compiler
and the optimizer. These can include (i) memory-layout details (i.e.,
offsets of variables in the run-time stack’s activation records and

padding between fields of a struct), (ii) register usage, (iii) execu-
tion order, (iv) optimizations, and (v) artifacts of compiler bugs.
Such information is hidden from tools that work on intermediate
representations (IRs) that are built directly from the source code.

The goal of our work is to advance the state of the art of
recovering, from executables, IRs that are (a) similar to those that
would be available had one started from source code, but (b) expose
the platform-specific details discussed above. Once such IRs are in
hand, we will be in a position to leverage the substantial body of
work on source-code-vulnerability analysis.1

To solve the IR-recovery problem, there are numerous obstacles
that must be overcome, many of which stem from the fact that a
program’s data objects are not easily identifiable:
• For many kinds of potentially malicious programs, symbol-

table and debugging information is entirely absent. In any case,
even if it is present, it cannot be relied upon. For this reason,
we have designed techniques that do not rely on symbol-table
and debugging information being present. (Thus, throughout
the paper, the term “executable” means a stripped executable.)

• To understand the memory-access operations in an executable,
it is necessary to determine the set of addresses accessed by
each memory-access operation. This is difficult because

While some memory operations use explicit memory ad-
dresses in the instruction (easy), others use indirect address-
ing via address expressions (difficult).
Arithmetic on addresses is pervasive. For instance, even
when the value of a local variable is loaded from its slot
in an activation record, address arithmetic is performed.
There is no notion of type at the hardware level, so address
values cannot be distinguished from integer values.
Memory accesses do not have to be aligned, so word-sized
address values could potentially be cobbled together from
misaligned reads and writes.

• It is difficult to track the flow of data through memory. With
the large address spaces of today’s machines, it is infeasible to
keep track statically of the contents of each memory address
during the analysis. Source-code-analysis tools track the flow
of data through variables, which provide a finite abstraction of
the address space of the program. This observation suggests the
need to recover variable-like entities from an executable. With-
out symbol-table and debugging information, a set of variable-
like entities has to be inferred.

1 A few words are in order regarding the scope of our ambitions. We assume
that the executable that is being analyzed follows a “standard compilation
model”. By this, we mean that the executable has procedures, activation
records, a global data region, and a heap; uses virtual functions and dynam-
ically linked libraries; etc. During the analysis, we check that these assump-
tions hold. When violations are detected, they are reported, and the analysis
proceeds, generally after making an optimistic choice. For instance, if the
analysis finds that the return address can be modified within a procedure, it
reports the violation to the user, but proceeds without modifying the control
flow of the program.
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• It is challenging to obtain reasonable information about the
heap. Simple abstractions for the heap, such as assuming one
summary node per malloc site [2, 31, 10] provide little useful
information about the heap when applied to executables. Com-
plex shape abstractions [28] cannot be applied to executables
due to scalability reasons.
In [3], we presented a combined pointer-analysis and numeric-

analysis algorithm called Value-Set Analysis (VSA) that takes
into account pointer-arithmetic operations and determines an over-
approximation of the set of addresses accessed by each memory
operand in the program. However, the version of VSA presented
in [3] only partially meets the challenges listed above. In the work
described in [3], we used IDAPro [18], a commercial dissassem-
bler, to infer variable-like entities based on the statically-known
addresses and stack-frame offsets in the executable. We referred
to such variable-like entities as a-locs in [3]. However, an a-loc
recovered by IDAPro can only represent a set of contiguous lo-
cations, and cannot represent non-contiguous memory locations,
such as the locations of (all instances of) a specific field in an ar-
ray of structures, etc. The inability of IDAPro to represent sets of
non-contiguous locations affects the accuracy of VSA, as well as
clients of VSA.

In this paper, we present an algorithm that combines VSA [3]
and Aggregate Structure Identification (ASI) [26] to recover a-locs
that are strictly better than IDAPro’s a-locs for tracking the flow
of data through memory. ASI is an algorithm that determines the
structure of aggregates in a program based on how the program
accesses the aggregates. ASI assumes that the data-access patterns
are readily apparent from the syntax of the program, which is not
true for instructions in x86 executables. In this paper, we show how
the information recovered by VSA can be used to communicate
data-access patterns to ASI. The combination of VSA and ASI
allows us (a) to recover a-locs that are based on indirect accesses
to memory, rather than just the explicit addresses and offsets that
occur in the program, and (b) to identify structures, arrays, and
nestings of structures and arrays.

In addition, we present an abstraction for the heap that is some-
where in the middle between the extremes of one summary node
per malloc site [2, 31, 10] and complex shape abstractions [28]—
and is useful in the context of executables. In particular, the heap
abstraction that we use makes it possible, in many circumstances,
to establish a definite link between the set of objects allocated at a
certain site and a particular virtual-function table.

The specific technical contributions of the paper are as follows:
• We show how to apply ASI to programming languages in which

data-access patterns are not readily apparent from the syntax of
the program. We present the results of applying this approach
to x86 executables.

• We replace IDAPro’s a-locs that are used during VSA in [3]
with a refined notion of a-loc, and provide an algorithm to
interpret indirect memory references using the refined notion.

• We develop an abstraction-refinement algorithm based on VSA
and ASI to infer from an executable variable-like entities of an
appropriate granularity. Our initial experiments show that the
algorithm is successful in nearly 87% of the cases for local
variables, and in nearly 72% of the cases for variables allocated
in the heap.

• We propose an inexpensive abstraction for heap-allocated data
structures that allows us to obtain some useful results for ob-
jects allocated in the heap. We show the effectiveness of the
abstraction by measuring how well it resolves virtual-function
calls in x86 executables obtained from C++ code.
The remainder of the paper is organized as follows: §2 pro-

vides a detailed explanation of several fundamental challenges that
arise when analyzing executables. §3 provides background on VSA

and ASI. §4 describes our abstraction-refinement algorithm to re-
cover variable-like entities. §5 describes our abstraction for heap-
allocated data structures. §6 provides experimental results evaluat-
ing these techniques. §7 and App. A discuss related work.

2. Challenges
Challenge 1: Recovering variable-like entities

When performing source-code analysis, programmer-defined vari-
ables provide us with a convenient handle for specifying how a pro-
gram manipulates its data. For example, a data dependence from
statement a to statement b—which represents the fact that a de-
fines some variable x, b uses x, and there is an x-def-free path
from a to b—is captured by the fact that both statements access the
same variable. However, in x86 executables, memory is accessed
by specifying absolute addresses directly or indirectly through ad-
dress expressions of the form “[base + index × scale + offset]”,
where base and index are registers and scale and offset are integer
constants.

Because, x86 executables do not have intrinsic entities that are
analogous to variables that can be used for analysis, the first step
in executable analysis is to recover variable-like entities. In [3], we
used a crude variable-recovery algorithm provided by the IDAPro
disassembler tool [18]. The intuition behind the IDAPro approach
is that the layout of memory is known at compile time or assembly
time; the compiler or programmer decides a priori the locations of
local variables, global variables, etc. Hence, direct accesses to pro-
gram variables appear as absolute addresses, offsets relative to the
frame pointer, etc. Such absolute addresses and offsets provide the
starting addresses of program variables. In [3], the set of addresses
between such explicitly occurring addresses/offsets was considered
to be a variable-like entity referred to as an a-loc (for “abstract lo-
cation”).

The disadvantage of IDAPro’s variable-recovery algorithm is
that it only considers addresses and offsets that occur explicitly in
the program. For example, consider the example program and the
corresponding disassembly shown below.

void main(){
int x, y;
x = 1;
y = 2;
return;

}

proc main
1 mov ebp, esp
2 sub esp, 8
3 mov [ebp-8], 1
4 mov eax, ebp
5 mov [eax-4], 2
6 add esp, 8
7 retn

Note that x is laid out at offset -82 and y is located at offset
-4 in the activation record of main. x is accessed relative to the
frame pointer ebp, but y is accessed indirectly through register eax.
IDAPro only recovers one a-loc of eight-bytes because -8 is the
only offset that is explicit in the executable. To recover variable
y, the set of values that eax holds at 5 needs to be determined.
Therefore, one has to look beyond the explicitly known addresses
and stack-frame offsets to determine variable-like entities. (See §4.)

Challenge 2: Granularity of recovered variable-like entities

The granularity of variable-like entities that are recovered for an
executable affects the complexity and accuracy of subsequent anal-
yses that are based on the recovered variable-like entities. Consider
the program shown below:

2 We follow the convention that the value of esp at the beginning of the
procedure marks the start of the activation record.
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typedef struct {
int x, y;

} Point;

void main(){
Point p, *pp;
pp = &p;
pp->x = 1;
pp->y = 2;
return pp->x;

}

proc main
1 mov ebp, esp
2 sub esp, 8
3 lea eax, [ebp-8]
4 mov [eax], 1
5 mov [eax+4], 2
6 add esp, 8
7 mov eax, [ebp-8]
8 add esp,8
9 retn

The program initializes the two fields x and y of a local struct
through the pointer pp and returns the value of field x. Observe that,
in the executable, eax plays the role of the pointer pp. (Instruc-
tion “3 lea eax, [ebp-8]” is equivalent to the assignment eax
:= ebp-8.) Instructions 4 and 5 update the fields of p. The only
statically known offset in the program is the starting address of p.
Hence, IDAPro’s variable-recovery algorithm identifies one a-loc
of eight-bytes that covers both fields of p. A flow-dependence anal-
ysis based on this a-loc would create a spurious flow-dependence
from instruction 5 to 7. On the other hand, if flow-dependence anal-
ysis is performed with two a-locs that correspond to the fields of p,
there will be no flow-dependence from 5 to 7. (See §4.)

Challenge 3: The structure of heap-allocated objects

When performing source-code analysis, the structure of heap-
allocated objects can be determined to an extent by looking at
the types of pointers that point to the block of memory allocated in
the heap. However, in executables, unless we have symbol-table
or debugging information, only the size of the allocated block
is known. Without knowing the structure of the heap-allocated
block, little useful information can be obtained about the heap.
Therefore, it is desirable to recover information about the struc-
ture of heap-allocated data. The abstraction-refinement algorithm
presented in §4 can recover some information about the structure
of heap-allocated objects when one summary object is used for
each allocation site. §5 presents an improved heap abstraction that
allows the abstraction-refinement algorithm to do an even better
job.

Challenge 4: Resolving virtual-function calls

Even if the structure of heap-allocated memory blocks were known,
the abstraction that is used to summarize the heap may not allow the
analysis to do strong updates.3 To illustrate this problem, consider
C++ programs with inheritance and virtual functions. The first 4-
bytes of an object contains the address of the virtual-function table.
In many source-code-analysis algorithms, the heap is abstracted by
associating a variable with each malloc site. This variable summa-
rizes all blocks of memory that are allocated at the corresponding
malloc site. However, such an abstraction is not sufficient for stati-
cally resolving any of the virtual function calls. This is illustrated in
Fig. 1. The first instruction allocates a block of memory in the heap;
the next instruction sets the virtual function pointer to the address of
the virtual-function table. (This is usually done in the constructor.)
If the one-variable-per-malloc-site abstraction is used, it would not
be possible to establish the link between the object and the virtual-
function table. Because the heap variable represents more than one
block, the interpretation of the instruction that sets the virtual func-
tion pointer can only do a weak update, i.e., it can only join the

3 A strong update overwrites the contents of an abstract object, and rep-
resents a definite change in value to all concrete objects that the abstract
object represents [5, 28]. Strong updates cannot generally be performed on
summary objects because a (concrete) update usually affects only one of the
summarized concrete objects.

virtual-function table address with the existing addresses, and not
overwrite the virtual function pointer in the object with the address
of the virtual-function table. After the call to malloc, the fields of
the object can have any value (shown as ?); computing the join of
? with any value results in ?. Therefore, a definite link between the
object and the virtual function table is never established.

Figure 1. Weak update problem in x86 executables.

3. Background
In previous work [3], we developed a static-analysis algorithm,
called value-set analysis (VSA), to recover information about the
contents of memory locations and how they are manipulated by
an executable. This section describes VSA and sets the context in
which the techniques described in this paper are applied. Specif-
ically, this section describes the following concepts: (1) abstract
locations (a-locs), (2) value-set analysis (VSA), and (3) aggregate
structure identification [26] (ASI). This material is related to the
core of the paper as follows: In §4, we show how to use information
gathered during VSA to harness ASI to the problem of identifying
a-locs. This allows us to use a richer class of a-locs for subsequent
runs of VSA.

typedef struct {
int x,y;

} Point;

int main(){
int i;
Point p[5];
for(i=0;i<5;++i) {

p[i].x = 1;
p[i].y = 2;

}
return p[0].y;

}

proc main
0 mov ebp,esp
1 sub esp,40
2 mov ecx,0
3 lea eax,[ebp-40]

L1: mov [eax], 1
5 mov [eax+4],2
6 add eax, 8
7 inc ecx
8 cmp ecx, 5
9 jl L1
10 mov eax,[ebp-36]
11 add esp,40
12 retn

Figure 2. A program with an array of structures.

EXAMPLE 3.1. The program shown in Fig. 2 will be used as an
example in §3 and §4. The program initializes all elements of
array p[5]. The x-members of each element are initialized with
1 and the y-members are initialized with 2. The disassembly is also
shown. Instruction L1 updates the x-members of the array elements,
and instruction 5 updates the y-members. Fig. 3(a) shows how the
variables are laid out in the activation record of main. �

3.1 Abstract Locations (A-locs)

When analyzing programs with source code, one associates infor-
mation with variables. However, there is no explicit notion of a
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Figure 3. (a) Layout of the activation record for main in Ex. 3.1;
(b) a-locs identified by IDAPro.

variable in an executable because an executable accesses mem-
ory by specifying addresses directly or indirectly through regis-
ters. Hence, the first step in analyzing an executable is to recover a
set of variable-like quantities. This section described the variable-
recovery algorithm used in [3]

In [3], we defined an abstraction of the concrete (runtime) ad-
dress space. In the runtime address space, there is no separation
of the activation records of various procedures, the heap, and the
memory for global data. However, during the analysis of an exe-
cutable, we break the address space into a set of disjoint memory ar-
eas, which are referred to as memory-regions. Each memory-region
represents a group of locations that have similar runtime proper-
ties. For example, the runtime locations that belong to the activa-
tion record of the same procedure belong to a memory-region. For
Ex. 3.1, there would be two memory-regions: (1) a global-region
containing the locations that correspond to the global data, and (2)
an AR-region containing the locations that belong to the activation
record of main.

In [3], we recovered a set of variable-like entities for each
memory-region using the method outlined in Challenge 1 (see §2):
absolute addresses and offsets provide the starting addresses of
the variable-like entities. In Ex. 3.1, the operand [ebp-40] in the
instruction “3 lea eax, [ebp-40]” refers to offset −40 with
respect to the start of the activation record for main. Similarly,
the instruction “10 mov eax, [ebp-36]” refers to offset -36 in
the activation record of main. The algorithm used in [3] marks
such statically determined addresses and offsets in the respective
regions and considers the set of locations between two such static
addresses/offsets as the analog of a C variable-like entity in the
executable. [3] refers to such variable-like quantities as a-locs. We
will use the same terminology in this paper (although the a-locs
used in this paper will have a richer structure than the ones used in
[3]). Fig. 3(b) shows the a-locs in main’s AR-region.

3.2 Value-Set Analysis (VSA)

A pointer-analysis algorithm is an important component of any
program-analysis tool for programs with pointers. Unfortunately,
pointer-analysis algorithms that have been developed for source-
code analysis [2, 31, 10, 13, 6, 14, 32] are not applicable for an-
alyzing executables. In particular, such algorithms typically ignore
pointer arithmetic. However, pointer arithmetic is used extensively
in an executable. For instance, even a direct access to a local vari-
able is performed by dereferencing an address calculated as an off-
set relative to the stack pointer (or the frame pointer)—e.g., mov
eax, [ebp-36] loads register eax with the value of the local vari-
able at offset -36 of the activation record of the procedure that the
frame pointer ebp refers to.

The VSA algorithm described in [3] is a pointer-analysis al-
gorithm suitable for executables. VSA is a combined numeric-
analysis and pointer-analysis algorithm that determines an over-

approximation of the set of numeric values or addresses that each
a-loc holds at each program point. The set of addresses and nu-
meric values is referred to as a value-set. A key feature of VSA is
that it tracks integer-valued and address-valued quantities simulta-
neously. This is crucial for analyzing executables because numeric
values and addresses are indistinguishable in an executable.

Suppose n is the number of regions in the executable. A value-
set is a n-tuple of strided intervals of the form s[l, u], with each
component of the tuple representing the set of addresses in the
corresponding region. A strided-interval s[l, u] represents the set
of integers {i ∈ Z|l ≤ i ≤ u, i ≡ l(mod s)}.
• s is called the stride.
• [l, u] is called the interval.
• 0[l, l] represents the singleton set {l}.

For Ex. 3.1, the value-sets are 2-tuples. We follow the conven-
tion that the first component always refers to the set of addresses
(or numbers) in the global region and ∅ denotes an empty set.
For instance, the tuple (1[0, 9], ∅) represents the set of numbers
{0, 1, . . . , 9} and the tuple (∅, 4[−40,−4]) represents the set of
offsets {−40,−36, . . . ,−4} in the AR-region for main.

For Ex. 3.1, VSA determines that the value-set of eax at pro-
gram point L1 is (∅, 8[−40,−8]), which means that eax holds the
offsets {−40,−32, . . . ,−8} in the AR-region corresponding to
procedure main. Note that these offsets are the starting addresses
of field x of the elements of array p.

VSA is a flow-sensitive, context-sensitive, abstract-interpretation
algorithm (parameterized by call-string length [29]) that is based
on an independent-attribute domain described below.

Let Proc denote the set of memory-regions associated with pro-
cedures in the program, AllocMemRgn denotes the set of memory
regions associated with heap-allocation sites,4 and Global denote
the memory-region associated with the global data area. We work
with the following basic domains:

MemRgn = {Global} ∪ Proc ∪ AllocMemRgn
ValueSet = MemRgn → StridedInterval⊥
AlocEnv = a-loc → ValueSet⊥

VSA associates each program point with an AbsMemConfig:

AbsEnv =

(register → ValueSet)
× ({Global} → AlocEnv)
× (Proc → AlocEnv⊥)
× (AllocMemRgn → AlocEnv⊥)

AbsMemConfig = (CallString → AbsEnv⊥)

3.3 Aggregate Structure Identification (ASI)

In [26], Ramalingam et al. observed that there can be a loss of pre-
cision in the results that are computed by a static-analysis algorithm
if it does not distinguish between accesses to different parts of the
same aggregate (in Cobol programs). They developed the Aggre-
gate Structure Identification (ASI) algorithm to distinguish among
such accesses, and showed how the results of ASI can improve the
results of dataflow analysis. This section briefly describes the ASI
algorithm.

ASI is a unification-based, flow-insensitive algorithm to identify
the structure of aggregates in a program. The algorithm ignores the
type declarations for all aggregates, and considers each aggregate
to be merely a sequence of bytes of a given length. The aggregate is
then broken up into smaller parts depending upon how it is accessed
by the program. These smaller parts are referred to as atoms.

The data-access patterns in the program are specified to the ASI
algorithm through a data-access constraint language (DAC). The
syntax of DAC programs is shown in Fig. 4. There are two kinds
of constructs in a DAC program: (1) DataRef is a reference to a
set of sequences of bytes, and provides a means to specify how the

4 This aspect of the abstract domain will be augmented in §5.
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data is accessed in the program; (2) UnifyConstraint provides
a means to specify the flow of data in the program. Note that the
direction of data flow in a UnifyConstraint is not considered
because a UnifyConstraint merely establishes that there is a
flow of data between the two sequences of bytes; consequently,
they should have the same structure. ASI uses the constraints in
the DAC program to find a coarsest refinement of the aggregates.

Pgm ::== ε | UnifyConstraint Pgm
UnifyConstraint ::== DataRef ≈ DataRef

DataRef ::== ProgVars |
DataRef[Int:Int] |
DataRef\Int+

Figure 4. Data-Access Constraint (DAC) language syntax. Int is
the set of non-negative integers; Int+ is the set of positive integers;
and ProgVars is the set of program variables.

There are three kinds of data references:
• A variable P ∈ ProgVar refers to all the bytes of variable P.
• DataRef[l:u] refers to bytes l through u in DataRef. For

example, P[8:11] refers to the bytes 8..11 of variable P.
• DataRef\n is interpreted as follows. DataRef is an array of

n elements and DataRef\n refers to the bytes of a statically
indeterminate array element. For example, P[0:11]\3 refers
to the sequences of bytes P[0:3], P[4:7], or P[8:11].
Instead of going into the details of the ASI algorithm, we pro-

vide the intuition behind the algorithm through an example. Let us
consider the source-code program shown in Fig. 2. The data-access
constraints for the program are shown below:

p[0:39]\5[0:3] ≈ const 1[0:3];
p[0:39]\5[4:7] ≈ const 2[0:3];

return main[0:3] ≈ p[5:8];
The constraints assume that the size of Point is 8 bytes and

that x and y are laid out next to each other. The first constraint
encodes the initialization of the x members, namely, p[i].x = 1.
The DataRef p[0:39]\5[0:3] refers to the bytes that correspond
to the x members in array p. The last constraint corresponds to
the return statement; it represents the fact that return main, the
return value of procedure main, is assigned bytes 5..8 of p, which
corresponds to p[0].y.

The result of ASI is a DAG that shows the structure of each
aggregate and the relationship among the atoms of the aggregate.
The DAG for Ex. 3.1 is shown in Fig. 5. An ASI DAG has the
following properties:
• Each node represents a set of sequences of bytes in an aggre-

gate.
• A sequence of bytes that is accessed as an array in the program

is represented by an array node. Array nodes are labeled withN
. The number in the array node represents the number of el-

ements in the array. An array node has one child and the DAG
rooted at the child represents the structure of the array element.
In Fig. 5, the sequence of bytes represented by p[8:39] is iden-
tified as an array of four 8-byte elements. Each array element is
a struct with two fields of four-bytes each.

• A sequence of bytes that is accessed like a C structure in
the program is represented by a struct node. The number in
the struct node represents the length of the structure and the
children of a struct node represent the fields of the structure. In
Fig. 5, the sequence of bytes p[0:39] is identified as a struct
with three fields: two scalars and one array.

• Nodes are shared if there is a flow of data in the program in-
volving the corresponding sequence of bytes either directly or
indirectly. In Fig. 5, the nodes for the sequence of bytes cor-
responding to return main[0:3] and p[5:8] are shared be-
cause of the return statement in main. Similarly the sequence

Figure 5. ASI DAG for the program in Fig. 2.

of bytes that correspond to the y members of array p, namely
p[0:39]\5, share the same node because they are all assigned
the same constant at the same instruction.

An alternative way to look at the results of ASI is through a C
struct declaration as shown below.

struct {
int m1; int m2;
struct{

int m3 m1; int m3 m2;
} m3[4];

} AR main;

4. Recovering A-locs via Iteration
The a-loc abstraction described in §3.1 is not powerful enough to
represent arrays of structs (or, more precisely, the different sets of
field-instances in an array of structs). An a-loc can only represent
a contiguous sequence of memory locations in a memory-region,
with no internal substructure. This limitation of IDAPro’s a-locs
can affect the accuracy of VSA as well as the clients of VSA.

For example, suppose that a procedure in a program has four
local variables l1, l2, l3, and l4 that are laid out next to each other.
Suppose that the compiler only generates explicit accesses to l1 and
l3 and indirect accesses to l2 and l4 in terms of the addresses of l1
and l3. In this case, IDAPro will identify only two 8-byte a-locs:
l12, which spans l1 and l2, and l34, which spans l3 and l4. During
VSA, an update to l4 is considered to be a weak update to l34.
Hence, the value-set computed for l34 is not as accurate as desired.

The atoms discovered by the ASI algorithm are similar to a-
locs but more expressive; atoms can represent non-contiguous se-
quences of memory locations (such as the different sets of field-
instances in an array of structs). When the atoms obtained for
Ex. 3.1 are used as a-locs in value-set analysis, the a-locs defined
by instruction L1 are {AR main.m3[0..4].m3 m1, AR main.m1},
and the a-locs used at 10 are {AR main.m2}. Because these sets do
not overlap (and there are no intermediate dependences that con-
nect them transitively), this abstraction determines that 10 is not
data dependent on L1.

One might hope to apply ASI to an x86 executable by treating
each memory-region as an aggregate and determining the structure
of each memory-region. However, applying ASI to x86 executa-
bles is problematic. One of the requirements for applying ASI is
that it must be possible to extract data-access constraints from the
program. When applying ASI to Cobol, the data-access patterns
are apparent from the syntax of the constructs under consideration.
Consequently, generating data-access constraints is possible. Un-
fortunately, this is not the case for x86 executables. For instance,
the memory operand [eax] can either represent an access to a sin-
gle variable or to all the elements of an array, as is evident in the as-
sembly programs that have been shown earlier. Fortunately, value-
sets provide the necessary information to generate data-access con-
straints. Recall that a value-set is an over-approximation of the set

5 2005/7/19



of offsets in each memory-region. This is exactly the information
necessary to generate data-access constraints for the executable.

In this section, we show how the atoms in the ASI trees5 that
are obtained from ASI can be used in place of IDAPro’s a-locs
during VSA. Because ASI trees are not available initially, we use
the a-locs identified by IDAPro during the first round of VSA. It
is trivial to represent the structure induced by IDAPro’s a-locs on
the memory region using an ASI tree. Fig. 6 shows the ASI tree for
Ex. 3.1. Each memory-region is assumed to be a sequence of bytes
of length 232 (264 for a 64-bit machine). The negative offsets in the
memory-region correspond to the offsets {0, 1, . . . , (231 − 1)} of
the aggregate, and the non-negative offsets in the memory-region
correspond to the offsets {231, (231 + 1), . . . , (232 − 1)} of the
aggregate. ret addr is at offset 231, var 40 is at offset (231−40),
and var 36 is at offset (231 − 36) of the aggregate associated
with AR main. The nodes labeled LocalGuard and FormalGuard
represent out-of-bounds areas in the activation record of main.
Any access to these symbols is flagged by VSA as a possible
memory-access violation.

Figure 6. ASI tree constructed from IDAPro’s a-locs for Ex. 3.1.

After the first round of value-set analysis has been carried out,
the results of value-set analysis are used as a basis for running ASI.
The results of ASI are used to refine the set of a-locs, and VSA is
run again. This can be carried out for as many rounds as desired, or
until no further changes occur. The process is illustrated in Fig. 7.
ASI is used only as a heuristic to find a-locs for VSA; i.e., it is
not necessary to generate data-access constraints for all memory
accesses in the program. Because ASI is a unification-based algo-
rithm, generating data-access constraints for certain kinds of in-
structions leads to undesirable results. §4.3 discusses some of these
cases. Our abstraction-refinement principles can be summarized as
follows:
1. VSA is used to obtain memory-access patterns in the exe-

cutable;
2. ASI is used as a heuristic to determine a set of a-locs according

to the memory-access patterns obtained from the information
recovered by VSA.

It is important to understand that VSA generates sound results even
if not all data-access patterns are taken into account during the
previous round of ASI.

ASI is not a replacement for value-set analysis. ASI cannot be
applied to x86 executables without the information that is obtained
from value-set analysis—namely value-sets.

By propagating the types of parameters to library calls during
ASI, we could obtain source-level types for other a-locs.

In the rest of this section, we describe the interplay between
VSA and ASI: (1) we show how value-sets are used to generate
data-access constraints for input to ASI, and (2) how the atoms in
the ASI trees are used during the next round of VSA as a-locs.

4.1 Generating Data-Access Constraints from Value-Sets

This section describes the algorithm that generates ASI data-
references for memory operands. First, we consider indirect operands
of the form [r] and then indirect operands of the form [base + index

5 ASI trees are obtained from the DAG by duplicating shared nodes.

Figure 7. Iterating ASI and VSA to identify better a-locs.

× scale + offset]. To gain intuition about the algorithm, consider
operand [eax] of instruction L1 in Ex. 3.1. The value-set asso-
ciated with eax is (∅, 8[−40,−4]). The stride value of 8 and the
interval [−40,−4] in the activation record of main provides evi-
dence that [eax] is an access to the elements of an array of 8-byte
elements in the range [−40,−4] of the activation record of main.
Hence, an array access is generated for this operand.

Recall that a value-set is an n-tuple of strided intervals. The
strided interval s[l, u] in each component represents the offsets in
the corresponding memory-region. Alg. 1 shows the pseudocode to
convert offsets in a memory-region into an ASI reference. SI2ASI
takes the name of a memory-region r, a strided interval s[l, u], and
the number of bytes accessed length as arguments. The length pa-
rameter is obtained from the instruction. For example, the length
for [eax] is 4 because the instruction at L1 in Ex. 3.1 is a four-byte
data transfer. The algorithm returns a pair in which the first compo-
nent is an ASI reference and the second component is a Boolean.
The significance of the Boolean component is described below. The
algorithm works as follows: If s[l, u] is a singleton then the ASI
reference is the one that accesses offsets l to l + length − 1 in the
aggregate associated with the memory-region r. If s[l, u] is not a
singleton then the offsets represented by s[l, u] are treated as ref-
erences to an array. The size of the array element is the stride s
whenever (s ≥ length). However, when (s < length) an overlap-
ping set of locations is accessed by the indirect memory-operand.
Because an overlapping set of locations cannot be represented us-
ing an ASI reference, the algorithm chooses length to be the size
of the array element. This is not a problem for the soundness of
subsequent rounds of VSA because of refinement principle 2. The
Boolean component of the pair denotes whether the algorithm gen-
erated an exact ASI reference or not. The number of elements in
the array is the length of the interval divided by the size.

For operands of the form [r], the set of ASI references is gen-
erated by invoking Alg. 1 for each non-empty memory-region in
the value-set associated with r. In Ex. 3.1, the value-set associated
with eax at L1 is (∅, 8[−40,−4]). Therefore, the set of ASI refer-
ences is {AR main[(-40):(-4)]\5[0:3]}.6 There are no references to
memory-region Global because the set of offsets in that region is
empty.

One typical use of indirect operands of the form [base + index
× scale + offset] is to access two-dimensional arrays. Note that
scale and offset are statically-known constants. Because abstract
values are strided intervals, we can absorb scale and offset into base
and index. Hence, without loss of generality, we only discuss mem-
ory operands of the form [base+index]. Assuming that the two-
dimensional array is stored in row-major format, one of the regis-
ters (usually the base) holds the starting addresses of the rows and
the other register (usually the index) holds the indices of the ele-
ments in the row. Therefore, [base+index] refers to all the elements
in the two-dimensional array. Alg. 2 shows the algorithm to gener-
ate an ASI reference, when the set of offsets in a memory-region
is expressed as a sum of two strided intervals as in [base+index].
Note that we could use Alg. 1 by computing the abstract sum (⊕)
of the two strided intervals. However, doing so results in a loss of
precision because strided intervals can only represent a single stride

6 Offsets in a DataRef cannot be negative. Negative offsets are used in the
paper for ease of understanding. Negative offsets are mapped to the range
[0 : 231−1]; non-negative offsets are mapped to the range [231 : 232−1].
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exactly. Alg. 2 works as follows: First, it determines which of the
two strided intervals is used as a base because it is not always ap-
parent from the representation of the operand. The strided interval
that is used as a base should have a stride that is greater than the
length of the interval in the other strided interval. Once the roles
of the strided intervals are established, the algorithm generates the
ASI reference for base followed by the ASI reference for index. For
example, consider the indirect memory operand [eax+ecx]. Sup-
pose that the value-set of ecx is (∅, 16[−160,−16]), the value-set
of eax is (1[0, 9], ∅), and length is 1. For this example, eax is the
index and ecx is the base. The ASI reference that is generated is
AR[-160:-1]\10[0:15][0:9]\10[0:0].

In some cases, the algorithm cannot establish either of the
strided intervals as a base. In such cases, the algorithm com-
putes the abstract sum (⊕) of the two strided intervals and invokes
SI2ASI.

Algorithm 1 SI2ASI: Algorithm to convert a given strided interval
into an ASI reference.
Input: The name of a memory-region r, strided interval s[l, u],

number of bytes accessed length.
Output: A pair in which the first component is an ASI reference

for the sequence of length bytes starting at offsets s[l, u] in
memory-region r and the second component is a Boolean that
represents whether the ASI reference is an exact reference (true)
or an approximate one (false).

if s[l, u] is a singleton then
return 〈 “r[l : l + length − 1]”, true〉

else
size ← max(s, length)
n ← 
(u − l + size − 1)/size�
ref ← “r[l : u + size − 1]\n[0 : size − 1]”
return 〈ref, (s = size)〉

end if

Algorithm 2 Algorithm to convert the set of offsets represented by
the sum of two strided intervals into an ASI reference.
Input: The name of a memory-region r, two strided intervals

s1[l1, u1] and s2[l2, u2], number of bytes accessed length.
Output: An ASI reference for the sequence of length bytes start-

ing at offsets s1[l1, u1] + s2[l2, u2] in memory region r.

if (s1[l1, u1] or s2[l2, u2] is singleton) then
return SI2ASI(r, s1[l1, u1] ⊕ s2[l2, u2], length)

end if
if s1 ≥ (u2 − l2 + length) then

baseSI ← s1[l1, u1]
indexSI ← s2[l2, u2]

else if s2 ≥ (u1 − l1 + length) then
baseSI ← s2[l2, u2]
indexSI ← s1[l1, u1]

else
return SI2ASI(r, s1[l1, u1] ⊕ s2[l2, u2], size )

end if
〈baseRef, exactRef〉 ← SI2ASI(r, baseSI, stride(baseSI))
if exactRef is false then

return SI2ASI(r, s1[l1, u1] ⊕ s2[l2, u2], length)
else

return concat(baseRef, SI2ASI(‘’, indexSI, length))
end if

4.2 Interpreting indirect memory-references

This section describes a lookup algorithm that finds the set of a-
locs that are accessed by a memory operand. The lookup algorithm
is used to interpret pointer-dereference operations during VSA.
For instance, consider the assembly instruction “mov [eax], 10”.
During VSA, the lookup algorithm is used to determine the a-locs
accessed by [eax] and the value-sets for the a-locs are updated
accordingly. In [3], the algorithm to determine the set of a-locs
for a given value-set is trivial because each memory-region in [3]
consists of a linear list of IDAPro a-locs. However, after ASI is
performed the structure of each memory-region is an ASI tree.

In [26], Ramalingam et al. present a lookup algorithm to retrieve
the set of atoms for an ASI expression. However, their lookup al-
gorithm is not appropriate for use in VSA because the algorithm
assumes that the only ASI expressions that can arise during lookup
are the ones that were used during the atomization phase. Unfortu-
nately, this is not the case during VSA, for the following reasons:
• ASI is used as a heuristic. As will be discussed in §4.3, some

data-access patterns that arise during VSA might be ignored
during the atomization phase.

• The executable can possibly access fields of those structures
that have not yet been broken down into atoms. For example,
the initial round of ASI based on IDAPro’s information will not
include accesses to the fields of structures. However, the first
round of VSA may access structure fields.
We will use the tree obtained from Fig. 5 to describe the lookup

algorithm. The tree is shown in Fig. 8. Every node in the tree
is given a unique name shown within parentheses. The following
terms are used in describing the lookup algorithm:
• NodeDesc is a descriptor for a part of an ASI tree node and is

denoted by a pair 〈name, length〉, where name is the name
associated with the ASI tree node and length is its length.

• NodeDescList is an ordered list of NodeDesc descriptors.
A NodeDescList is represented as [nd1, nd2, . . . , ndn]. A
NodeDescList represents a contiguous set of offsets in an
aggregate. For example, the NodeDescList [〈a3, 2〉, 〈a4, 2〉]
represents the offsets 2..5 of node i1; the offsets 2..3 come
from 〈a3, 2〉 and the offsets 4..5 come from 〈a4, 2〉.
The lookup algorithm is a traversal of the ASI tree guided by

the ASI reference for the given memory operand. First, the mem-
ory operand is converted into an ASI reference using the algo-
rithm described in §4.1, and the resulting ASI reference is parsed
into a list of ASI operations. There are three kinds of ASI opera-
tions: (1) GetChildren(aloc), (2) GetRange(start, end), and (3)
GetArrayElements(m). For example, the list of ASI operations
for “p[0:39]\10[0:1]” is [GetChildren(p), GetRange(0,
39), GetArrayElements(10), GetRange(0,1)]. Each oper-
ation takes a NodeDescList as argument and returns a set of
NodeDescList values. The operations are performed from left to
right. The argument of each operation comes from the results of the
operation that is immediately to its left. The a-locs that are accessed
are all the a-locs in the final set of NodeDesc descriptors.

The GetChildren(aloc) operation returns a NodeDescList
that contains NodeDesc descriptors corresponding to the children
of the root node of the tree associated with the aggregate aloc.

GetRange(start, end) returns a NodeDescList that contains
NodeDesc descriptors representing the nodes with offsets in the
given range [start : end].

GetArrayElements(m) treats the given NodeDescList as an
array of m elements and returns a set of NodeDescList lists. Each
NodeDescList list represents an array element. There can be more
than one NodeDescList for the array elements because an array
can be split during the atomization phase and different parts of the
array might be represented by different nodes.

The following examples discuss traces of a few lookups.
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Figure 8. ASI tree for the example in Fig. 2. The name associated
with the node is shown within parenthesis.

EXAMPLE 4.1. Lookup p[0:3]
[〈i1, 40〉]

GetChildren(p) ⇓
[〈a3, 4〉, 〈a4, 4〉, 〈i2, 32〉]

GetRange(0, 3) ⇓
[〈a3, 4〉]

GetChildren(p) returns the NodeDescList [〈a3, 4〉, 〈a4, 4〉,
〈i2, 32〉]. Applying GetRange(0, 3) returns [〈a3, 4〉] because
that describes offsets 0..3 in the given NodeDescList. The a-
loc that is accessed by p[0:3] is a3. �

EXAMPLE 4.2. Lookup p[0:39]\5[0:3]
[〈i1, 40〉]

GetChildren(p) ⇓
[〈a3, 4〉, 〈a4, 4〉, 〈i2, 32〉]

GetRange(0, 39) ⇓
[〈a3, 4〉, 〈a4, 4〉, 〈i2, 32〉]

GetArrayElements(5) ⇓
[〈a3, 4〉, 〈a4, 4〉], [〈a5, 4〉, 〈a6, 4〉]

GetRange(0, 3) ⇓
[〈a3, 4〉], [〈a5, 4〉]

Let us concentrate on GetArrayElements(5) because the
other operations are similar to Ex. 4.1. GetArrayElements(5)
is applied to [〈a3, 4〉, 〈a4, 4〉, 〈i2, 32〉]. The total length of the
given NodeDescList is 40 and the number of required array ele-
ments is 5. Therefore, the size of the array element is 8. Intuitively,
GetArrayElements unrolls the given NodeDescList and creates
a NodeDescList for every unique n-bytes starting from the left,
where n is the length of the array element. For this example, the
unrolled NodeDescList is [〈a3, 4〉, 〈a4, 4〉, 〈a5, 4〉, 〈a6, 4〉, . . . ,
〈a5, 4〉, 〈a6, 4〉]. The set of unique 8-byte NodeDescList lists for
this example is {[〈a3, 4〉, 〈a4, 4〉], [〈a5, 4〉, 〈a6, 4〉]}. �

EXAMPLE 4.3. Lookup p[8:37]\5[0:5]
[〈i1, 40〉]

GetChildren(p) ⇓
[〈a3, 4〉, 〈a4, 4〉, 〈i2, 32〉]

GetRange(8, 37) ⇓
[〈i2, 30〉]

GetArrayElements(5) ⇓
[〈a5, 4〉, 〈a6, 2〉], [〈a6, 2〉, 〈a5, 4〉],
[〈a6, 4〉, 〈a5, 2〉], [〈a5, 2〉, 〈a6, 4〉]

GetRange(0, 5) ⇓
[〈a5, 4〉, 〈a6, 2〉], [〈a6, 2〉, 〈a5, 4〉],
[〈a6, 4〉, 〈a5, 2〉], [〈a5, 2〉, 〈a6, 4〉]

This example shows a slightly complicated case of the
GetArrayElements operation. Unrolling of [〈i2, 30〉] results in
four distinct representations for 6-byte array elements, namely,
[〈a5, 4〉, 〈a6, 2〉], [〈a6, 2〉, 〈a5, 4〉], [〈a6, 4〉, 〈a5, 2〉], and [〈a5, 2〉,
〈a6, 4〉].

�

4.3 Pragmatics

ASI takes into account all possible accesses and data transfers
involving memory and finds a partition of the memory-regions that
is consistent with these transfers. However, from the standpoint of
accuracy of VSA and its clients, it is not always beneficial to take
into account all possible accesses. Some of the reasons for this are
• VSA might obtain a very conservative estimate for the value-

set of a register (say R). In some cases, the value-set for R could
be �, meaning that register R can possibly hold all addresses
and numbers. For a memory operand [R], we do not want to
generate ASI references that refer to each memory-region as an
array of 1-byte elements.

• Some compilers initialize the local stack frame with a known
value to aid in debugging uninitialized variables at runtime. For
instance, some versions of the Microsoft Visual Studio compiler
initialize all bytes of a local stack frame with the value 0xc.
The compiler might do this initialization by using a memcpy.
Generating ASI references that mimic memcpy would cause
the memory-region associated with this procedure to be broken
down into an array of 1-byte elements, which is not desirable.
To deal with such cases, we provide some options for the user

to tune the analysis:
• The user can supply an integer threshold. If the cardinal-

ity of the value-set associated with a register R is above the
given threshold, no ASI reference is generated for the memory
operand involving R.

• The user can supply a set of instructions for which ASI refer-
ences should not be generated.

• The user can supply explicit references to be used during ASI.

4.4 Convergence

The first round of VSA uncovers memory accesses that are not ex-
plicit in the program, which results in the refinement of the a-locs
for the next round of VSA. Consequently, the next round of VSA
produces more precise value-sets because it is based on a better
set of a-locs. Similarly, subsequent rounds of VSA uncover more
memory accesses and hence refine the a-locs. Usually, every new
round of VSA produces more precise value-sets. Usually, this pro-
cess stabilizes; i.e., after a few iterations VSA results do not change
with every round. However, in some cases, value-sets obtained dur-
ing VSA may become worse than the value-sets obtained in the
previous round. In such cases, the iteration can go on indefinitely.
We ensure termination by limiting the iteration to the number of
rounds specified by the user. Because, ASI is only used as a heuris-
tic during VSA, the number of iteration rounds does not affect the
soundness of the results of VSA.

5. An Abstraction for Heap-Allocated Storage
A great deal of work has been done on algorithms for flow-
insensitive points-to analysis [2, 31, 10] (including algorithms that
exhibit varying degrees of context-sensitivity [13, 6, 14, 32]). How-
ever, all of the aforementioned work uses a very simple abstraction
of heap-allocated storage, which we call the allocation-site ab-
straction [19, 5]:

All of the nodes allocated at a given allocation site s are
folded together into a single summary node ns.

In terms of precision, the allocation-site abstraction can often pro-
duce poor-quality information. If allocation site s is in a loop, or in
a function that is called more than once, then s can allocate multi-
ple nodes with different addresses. A points-to fact “p points to ns”
means that program variable p may point to one of the nodes that
ns represents. For an assignment of the form p->selector1 = q,
points-to-analysis algorithms are ordinarily forced to perform a
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weak update: that is, selector edges emanating from the nodes that
p points to are accumulated. Because imprecisions snowball as ad-
ditional weak updates are performed (e.g., for assignments of the
form r->selector1 = p->selector2), the use of weak updates
has adverse effects on what a points-to-analysis algorithm can de-
termine about the properties of heap-allocated data structures.

Even the use of multiple summary nodes per allocation site,
where each summary node is qualified by some amount of calling
context (as in [22, 15]), does not overcome the problem; that is,
algorithms such as [22, 15] must still perform weak updates.

At the other extreme is a family of heap abstractions that have
been introduced to discover information about the possible shapes
of the heap-allocated data structures to which a program’s pointer
variables can point [28]. Those abstractions generally allow strong
updates to be performed, and are capable of providing very precise
characterizations of programs that manipulate linked data struc-
tures; however, the methods are also very costly in space and time.

The remainder of this section describes an abstraction for heap-
allocated storage, called the recency abstraction, that lies in be-
tween these extremes. In particular, for allocation sites that arise
because the source code contains a call new C, where C is a class
that has virtual methods, the recency abstraction generally permits
VSA and ASI to recover information about virtual-function tables.

The recency abstraction is similar in some respects to the
allocation-site abstraction, in that each abstract node is associated
with a particular allocation site; however, the recency abstraction
uses two memory-regions per allocation site s:
AllocMemRgn = {MRAB[s], NMRAB[s] | s an allocation site}
• MRAB[s] represents the most-recently-allocated block that

was allocated at s. Because there is at most one such block
in any concrete configuration, MRAB[s] is never a summary
memory-region.

• NMRAB[s] represents the non-most-recently-allocated blocks
that were allocated at s. Because there can be many such blocks
in a given concrete configuration, NMRAB[s] is generally a
summary memory-region.

In addition, each MRAB[s], NMRAB[s] ∈ AllocMemRgn is
associated with a “count” value, denoted by MRAB[s].count
and NMRAB[s].count, respectively, which is a value of type
SmallRange = {[0, 0], [0, 1], [1, 1], [0,∞], [1,∞], [2,∞]}. The
count value records a range for how many concrete blocks the
memory-region represents. While NMRAB[s].count can have any
SmallRange value, MRAB[s].count will be restricted to take on
only values in {[0, 0], [0, 1], [1, 1]}; consequently, under certain
conditions, an abstract transformer can perform a strong update on
an a-loc of MRAB[s].

In addition to the count, each MRAB[s], NMRAB[s] ∈ AllocMemRgn
is also associated with a “size” value, denoted by MRAB[s].size
and NMRAB[s].size, respectively, which is a value of type StridedInterval.
The size value represents an over-approximation of the size of the
block. This information is used to report memory-access violations
that involve heap-allocated data. We now work with the following
basic domains:

MemRgn = {Global} ∪ Proc ∪ AllocMemRgn
ValueSet = MemRgn → StridedInterval⊥
AlocEnv = a-loc → ValueSet⊥

SmallRange = {[0, 0], [0, 1], [1, 1], [0,∞], [1,∞], [2,∞]}
The analysis associates each program point with an AbsMemConfig:

AllocAbsEnv = (SmallRange × StridedInterval × AlocEnv)⊥

AbsEnv =

(register → ValueSet)
× ({Global} → AlocEnv)
× (Proc → AlocEnv⊥)
× (AllocMemRgn → AllocAbsEnv)

AbsMemConfig = (CallString → AbsEnv⊥)

Like other memory-regions, MRAB[s] and NMRAB[s] have an as-
sociated set of a-locs that can be refined by ASI. Let count, size, and
alocEnv, respectively, denote the SmallRange, StridedInterval, and
AlocEnv associated with a given AllocMemRgn. A given absEnv ∈
AbsEnv maps allocation memory-regions, such as MRAB[s] or
NMRAB[s], to 〈count, size, alocEnv〉 triples.

The transformers for various operations are defined as follows:
• At the entry point of the program, the AbsMemConfig that

describes the initial state records that, for each allocation site
s, the AlocEnvs for both MRAB[s] and NMRAB[s] are ⊥.

• In x86 code, return values are passed back in register eax. Let
size denote the size of block allocated at the allocation site.
The value of size is obtained from the value-set associated with
the parameter of the allocation method. The transformer for
allocation site s transforms absEnv to absEnv′, where absEnv′

is identical to absEnv, except that for all ValueSets of absEnv
that contain [..., MRAB[s] �→ si1, NMRAB[s] �→ si2, ...],
become [..., ∅, NMRAB[s] �→ si1 � si2, ...] in absEnv′. In
addition, absEnv′ is updated on the following arguments:

absEnv′(MRAB[s]) = 〈[0, 1], size, λa-loc.�ValueSet〉
absEnv′(NMRAB[s]).count =

absEnv(NMRAB[s]).count
+ absEnv(MRAB[s]).count

absEnv′(NMRAB[s]).size =
absEnv(NMRAB[s]).size

� absEnv(MRAB[s]).size

absEnv′(NMRAB[s]).alocEnv =
absEnv(NMRAB[s]).alocEnv

� absEnv(MRAB[s]).alocEnv
absEnv′(eax) = [MRAB[s] �→ 0[0, 0]]

In the present implementation, we assume that an allocation
always succeeds; hence, in place of the first line above, we use

absEnv′(MRAB[s]) = 〈[1, 1], size, λa-loc.�ValueSet〉.
Consequently, the analysis only explores the behavior of the
system on executions in which allocations always succeed.

• The join absEnv1 � absEnv2 of absEnv1, absEnv2 ∈ AbsEnv is
performed pointwise; in particular,

absEnv′(MRAB[s]) =
absEnv1(MRAB[s])

� absEnv2(MRAB[s])

absEnv′(NMRAB[s]) =
absEnv1(NMRAB[s])

� absEnv2(NMRAB[s])

In all other abstract transformers (e.g., assignments, data move-
ments, interpretation of conditions, etc.), as well as during ASI,
MRAB[s] and NMRAB[s] are treated just like other memory
regions—i.e., Global and the AR-regions—with two exceptions:
• During the phase that generates the data-access constraints

for the executable, an ASI instruction is generated to equate
MRAB[s] and NMRAB[s] so that they end up having the same
set of a-locs with the same structure.

• During VSA, all abstract transformers are passed a memory-
region status map that indicates which memory-regions, in the
context of a given call-string suffix cs, are summary memory-
regions. Whereas the Global region is always non-summary, to
decide whether a procedure P ’s memory-region is a summary
memory-region, first call-string cs is traversed, and then the
call graph is traversed, to see whether the runtime stack could
contain multiple pending activation records for P .

The summary-status information for MRAB[s]
and NMRAB[s] is obtained differently—from the
values of absMemConfig(cs)(MRAB[s]).count and
absMemConfig(cs)(NMRAB[s]).count, respectively.

The memory-region status map provides one of two pieces of in-
formation used to identify when a strong update can be performed.
In particular, an abstract transformer can perform a strong update
if the operation modifies (a) exactly one register, or (b) exactly one
a-loc in a non-summary memory-region.
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VSA could not resolve the other indirect call-sites mostly be-
cause it could not establish that all the elements of an array are def-
initely initialized in a loop. The problem is as follows. In some of
the example programs, an array of pointers to objects is initialized
via a loop. These pointers are later used to invoke a virtual-function
call. Even if VSA were successful in determining the addresses of
the elements of the array, it would not establish that all elements
of the array are definitely initialized by the instruction in the loop.
Hence, the values of the pointers in the array remain �.

x86 CFGs ICalls Cover- Rounds Time
Insts age(%) (s)

NP 252 5 6 98.99 2 1
primes 294 9 2 75.79 2 0
family 351 9 3 98.71 4 1
vcirc 407 14 5 78.23 3 0
fsm 502 13 1 87.57 2 5
office 592 22 4 60.34 1 0
trees 1299 29 3 68.08 6 9
deriv1 1369 38 18 56.11 9 4
chess 1662 41 1 84.21 3 16
objects 1739 47 23 37.12 3 2
simul 1920 60 3 22.84 3 6
greed 1945 47 17 72.87 4 10
shapes 1955 39 12 64.38 7 10
ocean 2552 61 5 44.65 3 17
deriv2 2639 41 56 32.26 7 2

Table 1. Characteristics of example programs. “Coverage” denotes
the part of the program that is reachable during analysis (see §6.1).
“Rounds” denotes the number of ASI-VSA rounds after which
results stabilized.

6.2 Results of a-loc identification

To evaluate the results of the abstraction-refinement algorithm, we
compared the results of the algorithm with the debugging infor-
mation. We constructed an ASI tree for each activation record in
the program using the debugging information, and determined the
number of leaves that had similar structure in both the ASI tree ob-
tained using debugging information and the one obtained using the
abstraction-refinement algorithm. The results are in shown Fig. 6.2.
On average, the abstraction-refinement algorithm determines the
structure of 87% of the local variables correctly.

We did a similar evaluation of the structure of heap-allocated
data objects. The results are shown in Fig. 6.2. For the heap, the
abstraction-refinement algorithm determines the structure of 72%
of these objects correctly. We only compared the structure of mem-
ory blocks that summarized reachable allocation-sites with the de-
bugging information because the abstraction-refinement algorithm
only provides information for such blocks.

7. Related Work
Other work on analyzing memory accesses in executables. Pre-
vious techniques deal with memory accesses very conservatively;
generally, if a register is assigned a value from memory, it is as-
sumed to take on any value. For instance, although the basic goal
of the algorithm proposed by Debray et al. [11] is similar to that
of VSA, their goal is to find an over-approximation of the set of
values that each register can hold at each program point; for us,
it is to find an over-approximation of the set of values that each
(abstract) data object can hold at each program point, where data
objects include global, stack-allocated, and heap-allocated mem-
ory locations in addition to registers. In the analysis proposed by

⊥ 1 2 ≥3 �
NP 0 0 6 0 0
primes 1 1 0 0 1
family 0 3 0 0 0
vcirc 0 5 0 0 0
fsm 0 1 0 0 0
office 0 4 0 0 0
trees 1 0 0 1 2
deriv1 8 8 2 0 0
chess 0 0 0 0 1
objects 18 0 4 0 1
simul 2 0 0 0 1
greed 6 10 0 0 1
shapes 4 4 3 0 1
ocean 3 0 0 0 2
deriv2 33 22 0 0 1

Table 2. Distribution of the number of callees at each indirect call.

Figure 10. Percentage of the locals for which results of ASI
matched the debugging information.

Figure 11. Percentage of the heap-allocated structure for which
results of ASI matched the debugging information.

Debray et al., a set of addresses is approximated by a set of congru-
ence values: they keep track of only the low-order bits of addresses.
However, unlike VSA, their algorithm does not make any effort to
track values that are not in registers. Consequently, it loses a great
deal of precision whenever there is a load from memory.

Cifuentes and Fraboulet [7] give an algorithm to identify an
intraprocedural slice of an executable by following the program’s
use-def chains. However, their algorithm also makes no attempt to
track values that are not in registers, and hence cuts short the slice
when a load from memory is encountered.

The two pieces of work that are most closely related to VSA
are the algorithm for data-dependence analysis of assembly code
of Amme et al. [1] and the algorithm for pointer analysis on a low-
level intermediate representation of Guo et al. [15]. The algorithm
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of Amme et al. performs only an intraprocedural analysis, and it
is not clear whether the algorithm fully accounts for dependences
between memory locations. The algorithm of Guo et al. [15] is only
partially flow-sensitive: it tracks registers in a flow-sensitive man-
ner, but treats memory locations in a flow-insensitive manner. The
algorithm uses partial transfer functions [33] to achieve context-
sensitivity. The transfer functions are parameterized by “unknown
initial values” (UIVs); however, it is not clear whether the the algo-
rithm accounts for the possibility of called procedures corrupting
the memory locations that the UIVs represent.8

Identification of structures. Aggregate structure identification
was devised by Ramalingam et al. to partition aggregates accord-
ing to a Cobol program’s memory-access patterns [26]. A similar
algorithm was devised by Eidorff et al. [12] and incorporated in the
AnnoDomani system. The original motivation for these algorithms
was the Year 2000 problem; they provided a way to identify how
date-valued quantities could flow through a program.

Mycroft [24] gave a unification-based algorithm for performing
type reconstruction; for instance, when a register is dereferenced
with an offset of 4 to perform a 4-byte access, the algorithm infers
that the register holds a pointer to an object that has a 4-byte field
at offset 4. The type system uses disjunctive constraints when mul-
tiple type reconstructions from a single usage pattern are possible.
Other work on pointer analyses The recency abstraction is
similar in flavor to the allocation-site abstraction [19, 5], in that
each abstract node is associated with a particular allocation site;
however, the recency abstraction is designed to take advantage
of the fact that VSA is a flow-sensitive, context-sensitive algo-
rithm. Note that if the recency abstraction were used with a flow-
insensitive algorithm, it would provide little additional precision
over the allocation-site abstraction: because a flow-insensitive algo-
rithm has just one abstract memory configuration that expresses a
program-wide invariant, the algorithm would have to perform weak
updates for assignments to MRAB nodes (as well as for assign-
ments to NMRAB nodes); that is, edges emanating from an MRAB
node would also have to be accumulated.

With a flow-sensitive algorithm, the recency abstraction uses
twice as many abstract nodes as the allocation-site abstraction, but
under certain conditions it is sound for the algorithm to perform
strong updates for assignments to MRAB nodes, which is crucial
to being able to establish a definite link between the set of objects
allocated at a certain site and a particular virtual-function table.

Hackett and Rugina [16] describe a method that uses local rea-
soning about individual heap locations, rather than global reasoning
about entire heap abstractions. In essence, they use an independent-
attribute abstraction: each “tracked location” is tracked indepen-
dently of other locations in concrete memory configurations. The
recency abstraction is a different independent-attribute abstraction.

The use of count information on (N)MRAB nodes was inspired
by the heap abstraction of Yavuz-Kahveci and Bultan [34], which
also attaches numeric information to summary nodes to character-
ize the number of concrete nodes represented.
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A. Additional Related Work
Other work on analyzing executables. Several platforms have
been created for manipulating executables in the presence of addi-
tional information, such as source code, symbol-table information,
and debugging information, including ATOM [30] and EEL [21].

Bergeron et al. [4] present a static-analysis technique to check
if an executable with debugging information adheres to a user-
specified security policy.

Rival [27] presents an analysis that uses abstract interpretation
to check whether the assembly code of a program produced by a
compiler possesses the same safety properties as the source code.
The analysis assumes that source code and debugging information
is available. First, the source code and the assembly code of the
program are analyzed. Next, the debugging information is used to
map the results of assembly-code analysis back to the source code.
If the results for the corresponding program points in source and
assembly code are compatible, then the assembly code possesses
the same safety properties as the source code.
Identification of structures. Mycroft’s algorithm for type-based
decompilation has several weaknesses due to the absence of cer-
tain kinds of information. Some of these can be addressed using
information obtained by the techniques described in this paper:
• Mycroft explains how several simplifications could be triggered

if interprocedural side-effect information were available. Once
the information computed by the methods presented in this
paper is in hand, interprocedural side-effect information could
be computed by standard techniques [9].

• Mycroft’s algorithm is unable to recover information about the
sizes of arrays that are identified. Although not described in this
paper, our implementation incorporates a third analysis phase,
called affine-relation analysis (ARA) [3, 23, 20], that, for each
program point, identifies the affine relations that hold among
the values of registers. In essence, this provides information
about induction-variable relationships in loops, which, in turn,
can allow VSA to recover information about array sizes when
one register is used to sweep through an array under the control
of a second loop-index register.

• Mycroft does not have stride information available; however,
the basic abstract domain on which VSA is based is strided
intervals.

• Mycroft excludes from consideration programs in which ad-
dresses of local variables are taken because “it can be unclear
as to where the address-taken object ends—a struct of size
8 bytes followed by a coincidentally contiguously allocated
int can be hard to distinguish from a struct of 12 bytes.”
This is a problematic restriction for a decompiler because it is
a common idiom: in C programs, addresses of local variables
are frequently used as explicit arguments to called procedures
(when programmers simulate call-by-reference parameter pass-
ing), and C++ and Java compilers can use addresses of local
variables to implement call-by-reference parameter passing.

Because the methods presented in this paper provide infor-
mation about the usage patterns of pointers into the stack, they
would allow Mycroft’s techniques to be applied in the presence
of pointers into the stack.

It would be interesting to make use of Mycroft’s techniques in
conjunction with the techniques described in this paper.
Decompilation. Past work on decompiling assembly code to a
high-level language [8] is also related to our work. However, the
decompilers reported in the literature are somewhat limited in what
they are able to do when translating assembly code to high-level
code. For instance, Cifuentes’s work [8] primarily concentrates on
recovery of (a) expressions from instruction sequences, and (b)
control flow.

We believe that many of the shortcomings of previous decom-
pilers are caused by the fact that they do not incorporate methods to
recover information about memory accesses. The memory-access-
analysis methods that have been described in this paper can be per-
formed prior to decompilation proper, to recover information about
numeric values, address values, physical types, and definite links
from objects to virtual-function tables.
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